石墨烯改性

合集下载

石墨烯的制备和改性及其与聚合物复合的研究进展

石墨烯的制备和改性及其与聚合物复合的研究进展

3 贵州大学喀斯特环境 与地质灾害 防治教育部重点实验室 , 阳 5 0 0 ; 贵州大学林学院 , 阳 5 0 0 ) 贵 50 3 4 贵 5 0 0
摘要
口 口
石墨烯是 2 0 问世的一种具有单层二 维蜂 窝状 晶格结构 的碳 质新材料 , 04年 也是性 能优异 的新型纳米
复合材料 填料 。介绍 了石墨烯的结构、 制备方法 ; 重点论述 了石墨烯表 面接枝 以及聚合物基/ 石墨 烯复合材料制备 的
研 究进 展 晴 利 用 石墨 烯 的 高强 度 、 导 电率 等 优 异 性 能 可 以赋 予 聚 合 物 更加 优 异 的特 性 。 , 为 认 高

关键 r h Pr g e si e r to n d f f Gr p ne a d Re又a c o r s n Pr pa a i n a d M o iy o a he n e

2 3

( C l g fM a e il n e a l r y Gu z o ie st ,Gu y n 5 0 3; Na i n l g n e i g Re e r h Ce tr f r 1 o l e o t ras a d M t l g , i u Un v r iy e u h ia g 5 0 0 2 t a o En i e r s a c n e o n M o i e o y rM a e il Gu z o i e st , ia g 5 0 1 3 Ke a o a o y o r tEn i n n n o a a d Pr v n in d f d P l me t ra , ih u Un v r i Gu y n 5 0 4; i y y L b r t r fKa s v r me ta d Oe h z r e e t o o

探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用石墨烯是由一层厚度仅为一个原子的碳原子构成的二维材料。

由于其具有极高的导电性、热传导性、机械强度和化学稳定性,石墨烯有着广泛的应用潜力。

石墨烯的应用受到了其本身表面性质的限制。

为了改善石墨烯的表面性质,需要对其进行表面改性。

表面改性后的石墨烯可以用于涂层材料中,提高涂层的性能和功能。

石墨烯的表面改性主要包括化学修饰和物理修饰两种方法。

化学修饰是通过在石墨烯表面引入化学官能团来改变其表面性质。

常见的化学修饰方法包括氧化、硝化、氯化、磺酸化等。

这些化学修饰可以引入不同的官能团,如羟基、羧基、氯基等,从而改变石墨烯的表面化学性质。

经氧化修饰后的石墨烯表面变得亲水性增强,可以提高涂层的附着力和耐腐蚀性。

物理修饰是通过在石墨烯表面引入微纳米结构来改变其表面形貌和结构。

常见的物理修饰方法包括机械剥离、熔炼、电弧放电等。

这些物理修饰可以在石墨烯表面形成纳米结构,如纳米颗粒、纳米孔等,从而增加石墨烯的表面积和吸附性能。

经物理修饰后的石墨烯表面呈现出多孔结构,可以提高涂层对溶剂和颗粒的吸附能力。

将表面改性后的石墨烯应用于涂层中可以提升涂层的性能和功能。

表面改性后的石墨烯可以作为填料添加到涂层中,用于增加涂层的机械强度、导热性和阻隔性能。

其高导电性和高热传导性可以提高涂层的导电性和导热性,使涂层具有耐高温、防静电、阻燃等功能。

石墨烯表面改性后的亲水性增强,可以提高涂层的附着力和耐腐蚀性。

石墨烯的表面改性还可以通过控制其表面化学性质来实现对涂层中活性物质的选择性吸附和释放。

石墨烯表面引入特定的官能团后,可以吸附和释放特定的物质,从而在涂层中实现对有机溶剂、催化剂、药物等的选择性吸附和释放。

探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用石墨烯是由碳原子构成的二维晶体材料,其具有独特的物理和化学性质,因此在科学研究和工业应用中引起了广泛的关注。

石墨烯的表面改性是指通过对石墨烯表面进行化学修饰或物理处理,改变其表面性质和功能。

石墨烯的表面改性主要包括化学修饰和物理处理两种方法。

化学修饰是利用化学反应将分子或原子与石墨烯表面进行连接或覆盖,改变其表面性质和功能。

常用的化学修饰方法有氧化、还原、硝化等。

通过氧化可以在石墨烯表面引入羟基或羧基,使其具有良好的亲水性,从而提高石墨烯在涂层材料中的分散性和润湿性。

化学修饰还可以引入活性基团,使石墨烯具有更多的官能团,进而与其他物质发生化学反应,实现多种功能的引入。

物理处理是通过物理手段改变石墨烯表面的形貌和结构,从而改变其表面性质和功能。

常用的物理处理方法有热处理、等离子体处理等。

通过高温热处理可以使石墨烯表面形成缺陷和杂质,从而增加石墨烯的化学反应活性和催化性能。

等离子体处理可以在石墨烯表面引入氨基、羟基等官能团,增加其在涂层中的粘附性和耐久性。

石墨烯的表面改性在涂层中具有广泛的应用前景。

石墨烯具有极高的比表面积和导电性,可以增加涂层的阻隔性能和导电性能。

石墨烯具有优异的机械性能和化学稳定性,可以提高涂层的硬度和耐腐蚀性。

石墨烯还具有良好的光学性质和热导性能,可以改善涂层的透明性和导热性能。

石墨烯在涂层中的应用主要涉及领域包括电子器件、太阳能电池、防腐涂料等。

石墨烯可以作为电子器件的导电层,提高电子器件的导电性能和稳定性。

石墨烯可以作为太阳能电池的透明导电层,提高太阳能电池的能量转化效率。

石墨烯还可以用于制备具有优异防腐性能的涂料,提高金属材料的耐腐蚀性和保护性。

石墨烯的表面改性可以通过化学修饰和物理处理两种方法实现,其在涂层材料中具有广泛的应用潜力。

随着对石墨烯材料性质的深入研究和技术的不断突破,石墨烯涂层材料将会有更广泛的应用前景。

探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用

探析石墨烯的表面改性及其在涂层中的应用【摘要】石墨烯是一种具有优异导电、高强度和超薄结构的二维材料,自其发现以来,一直备受关注。

本文探讨了石墨烯表面改性在涂层中的应用。

通过实现石墨烯表面改性,可以增强其与其他物质的相容性和粘附性,提高涂层的耐久性和性能。

石墨烯在涂层中的应用优势主要包括其高导电性和强度优势,可以应用于防腐涂料和导电涂料中。

石墨烯改性涂层的性能优化也是当前研究重点之一。

结合石墨烯的特性和优势,预计石墨烯在涂层领域有广阔的应用前景,为涂层提供了新的可能性。

石墨烯的发现和表面改性对涂层领域带来了重要的突破,为未来涂料技术的发展开辟了新的研究方向。

【关键词】石墨烯, 表面改性, 涂层, 应用, 优势, 性能优化, 防腐涂料, 导电涂料, 可能性, 应用前景1. 引言1.1 石墨烯的发现与特性石墨烯是由石墨经过化学还原、机械剥离等方法获得的一种二维晶体材料,是由一个原子层组成的二维晶体材料。

石墨烯具有很多优异的特性,比如高导热性、高机械强度、高光学透明度等,是一种具有广泛应用前景的新型材料。

石墨烯的发现可以追溯到2004年,由英国曼彻斯特大学两位科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫首次成功分离出石墨烯,从而引发了全球范围内对石墨烯研究的热潮。

石墨烯具有很高的电子迁移率和热传导率,使其成为理想的导电材料和热导材料。

石墨烯还具有出色的力学性能,比如高弹性模量和强度,使其在纳米材料领域具有广泛的应用前景。

石墨烯的发现为材料科学和技术领域带来了新的突破,为石墨烯在涂层领域的应用提供了强有力的支撑。

1.2 对石墨烯表面改性的重要性石墨烯表面改性的重要性主要体现在以下几个方面:改性可以增加石墨烯与其他物质的相互作用力,提高其在复合材料中的分散性和增强性能;改性可以使石墨烯具有更多的功能化官能团,拓展其在不同领域的应用,如生物医药、传感器等;通过表面改性可以提高石墨烯的稳定性和耐久性,使其更加适合工业化生产和应用。

石墨烯在聚合物改性中的研究进展

石墨烯在聚合物改性中的研究进展

石墨烯在聚合物改性中的研究进展石墨烯是一种由碳原子构成的二维晶格结构材料,具有优异的导电性、热导性和机械性能,因此被广泛应用于各种领域。

在聚合物领域,石墨烯的引入可以显著改善聚合物的性能,提高其导电性、热导性和力学性能,因此受到了广泛的关注。

本文将就石墨烯在聚合物改性中的研究进展进行探讨。

一、石墨烯在聚合物中的引入方式石墨烯可以通过物理混合、化学修饰和共混等方式引入到聚合物中,其中物理混合是最为简单的方式,即将石墨烯与聚合物机械混合。

化学修饰是将石墨烯表面进行功能化处理,增强其与聚合物的相容性。

共混是将石墨烯与聚合物在一定条件下共同溶解,形成均匀的混合体系。

不同的引入方式会对聚合物的性能产生不同的影响,因此需要根据具体的应用要求选择合适的引入方式。

二、石墨烯对聚合物性能的影响1.导电性能石墨烯具有优异的热导性能,可以高效传递热量。

在聚合物中引入石墨烯可以提高聚合物的热导性能,改善其对热的传导和散热能力。

这对于一些特殊工程塑料和高性能复合材料的应用具有重要意义。

3.力学性能石墨烯具有优异的力学性能,具有很高的拉伸强度和模量。

在聚合物中引入石墨烯可以显著提高聚合物的强度和刚度,改善其耐热性和耐磨性。

石墨烯的引入可以大大拓展聚合物的应用领域,使其在汽车、航空航天等高端领域得到更广泛的应用。

在石墨烯与聚合物复合材料中,石墨烯与聚合物的相容性是影响材料性能的关键因素。

研究表明,通过对石墨烯进行表面改性处理,可以增强其与聚合物的相容性,提高两者间的相互作用力,从而获得更好的复合材料性能。

石墨烯的表面处理技术对于提高石墨烯与聚合物的相容性具有重要意义。

石墨烯与聚合物复合材料已经在许多领域得到了应用,例如电子器件、导电材料、航空航天材料等。

石墨烯聚合物复合材料在导电材料领域有着广阔的应用前景,可以用于制备柔性电子器件、传感器、导电塑料等产品。

石墨烯聚合物复合材料在汽车和航空航天材料领域也有着巨大的潜力,可以提高材料的轻量化、加工性能和耐热性能。

石墨烯化学改性及其应用研究

石墨烯化学改性及其应用研究

石墨烯化学改性及其应用研究石墨烯是一种由碳原子构成的平面六角形结构的材料,它具有很高的机械强度、热导率和导电率,被认为是一种前景广阔的新型材料。

然而,石墨烯的应用受到其在化学稳定性和生物相容性方面的限制。

为了解决这些问题,石墨烯化学改性被广泛研究。

一、石墨烯化学改性方法石墨烯的化学稳定性可以通过在其表面引入化学官能团来增强。

通常使用的方法有氧化、烷基化和芳基化等。

1. 氧化改性:氧化是最常用的化学改性方法之一,可以通过暴露石墨烯在有机溶剂和强氧化剂下,例如硝酸和过氧化氢,来引入氧化官能团。

氧化石墨烯(GO)的羟基、羧基和酮基等官能团可以提高其在水中的分散性,并可用于制备复合材料和高性能纳米电子器件。

2. 烷基化改性:烷基化是通过与自由基或亲电试剂反应来在石墨烯表面引入烷基官能团。

例如,用溴代烷或卤代乙酸盐可以在石墨烯表面引入烷基官能团,增加了其与有机分子的相容性。

3. 芳基化改性:芳基化包括用芳香族化合物进行反应或热解。

通过用过渡金属催化剂催化石墨烯和芳香族化合物的反应,可以在石墨烯表面引入芳基官能团,增加其化学反应性和电学性质。

二、石墨烯化学改性应用的研究进展通过石墨烯化学改性,可以实现对其物理和化学性质的精确调控,从而扩大其应用范围。

1. 生物医学应用研究石墨烯化学改性后的材料具有更好的生物相容性和生物可降解性。

例如,氧化石墨烯经过PEG化改性后可以在体内通过肝脏进行有效降解。

将石墨烯氧化物与生物大分子(如DNA、蛋白质)进行配合,可以用于有效地传递DNA和制备纳米载药系统,具有很好的药物控释效果。

2. 电子和储能应用研究石墨烯经过化学改性后可以用于制备新型的电子和储能器件。

例如,将石墨烯氧化物与其他功能性纳米材料(如金属纳米粒子和碳纳米管)进行配合,制备出复合材料,可用于电池、超级电容器和光电催化剂等领域。

同时,将石墨烯表面修饰具有机功能分子可以增强其在电路中的性能和稳定性。

3. 其他应用研究石墨烯经过化学改性之后,还可以用于各种领域。

石墨烯在聚合物改性中的研究进展

石墨烯在聚合物改性中的研究进展

石墨烯在聚合物改性中的研究进展一、石墨烯的结构特点石墨烯是由一层层的碳原子按照六角形的结构排列而成,形成了具有二维结构的材料。

石墨烯的晶格结构非常稳定,同时也呈现出了许多独特的性质。

石墨烯具有极高的导电性和热导性,是现有材料中最好的导电材料之一;石墨烯具有超高的拉伸强度和模量,是目前已知的最强硬的材料之一;石墨烯还具有极大的比表面积,对气体、溶液中的分子具有很强的吸附能力。

这些独特的结构特点赋予了石墨烯在聚合物改性中独特的优势和应用价值。

二、聚合物改性的技术手段1. 石墨烯增强聚合物复合材料的制备2. 石墨烯改性聚合物的界面调控石墨烯与聚合物之间的界面相互作用对于复合材料的性能起着至关重要的作用。

研究人员通过对石墨烯进行化学修饰,改善了石墨烯与聚合物的相容性,使其能够更好地与聚合物基体相互作用。

也有研究表明,通过在石墨烯表面引入功能化基团,可以提高石墨烯与聚合物的结合强度和界面附着力,从而有效地提升复合材料的性能。

3. 石墨烯的多功能应用除了作为填料材料外,石墨烯本身也具有多种功能,如光学、电磁、生物等功能。

研究人员还将石墨烯与其他功能性材料相结合,制备出了具有多种功能的石墨烯复合材料,如石墨烯纳米复合薄膜、石墨烯导电材料、石墨烯生物医用材料等。

这些多功能复合材料在光电子器件、生物医学领域等方面都具有广阔的应用前景。

四、研究现状及展望目前,石墨烯在聚合物改性领域的研究已经取得了许多重要的成果,但也面临着一些挑战。

石墨烯的制备和处理技术仍然比较复杂和昂贵,需要进一步降低成本,提高产量;石墨烯与聚合物的界面相容性和相互作用机制还不够清晰,需要进一步深入研究;石墨烯在复合材料中的应用还存在一些问题,如在工程应用中的大规模制备、稳定性和耐久性等方面需要进一步完善。

展望未来,随着石墨烯在聚合物改性中的研究逐渐深入,相信石墨烯基聚合物复合材料将会得到进一步的发展和应用。

未来的研究方向主要包括:石墨烯的大规模制备技术、石墨烯与聚合物的界面调控技术、石墨烯复合材料的性能优化等方面。

石墨烯的改性原理及应用

石墨烯的改性原理及应用

石墨烯的改性原理及应用1. 石墨烯简介石墨烯是一种碳原子排列成六角形的二维材料,具有极高的导电性、导热性和机械强度。

由于其独特的性质,石墨烯被广泛研究,并在各个领域展现出巨大的应用前景。

2. 石墨烯的改性原理石墨烯的改性是通过对其进行化学或物理处理来改变其性质,以满足特定的应用需求。

常见的石墨烯改性方法有:•氧化改性:将石墨烯与氧化剂接触,引入氧原子,形成氧化石墨烯(GO)。

氧化石墨烯具有较好的亲水性和分散性,可用于制备复合材料、传感器等。

•氮化改性:通过氮化剂与石墨烯反应,使石墨烯表面富集氮原子。

氮化石墨烯具有较高的导电性,可用于电子器件和催化材料等领域。

•掺杂改性:将其他元素或化合物引入石墨烯晶格中,如硼、硅、硫等。

掺杂石墨烯具有特殊的性能,可用于能源存储、催化反应等领域。

3. 石墨烯的应用领域石墨烯的独特性质使其在许多领域都有广泛应用的潜力。

3.1 电子器件石墨烯具有高电子迁移率和优异的导电性能,使其成为下一代电子器件的理想候选材料。

石墨烯场效应晶体管、石墨烯集成电路等已成为研究的热点。

3.2 传感器由于石墨烯的高度灵敏和优异的电子性能,石墨烯传感器在化学传感、生物传感、环境监测等领域具有广泛的应用前景。

石墨烯传感器可以高效地检测微量物质,并具有高灵敏度和高选择性。

3.3 储能材料由于石墨烯的高表面积和良好的电导率,石墨烯被广泛应用于锂离子电池、超级电容器等储能装置中。

石墨烯在储能领域具有很高的应用潜力,可以提高储能装置的能量密度和循环寿命。

3.4 催化材料石墨烯作为催化剂载体具有优异的催化性能。

通过改变石墨烯的结构和表面改性,可以调控其对反应物的吸附性能和催化活性,用于催化合成、能源转换和环境保护等领域。

3.5 填料材料石墨烯具有优异的机械性能和导电性能,可用于制备高性能复合材料。

将石墨烯添加到聚合物、金属或陶瓷基质中,可以显著改善材料的力学性能、导电性能和热稳定性,提高材料的综合性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合实践论文题目:石墨烯改性研究进展班级:高分子112姓名:陈阳建指导老师:祖立武日期:2014年6月20日石墨烯改性研究进展陈阳建齐齐哈尔大学材料学院,黑龙江齐齐哈尔10221摘要: 结合当前国内外石墨烯改性的研究进展,分别从表面改性和电子性能改性两个方面介绍了石墨烯的改性方法。

其中,石墨烯表面改性包括共价键功能化和非共价键功能化;石墨烯电子性能改性包括掺杂和离子轰击。

讨论了各种改性方法的优缺点,并在原有改性方法的基础上,展望了未来石墨烯改性的发展方向。

关键词: 石墨烯;改性;综述;共价键功能化;非共价键功能化;掺杂;离子轰击Research progress in the modification of grapheneChen yangjianMaterials Science,Qiqihar University ,Qiqihar in Heilongjiang 10221 Abstract: Based on the research progress of modification of graphene material at hom e and abroad, the methods of modification of graphene are introduced from the surface modification and the electronic properties modification, respectively. The methods of surface modification contain the covalent functionalization and non-covalent functio nalization; the methods of electronic properties modification contain doping and ion b ombardment. Finally, the advantages and disadvantages of various modification meth ods are discussed, and the further development of modification of graphene is pointed out on the basis of original modification methods.Key words: graphene; modification; review; covalent functionalization; non-covalent functionalization; doping; ion bombardment石墨烯是碳原子在二维空间紧密排列成的苯环状结构材料,它是继零维足球烯(fullerene)、一维碳纳米管(carbon nanotube)及三维石墨(graphite)和金刚石(diamond)外一种新的碳的同素异形体。

其包裹起来可形成零维足球烯,卷起来可形成一维碳纳米管,堆叠则可形成三维石墨。

2004年,英国曼切斯特大学的Novoselov等[1]首次使用机械剥离的方法成功制备了由碳原子以sp2杂化连接的单原子层构成的二维单层石墨烯晶体,其是目前世界上发现的最薄的材料。

石墨烯具有特殊的结构和奇异的物理性质,其结构中每个碳原子有4个价电子,其中的3个电子(2s电子、2px电子及2py电子)形成平面的sp2杂化轨道,通过σ键连接相邻3个碳原子构成六边形平面结构;剩余一个电子位于法线方向的pz 轨道上,并与相邻原子构成π带,π带对石墨烯的导电性质起着决定性的作用。

其独特的晶体结构及电子结构,使石墨烯具有优异的电学、磁学、热学及力学性能,在高性能纳米电子器件、复合材料[2-3]、场发射材料[4]、传感器[5]、透明电极[6-8]及能量存储[9]等领域具有巨大的应用潜力。

为了更好地利用石墨烯的这些特性,使其获得更加广泛的应用,首先需要提高其加工性能,如溶解性和在基体中的分散性;其次需要有方向地改变、控制及调节其结构和电子性能。

1 表面改性在石墨烯的应用过程中存在着一个问题,即在石墨烯的分散过程中,由于完整结构的石墨烯由含稳定键的苯六元环组成,化学稳定性高,表面呈惰性状态,与其他介质相互作用较弱,且石墨烯各片层间存在很强的分子间作用力,导致片层极易堆叠在一起而难以分散开来,很难溶解于溶剂中,更难与其他有机或无机材料均匀地复合。

这给石墨烯的进一步研究和应用造成了极大的困难,因而改善石墨烯分散性及其与各种溶剂和材料的相容性成为扩展石墨烯应用领域亟待解决的问题。

解决上述问题的一种有效方法是对其进行表面功能化。

石墨烯表面功能化是在非完美石墨烯表面的缺陷处,通过共价键、非共价键连接而引入特定的官能团,使石墨烯表面某些性质发生改变。

该方法能达到的效果有:改善石墨烯的分散性;提高材料的表面活性;赋予其新的物理、化学特性;改善石墨烯与其他物资的相容性。

目前,石墨烯表面功能化的研究处于发展阶段,从功能化方法来看,主要分为两种:(1)共价键功能化;(2)非共价键功能化。

功能化是实现石墨烯分散、溶解和成型加工的重要手段,下面将具体介绍上述两种功能化方法的国内外研究进展。

1.1 共价键功能化由于石墨烯的边缘部位和缺陷处具有较高的反应活性,在这些部位通过共价键连接一些适宜的基团是一种有效的表面功能化方法,即共价键功能化。

制备过程中通过化学氧化方法对石墨烯进行酸化处理得到氧化石墨烯(Graphene Oxide,GO),石墨烯氧化物中含有大量羧基、羟基和环氧基等活性基团,因而可以利用这些基团与其他分子之间的化学反应对石墨烯表面进行共价键功能化[10-11]。

时镜镜等[12]采用Hummers法对天然石墨进行氧化处理获得氧化石墨烯,而后通过γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)与氧化石墨烯反应制备功能化氧化石墨烯,最后在水合肼的作用下获得了功能化石墨烯。

该过程中γ-甲基丙烯酰氧丙基三甲氧基硅烷上的硅氧烷与氧化石墨烯上的羟基发生反应,经水合肼还原后,功能化石墨烯混乱度增加,使得功能化石墨烯在N,N-二甲基甲酰胺/水中呈高度剥离的状态。

未经烘干的功能化石墨烯在超声振荡条件下,能稳定分散在体积比为9:1的乙醇/水、丙酮/水或N,N-二甲基甲酰胺/水的混合溶液中。

李宁等[13]以六亚甲基二异氰酸酯(HMDI)为偶联剂,与氧化石墨烯中的羧基或羟基反应,形成酰胺键或氨基甲酸酯键活化GO,然后与乳化剂TWEEN 80(聚氧乙烯去水山梨醇单油酸酯)中的羟基反应,将双亲性TWEEN分子偶联于GO表面,获得了双亲性GO。

所得到的双亲性GO在水、氯仿和乙烷等溶剂中均可稳定分散,即石墨烯的分散性得到改善。

石墨烯的共价键功能化大大改善了其加工性能,并赋予其一些新的优异性能。

然而,对石墨烯的共价键功能化也存在较为明显的缺点:进行共价键修饰的同时会破坏石墨烯的本征结构,并改变其特有的性质。

1.2 非共价键功能化除共价键功能化外,还可通过非共价键连接方法对石墨烯表面进行功能化,即可用π-π相互作用、离子键以及氢键等超分子作用使石墨烯表面得到修饰,从而提高石墨烯的分散性。

由于石墨烯本身具有高度共轭体系,其易于与同样具有π-π键的共轭结构或者含有芳香结构的小分子和聚合物发生较强的π-π相互作用[14]。

王平华等[15]首先合成了含有6个羟基的三亚苯衍生物,然后通过氧化还原引发体系合成了星型聚丙烯腈聚合物,最后在星型聚丙烯腈的N,N-二甲基甲酰胺溶液(DMF)用水合肼还原氧化石墨烯得到均匀稳定的溶液,并且放置很长时间无沉淀,通过对产物进行红外光谱、核磁共振谱、凝胶渗透射谱、扫描电镜表征分析发现三亚苯结构和石墨烯之间是通过π-π键相互作用,成功地对石墨烯实现了功能化。

Yang等[16]通过离子交换将咪唑中的乙烯基苄基交换到石墨烯的边缘部位,然后与甲基丙烯酸甲酯聚合得到石墨烯/聚甲基丙烯酸甲酯复合材料。

该方法是使石墨烯平面带电荷,通过增加其亲水性而使其具有良好的分散性。

且功能化石墨烯的引入,提高了复合材料的储能模量、玻璃化转变温度和电导率。

氢键是一种较强的非共价键,由于氧化石墨烯表面带有羧基、羟基及氨基等基团,这些基团易于与其他物质产生的氢键相互作用,故可以利用氢键来对石墨烯氧化物进行功能化。

李晓等[17]采用改性Hummers法制备了氧化石墨烯,利用简单的超声振荡方法将盐酸阿霉素负载在氧化石墨烯上,通过红外光谱、紫外光谱分析发现盐酸阿霉素与氧化石墨之间的作用为氢键反应。

2 电子性能改性为了更好地将石墨烯这种具有优良物理性能的材料利用到半导体电子器件领域,需要对其电子结构进行适当的控制以调节其电子性能。

目前,可通过掺杂和离子轰击方法来改变石墨烯的电子性能。

2.1 掺杂众所周知,掺杂可完全改变半导体的基本特性,并有效控制半导体纳米晶体的光、电、磁学特性,直接促使高效率新型光电子器件的实现,为纳米晶体的广泛应用提供了巨大空间。

该方法也可用来扩展石墨烯在光电子器件领域的应用,大量研究表明石墨烯掺杂是调控石墨烯电学与光学性能的一种有效手段。

Wei等[18]采用化学气相沉积(CVD)方法成功制备了氮掺杂石墨烯,对该氮掺杂石墨烯的电学性能进行检测后发现其具有n型半导体的特征。

Li等[19]将氧化石墨烯在通有NH3的气氛中进行低温热处理,获得含氮量为5%(质量分数)的n型氮掺杂石墨烯,对该产物进行X射线光电子能谱分析(XPS)发现氧化石墨烯与NH3之间的反应很大程度上是由氧化石墨烯中的含氧基团如羧基、羟基及其他基团决定的。

氮掺杂石墨烯能有效地改变石墨烯的能带结构,便于开发新型石墨烯电子器件。

Chen等[20]采用四氟四氰代二甲基苯醌(F4-TCNQ)对外延生长的石墨烯进行表面修饰,通过同步高分辨光电子发射光谱分析发现:从石墨烯上转移的电子被F4-TCNQ吸收,得到了p型掺杂的石墨烯。

对石墨烯的掺杂功能化研究并不局限于实验方面,在理论研究方面也很多报道。

Santos等[21]用密度泛函理论计算研究了Ni取代(掺杂)石墨烯后材料的磁学性能,发现掺杂后石墨烯的磁学性能发生了明显变化。

Zhou等[22]在密度泛函理论的基础上,用Si选择性地取代石墨烯中的C,并分别计算了未取代与不同取代量时石墨烯的带隙值,分析发现取代后石墨烯的带隙发生了变化,即C—Si键的存在使得石墨烯能带结构中价带顶与导带底之间的间隙增大(由于石墨烯中Si原子的存在影响了其电子运输性质),并且其带隙值随着取代浓度的增加(C—Si键数目增加)而增大。

2.2 离子轰击另一种改变石墨烯电子性能的方法是离子轰击,即赋予离子一定的初始能量,使其轰击石墨烯靶材。

相关文档
最新文档