(完整版)振动力学试题
《振动力学》习题集(含答案)【精选】精心总结

令 引起的静变形为 ,则有:
,即
令 + 引起的静变形为 ,同理有:
得:
则系统的自由振动可表示为:
其中系统的固有频率为:
注意到 与 方向相反,得系统的自由振动为:
1.9质量为m、长为l的均质杆和弹簧k及阻尼器c构成振动系统,如图E1.9所示。以杆偏角 为广义坐标,建立系统的动力学方程,给出存在自由振动的条件。若在弹簧原长处立即释手,问杆的最大振幅是多少?发生在何时?最大角速度是多少?发生在何时?是否在过静平衡位置时?
解:
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图T 2-10答案图T 2-10
解:
m的位置:
, ,
,
,
2.11图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
图E1.2
解:
如图,令 为柱体的转角,则系统的动能和势能分别为:
利用 和 可得:
1.3转动惯量为J的圆盘由三段抗扭刚度分别为 , 和 的轴约束,如图E1.3所示。求系统的固有频率。
图E1.3
解:
系统的动能为:
和 相当于串联,则有:
以上两式联立可得:
系统的势能为:
利用 和 可得:
1.4在图E1.4所示的系统中,已知 ,横杆质量不计。求固有频率。
图E1.4答案图E1.4
解:
对m进行受力分析可得:
(完整版)简谐振动练习题(含详解)

简谐运动练习题一、基础题1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时( )Oy/mQx/mPNA.质元Q和质元N均处于加速运动过程中B.质元Q和质元N均处于减速运动过程中C.质元Q处于加速运动过程中,质元N处于减速运动过程中D.质元Q处于减速运动过程中,质元N处于加速运动过程中2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B 点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为()A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则A.当平台振动到最高点时,物体对平台的正压力最大B.当平台振动到最低点时,物体对平台的正压力最大C.当平台振动经过平衡位置时,物体对平台的正压力为零D.物体在上下振动的过程中,物体的机械能保持守恒4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知( )A.这列波的周期是0.2 sB.质点P、Q此时刻的运动方向都沿y轴正方向C.质点P、R在任意时刻的位移都相同D.质点P、S在任意时刻的速度都相同5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受回复力逐渐减小 B.振子位移逐渐减小C.振子速度逐渐减小 D.振子加速度逐渐减小6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是F F F F使A 和B 一起在光滑水平面上做简谐运动,如图所示。
振动过程中,A 与B 之间无相对运动,当它们离开平衡位置的位移为x 时,A 与B 间的摩擦力大小为( )A C D .././().kxB mkx M mkx m M 08.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是( )A .小球在A 、B 的速度为零而加速度相同B .小球简谐振动的振幅为kqE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大9.劲度系数为20N/cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻A .振子所受的弹力大小为5N ,方向指向x 轴的正方向B .振子的速度方向指向x 轴的正方向C .在0~4s 内振子作了1.75次全振动D .在0~4s 内振子通过的路程为0.35cm ,位移为0二、提高题(14、15、19题提高题)10.如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动。
机械行业振动力学期末考试试题

机械行业振动力学期末考试试题第一大题:单自由度振动1.无阻尼自由振动系统,在初始时刻位移为A,速度为0,求解该振动系统的解析解。
2.阻尼比为0.2的单自由度振动系统受到正弦激励力,激励力的频率为系统固有频率的两倍,求解该振动系统的响应。
3.阻尼比为0.5的单自由度振动系统受到冲击激励力,激励力的持续时间为0.1秒,求解该振动系统的响应。
第二大题:多自由度振动1.有两个自由度的系统,求解其固有频率和模态振型。
2.有三个自由度的系统,求解其固有频率和模态振型。
3.给定一个多自由度振动系统的质量矩阵和刚度矩阵,求解其特征值和特征向量,进而得到固有频率和模态振型。
第三大题:振动测量与分析1.请列举常用的振动测量仪器,并对其原理进行简要说明。
2.振动信号的采样频率应该如何选择?请解释原因。
3.请说明振动信号的功率谱密度函数,并给出其计算公式。
4.请解释振动传感器的灵敏度是什么意思,并给出其计算公式。
第四大题:振动控制1.请说明主动振动控制和被动振动控制的区别。
2.请解释模态分析在振动控制中的作用。
3.请列举常用的振动控制方法,并对其原理进行简要说明。
第五大题:振动摆1.请列举用振动摆进行的实验,并对其原理进行简要说明。
2.请解释摇摆周期与摆长的关系,并给出相关公式。
3.一个摆长为1m的振动摆,其重力加速度为9.8m/s^2,求解其摇摆周期。
本文档由Markdown格式输出。
Markdown是一种轻量级的标记语言,常用于编写文档和博客。
可通过Markdown编辑器进行编辑和输出。
以上是机械行业振动力学期末考试试题的内容。
希望对您的学习有所帮助!。
《振动力学》作业资料(含答案解析)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动力学习题集含答案

解:
,
动量守恒:
,
平衡位置:
,
,
故:
故:
2.4在图E2.4所示系统中,已知m, , , 和 ,初始时物块静止且两弹簧均为原长。求物块运动规律。
图E2.4答案图E2.4
解:
取坐标轴 和 ,对连接点A列平衡方程:
即:
(1)
对m列运动微分方程:
即:
(2)
由(1),(2)消去 得:
图E2.7
解:
,
s=1时共振,振幅为:
(1)
远离共振点时,振幅为:
(2)
由(2)
由(1)
, ,
故:
2.7求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
图E1.9答案图E1.9
解:
利用动量矩定理得:
,
,
,
,
1.12面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图E1.12所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图E1.12
解:
平面在液体中上下振动时:
和 为串联(因为总变形为求和),故:
故:
2.9如图T 2-9所示,一质量m连接在一刚性杆上,杆的质量忽略不计,求下列情况系统作垂直振动的固有频率:
(1)振动过程中杆被约束保持水平位置;
(2)杆可以在铅锤平面内微幅转动;
(3)比较上述两种情况中哪种的固有频率较高,并说明理由。
振动力学习题集含答案

解:
利用动量矩定理得:
,
,
,
,
面积为S、质量为m的薄板连接于弹簧下端,在粘性流体中振动,如图所示。作用于薄板的阻尼力为 ,2S为薄板总面积,v为速度。若测得薄板无阻尼自由振动的周期为 ,在粘性流体中自由振动的周期为 。求系数 。
图
解:
平面在液体中上下振动时:
,
,
图所示系统中,已知m,c, , , 和 。求系统动力学方程和稳态响应。
(2)
若取下面为平衡位置,求解如下:
,
图T 2-17所示的系统中,四个弹簧均未受力,k1=k2=k3=k4=k,试问:
(1)若将支承缓慢撤去,质量块将下落多少距离?
(2)若将支承突然撤去,质量块又将下落多少距离?
图T 2-17
解:
(1) ,
(2) ,
如图T 2-19所示,质量为m2的均质圆盘在水平面上可作无滑动的滚动,鼓轮绕轴的转动惯量为I,忽略绳子的弹性、质量及各轴承间的摩擦力,求此系统的固有频率。
因此有:
图所示阶梯杆系统中已知m,ρ,S,E和k。求纵向振动的频率方程。
图
解:
模态函数的一般形式为:
题设边界条件为:
,
边界条件可化作:
,
导出C2= 0及频率方程:
,其中
长为l、密度为ρ、抗扭刚度为GIp的的等直圆轴一端有转动惯量为J的圆盘,另一端连接抗扭刚度为k的弹簧,如图所示。求系统扭振的频率方程。
《振动力学》习题集(含答案)
质量为m的质点由长度为l、质量为m1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。
图
解:
系统的动能为:
其中I为杆关于铰点的转动惯量:
(完整版)振动力学试题

1.转动惯量为J 的圆盘由三段抗扭刚度分别为1k 、2k 和3k 的轴约束,如图所示。
求系统的固有频率。
解:系统的动能为 221•=θJ T2k 和3k 相当于串联,则 32θθθ+= 3322θθk k =联立以上两式得 θθ3232k k k +=θθ3223k k k +=系统的势能为 ()[]223322221323232121212121θθθθk k k k k k k k k k U +++=++=利用θωθn =•和U T =可得 ()()3232132n k k J k k k k k +++=ω2.面积为S ,质量为m 的薄板连接于弹簧下端,在粘性流体中振动,如图所示。
作用于薄板的阻尼力为νμS F d 2=,S 2为薄板总面积,ν为速度。
若测得薄板无阻尼自由振动的周期为0T ,在粘性流体中自由振动的周期为d T 。
求系数μ。
解:平面在液体中上下振动时:02=++•••kx x S x m μ dn d n T T m k πξωωπω2-1,220====kS m S m S n n 222,22μξωμξξωμ==⇒= kS k 222--1μξ=2020220-2-22T T T ST mk S k T T T T d dd πμμ=⇒=3.如图所示均匀刚性杆质量为1m ,求系统的频率方程。
解:先求刚度矩阵。
令0x 1,==θ得:22212111a k b k a a k b b k k +=⋅+⋅=b k 221-k =令1,0==x θ得:a k k 212-=222-k k =则刚度矩阵为:⎥⎦⎤⎢⎣⎡+=2222221--k ak a k a k b k K再求质量矩阵。
令0,1==••••x θ ,得:0,31212111==m a m m令1,0==••••x θ,得:22212,0m m m ==则质量矩阵为: ⎥⎥⎦⎤⎢⎢⎣⎡=2210031m a m M故频率方程为: 0-2=M K ω4.在图所示系统中,已知m 和k 。
振动力学考试复习题

由题知
x1
e 1 2
10%
x0
解得: 0.59
十、 一个无阻尼弹簧-质量系统,在(0,t0 )时间间隔内受到突加的矩形脉冲
力
F
(t
)
Q0 0,
,
0 t t0 作用,其示意图如下所示: t t0
求:系统响应。 解:
(1)当 0≤ 0 t t0 时,
故:n
ke m
五、 求图所示系统的固有频率,刚性杆的质量忽略不计。
F1
k1
a l
k2
m
mg
x1
xA
图 解:
m
的位置:
x
x2
xA
mg k2
xA
答案图
mgl
F1a
,
F1
mgl a
,
x1
mgl ak1
x1 xA
a l
, xA
a l
x1
mgl 2 a 2 k1
x
x2
xA
0 0
解得系统得固有频率:
m2 4 4km 2 3k 2 0
求:质量 m 的稳态振动振幅
解的简化图:
解:在质量 m 作用下,由材料力学可求出静挠度 固有频率:0 g /
因 y 的运动而产生的质量 m 处的运动 A x f (b / a) yA (bd / a) sin t
动力学方程: mx k(x xf ) 0
移项并将(1)式代入(2)得: mx kx (kbd / a) sin t
令: x 0, 1, k12 (k1 k2 ) 0 0 , k22 m2 g l sin m2 gl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.转动惯量为的圆盘由三段抗扭刚度分别为、和的轴约束,如图J 1k 2k 3k 所示。
求系统的固有频率。
解:
系统的动能为
2
2
1∙=θ
J T 和相当于串联,则 2k 3k 32θθθ+=3
322θθk k =联立以上两式得 θθ3
23
2k k k +=
θθ3223k k k +=系统的势能为 (
)[2
2
33222213
23
23212
1212121θ
θθθk k k k k k k k k k U +++=
++=利用和可得 θωθn =∙
U T =()
()
3232132n k k J k k k k k +++=
ω 2.面积为,质量为的薄板连接于弹簧下端,在粘性流体中振动,如图所S m 示。
作用于薄板的阻尼力为,为薄板总面积,为速度。
若测得νμS F d 2=S 2ν薄板无阻尼自由振动的周期为,在粘性流体中自由振动的周期为。
求系数
0T d T 。
μ
解:
平面在液体中上下振动时:
02=++∙
∙
∙kx x S x m μ d
n d n T T m k πξωωπω2-1,220====
k S m S m S n n 222,22μξωμξξωμ==⇒= k
S k 2
22
--1μξ=
2
020220
-2-22T T T ST m
k S k T T T T d d
d πμμ=⇒
= 3.如图所示均匀刚性杆质量为,求系统的频率方程。
1m
解:
先求刚度矩阵。
令得:
0x 1,==θ
22212111a k b k a a k b b k k +=⋅+⋅=b
k 221-k =令得:
1,0==x θ
a k k 212-=
222-k k =则刚度矩阵为: ⎥⎦
⎤
⎢
⎣⎡+=2222221--k a
k a k a k b k K 再求质量矩阵。
令 ,得:
0,1==∙
∙∙
∙x θ
0,3
1
212111==m a m m 令,得:
1,0==∙
∙∙
∙x θ
22212,0m m m ==则质量矩阵为: ⎥⎥⎦
⎤⎢⎢⎣
⎡=22
1
003
1m a m M 故频率方程为: 0
-2
=M K ω 4.在图所示系统中,已知和。
用瑞利法计算系统的基频。
m k
解:
近似的选取假设模态为
(
)
T
5.25.11=ψ先求解刚度矩阵:
令0,2-,30,11312113,21===⇒==k k k k k x x 令k k k k k k x x -,3,2-0,12322213,12===⇒==令k k k k k x x ===⇒==3323132,13,-,00,1则刚度矩阵为:
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=k k
k k
k k k K -0
-32-02-3易得质量矩阵为:()
m m m diag M 2=由瑞利商公式:
()2175.115.2ω==ψψψψ=ψm
k M K R T
T m
k 461
.01=⇒ω
5.长为、单位长度质量为的弦左端固定,右端连接在一质量弹簧系统的l l ρ物块上,如图所示。
物块质量为,弹簧刚度系数为,静平衡位置在处。
m k 0=y 弦线微幅振动,弦内张力保持不变,求弦横向振动的频率方程。
F
解:
模态函数的一般形式为: ()a
x
C a
x
C x ωωφcos
sin
21+=边界条件为: ()()()()t l ky t
t l y m x t l y F t y ,-,-,,0,022∂∂=∂∂=边界条件化为: ()()()()
l k l m l F φφωφφ
-,002'==
导出及频率方程:02=C ,其中()
k
m a F a
l
-tan
2
ωω
ω=
l
F
a ρ=。