2018年北京市中考数学一模分类28题新定义
2018北京市中考数学二模分类28题新定义

2018北京市中考数学二模分类28题新定义2018东城二模. ........ 12,,,—一,,………~ 4 28.研究发现,抛物线y —x2上的点到点F(0, 1)的距离与到直线l: y 1的距离相等.如图1所示,若41 O点P是抛物线y -x2上任意一点,PHI± l于点H,则PF PH .4基于上述发现,对于平面直角坐标系xOy中的点M,记点M到点P的距离与点P到点F的距离之和的1 O 1 O取小值为d,称d为点M关于抛物线y —x的关联距离;当2<d<4时,称点M为抛物线y —x的4 4关联点.7»周21(1)在点M1(2,0), M2(1,2), M 3(4,5), M,Q, 4)中,抛物线y 」x2的关联点是4⑵ 如图2,在矩形ABCD中,点A(t,1),点C(t 1,3)1 2①若t=4,点M在矩形ABCD上,求点M关于抛物线y -x的关联距离d的取值范围;41O②若矩形ABCD上的所有点都是抛物线y —x2的关联点,则t的取值范围是.42018西城二模28.对于平面直角坐标系xOy中的点Q(x,y) (xw。
,将它的纵坐标y与横坐标x的比? 称为点Q的“理x2想值,记作L Q .如Q( 1,2)的“理想值” L Q—2.1(1)①若点Q(1,a)在直线y x 4上,则点Q的“理想值" L Q等于;②如图,C(d3,1) , O C的半径为1.若点Q在。
C上,则点Q的“理想值”L Q的取值范围是.(2)点D在直线y —x+3±, O D的半径为1,点Q在O D上运动时都有0W L Q< J3 ,求点D的横3坐标X D的取值范围;(3) M(2,m) (m>0), Q是以r为半径的。
M上任意一点,当0W L Q W2V2时,画出满足条件的最大圆,并直接写出相应的半径r的值.(要求画图位置准确,但不必尺规作图)2018海淀二模28.对某一个函数给出如下定义:若存在实数k,对于函数图象上横坐标之差为1的任意两点(a,。
专题14新定义压轴题中考第28题(共55题)-5年(2016-2020)中考1年模拟数学试题分项详解

5年(2016-2020)中考1年模拟数学试题分项详解(北京专用)专题14新定义压轴题中考第28题(共55题)专题16新定义压轴题中考第28题一.解答题(共5小题)1.(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.五年中考真题̂上的所有点都在△ABC的内部或边2.(2019•北京)在△ABC中,D,E分别是△ABC两边的中点,如果DÊ为△ABC的中内弧.例如,图1中DÊ是△ABC的一条中内弧.上,则称DE(1)如图2,在Rt△ABC中,AB=AC=2√2,D,E分别是AB,AC的中点,画出△ABC的最长的中内̂,并直接写出此时DÊ的长;弧DE(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.①若t=12,求△ABC的中内弧DÊ所在圆的圆心P的纵坐标的取值范围;②若在△ABC中存在一条中内弧DÊ,使得DÊ所在圆的圆心P在△ABC的内部或边上,直接写出t的取值范围.图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0)中,⊙O 的关联点是 . ②点P 在直线y =﹣x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y =﹣x +1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016•北京)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为√2,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.一年模拟新题一.解答题(共50小题)1.(2020•昌平区二模)平面直角坐标系xOy中,给出如下定义:对于图形G及图形G外一点P,若图形G 上存在一点M,满足PM=2,且使点P绕点M顺时针旋转90°后得到的对应点P′在这个图形G上,则称点P为图形G的“2旋转点”.已知点A(﹣1,0),B(﹣1,2),C(2,﹣2),D(0,3),E(2,2),F(3,0).(1)①判断:点B线段AF的“2旋转点”(填“是”或“不是”);②点C,D,E中,是线段AF的“2旋转点”的有;(2)已知直线l:y=x+b,若线段l上存在线段AF的“2旋转点”,求b的取值范围;(3)⊙T是以点T(t,0)为圆心,√2为半径的一个圆,已知在线段AD上存在这个圆的“2旋转点”,直接写出t的取值范围.2.(2020•石景山区二模)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M,N的“近距”,记作d1(M,N);如果线段PQ的长度有最大值,那么称这个最大值为图形M,N的“远距”,记作d2(M,N).已知点A(0,3),B(4,3).(1)d1(点O,线段AB)=,d2(点O,线段AB)=;(2)一次函数y=kx+5(k>0)的图象与x轴交于点C,与y轴交于点D,若d1(线段CD,线段AB)=√2,①求k的值;②直接写出d2(线段CD,线段AB)=;(3)⊙T的圆心为T(t,0),半径为1.若d1(⊙T,线段AB)≤4,请直接写出d2(⊙T,线段AB)的取值范围.3.(2020•朝阳区三模)在平面直角坐标系xOy 中,A (t ,0),B (t +4,0),线段AB 的中点为C ,若平面内存在一点P 使得∠APC 或者∠BPC 为直角(点P 不与A ,B ,C 重合),则称P 为线段AB 的直角点.(1)当t =0时,①在点P 1(12,0),P 2(12,√32),P 3(72,−√32)中,线段AB 的直角点是 ; ②直线y =√33x +b 上存在四个线段AB 的直角点,直接写出b 取值范围;(2)直线y =√33x +1与x ,y 轴交于点M ,N .若线段MN 上只存在两个线段AB 的直角点,直接写出t 取值范围.A,B,使得△P AB是边长为2的等边三角形,则称点P是图形G的一个“和谐点”.已知直线l:y=√3x+n(n≥0)与x轴交于点M,与y轴交于点N,⊙O的半径为r.(1)若n=0,在点P1(2,0),P2(0,2√3),P3(4,1)中,直线l的和谐点是;(2)若r=2,⊙O上恰好存在2个直线l的和谐点,求n的取值范围;(3)若n=3√3,线段MN上存在⊙O的和谐点,直接写出r的取值范围.一点,如果P,Q两点间的距离有最大值,那么称这个最大值为点P与图形M间的开距离,记作d(P,M).已知直线y=√33x+b(b≠0)与x轴交于点A,与y轴交于点B,⊙O的半径为1.(1)若b=2,①求d(B,⊙O)的值;②若点C在直线AB上,求d(C,⊙O)的最小值;(2)以点A为中心,将线段AB顺时针旋转120°得到AD,点E在线段AB,AD组成的图形上,若对于任意点E,总有2≤d(E,⊙O)<6,直接写出b的取值范围.6.(2020•海淀区二模)在平面内,对于给定的△ABC,如果存在一个半圆或优弧与△ABC的两边相切,且该弧上的所有点都在△ABC的内部或边上,则称这样的弧为△ABC的内切弧.当内切弧的半径最大时,称该内切弧为△ABC的完美内切弧.(注:弧的半径指该弧所在圆的半径)在平面直角坐标系xOy中,A (8,0),B(0,6).(1)如图1,在弧G1,弧G2,弧G3中,是△OAB的内切弧的是;(2)如图2,若弧G为△OAB的内切弧,且弧G与边AB,OB相切,求弧G的半径的最大值;(3)如图3,动点M(m,3),连接OM,AM.①直接写出△OAM的完美内切弧的半径的最大值;②记①中得到的半径最大时的完美内切弧为弧T.点P为弧T上的一个动点,过点P作x轴的垂线,分别交x轴和直线AB于点D,E,点F为线段PE的中点,直接写出线段DF长度的取值范围.7.(2020•门头沟区二模)如图,在平面直角坐标系xOy中,存在半径为2,圆心为(0,2)的⊙W,点P 为⊙W上的任意一点,线段PO绕点P逆时针旋转90°得到线段PO',如果点M在线段PO'上,那么称点M为⊙W的“限距点”.(1)在点A(4,0),B(1,2),C(0,4)中,⊙W的“限距点”为;(2)如果过点N(0,a)且平行于x轴的直线l上始终存在⊙W的“限距点”,画出示意图并直接写出a 的取值范围;(3)⊙G的圆心为(b,2),半径为1,如果⊙G上始终存在⊙W的“限距点”,请直接写出b的取值范围.8.(2020•东城区二模)对于平面直角坐标系:xOy内任意一点P.过P点作PM⊥x轴于点M,PN⊥y轴于点N,连接MN,则称MN的长度为点P的垂点距离,记为h.特别地,点P与原点重合时,垂点距离为0.(1)点A(2,0),B(4,4),C(﹣2,√2)的垂点距离分别为,,.(2)点P在以Q(√3,1)为圆心,半径为3的⊙Q上运动,求出点P的垂点距离h的取值范围;(3)点T为直线l:y=√3x+6位于第二象限内的一点,对于点T的垂点距离h的每个值有且仅有一个点T与之对应,求点T的横坐标t的取值范围.9.(2020•平谷区二模)如图1,点P是平面内任意一点,点A,B是⊙C上不重合的两个点,连结P A,PB.当∠APB=60°时,我们称点P为⊙C的“关于AB的关联点”.(1)如图2,当点P在⊙C上时,点P是⊙C的“关于AB的关联点”时,画出一个满足条件的∠APB,并直接写出∠ACB的度数;(2)在平面直角坐标系中,点M(1,√3),点M关于y轴的对称点为点N.①以点O为圆心,OM为半径画⊙O,在y轴上存在一点P,使点P为⊙O“关于MN的关联点”,直接写出点P的坐标;②点D(m,0)是x轴上一动点,当⊙D的半径为1时,线段MN上至少存在一个点是⊙D的“关于某两个点的关联点”,求m的取值范围.10.(2020•西城区二模)对于平面直角坐标系xOy中的定点P和图形F,给出如下定义:若在图形F上存在一点N,使得点Q,点P关于直线ON对称,则称点Q是点P关于图形F的定向对称点.(1)如图,A(1,0),B(1,1),P(0,2),①点P关于点B的定向对称点的坐标是;②在点C(0,﹣2),D(1,−√3),E(2,﹣1)中,是点P关于线段AB的定向对称点.(2)直线l:y=√33x+b分别与x轴,y轴交于点G,H,⊙M是以点M(2,0)为圆心,r(r>0)为半径的圆.①当r=1时,若⊙M上存在点K,使得它关于线段GH的定向对称点在线段GH上,求b的取值范围;②对于b>0,当r=3时,若线段GH上存在点J,使得它关于⊙M的定向对称点在⊙M上,直接写出b 的取值范围.11.(2020•丰台区二模)过直线外一点且与这条直线相切的圆称为这个点和这条直线的点线圆.特别地,半径最小的点线圆称为这个点和这条直线的最小点线圆.在平面直角坐标系xOy中,点P(0,2).(1)已知点A(0,1),B(1,1),C(2,2),分别以A,B为圆心,1为半径作⊙A,⊙B,以C为圆心,2为半径作⊙C,其中是点P和x轴的点线圆的是;(2)记点P和x轴的点线圆为⊙D,如果⊙D与直线y=√3x+3没有公共点,求⊙D的半径r的取值范围;(3)直接写出点P和直线y=kx(k≠0)的最小点线圆的圆心的横坐标t的取值范围.12.(2020•密云区二模)在平面直角坐标系xOy中,点A的坐标为(x1,y1),点B的坐标为(x2,y2),且x1≠x2,y1=y2.给出如下定义:若平面上存在一点P,使△APB是以线段AB为斜边的直角三角形,则称点P为点A、点B的“直角点”.(1)已知点A的坐标为(1,0).①若点B的坐标为(5,0),在点P1(4,3)、P2(3,﹣2)和P3(2,√3)中,是点A、点B的“直角点”的是;②点B在x轴的正半轴上,且AB=2√2,当直线y=﹣x+b上存在点A、点B的“直角点”时,求b的取值范围;(2)⊙O的半径为r,点D(1,4)为点E(0,2)、点F(m,n)的“直角点”,若使得△DEF与⊙O 有交点,直接写出半径r的取值范围.13.(2020•顺义区二模)已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP•OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=√3x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=√3x上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m 的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.14.(2012•北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(−12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.15.(2020•朝阳区模拟)在平面直角坐标系xOy中,已知点A(0,3m),P(0,2m),Q(0,m)(m≠0).将点A绕点P顺时针旋转90°,得到点M,将点O绕点Q顺时针旋转90°,得到点N,连接MN,称线段MN为线段AO的伴随线段.(1)如图1,若m=1,则点M,N的坐标分别为,;(2)对于任意的m,求点M,N的坐标(用含m的式子表示);(3)已知点B(−√2,t),C(√2,t),以线段BC为直径,在直线BC的上方作半圆,若半圆与线段BC围成的区域内(包括边界)至少存在一条线段AO的伴随线段MN,直接写出t的取值范围.16.(2020•通州区一模)如果MN ̂的两个端点M ,N 分别在∠AOB 的两边上(不与点O 重合),并且MN ̂除端点外的所有点都在∠AOB 的内部,则称MN ̂是∠AOB 的“连角弧”. (1)图1中,∠AOB 是直角,MN ̂是以O 为圆心,半径为1的“连角弧”.①图中MN 的长是 ,并在图中再作一条以M ,N 为端点、长度相同的“连角弧”; ②以M ,N 为端点,弧长最长的“连角弧”的长度是 .(2)如图2,在平面直角坐标系xOy 中,点M (1,√3),点N (t ,0)在x 轴正半轴上,若MN ̂是半圆,也是∠AOB 的“连角弧”求t 的取值范围.(3)如图3,已知点M ,N 分别在射线OA ,OB 上,ON =4,MN ̂是∠AOB 的“连角弧”,且MN ̂所在圆的半径为1,直接写出∠AOB的取值范围.17.(2020•婺城区模拟)对于平面直角坐标系xOy中的任意点P(x,y),如果满足x+y=a(x≥0,a为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a≤3时,①在点A(1,2),B(1,3),C(2.5,0)中,满足此条件的特征点为;②⊙W的圆心为W(m,0),半径为1,如果⊙W上始终存在满足条件的特征点,请画出示意图,并直接写出m的取值范围;(2)已知函数Z=1x+x(x>0),请利用特征点求出该函数的最小值.18.(2020•海淀区一模)A,B是⊙C上的两个点,点P在⊙C的内部.若∠APB为直角,则称∠APB为AB 关于⊙C的内直角,特别地,当圆心C在∠APB边(含顶点)上时,称∠APB为AB关于⊙C的最佳内直角.如图1,∠AMB是AB关于⊙C的内直角,∠ANB是AB关于⊙C的最佳内直角.在平面直角坐标系xOy中.(1)如图2,⊙O的半径为5,A(0,﹣5),B(4,3)是⊙O上两点.①已知P1(1,0),P2(0,3),P3(﹣2,1),在∠AP1B,∠AP2B,∠AP3B,中,是AB关于⊙O的内直角的是;②若在直线y=2x+b上存在一点P,使得∠APB是AB关于⊙O的内直角,求b的取值范围.(2)点E是以T(t,0)为圆心,4为半径的圆上一个动点,⊙T与x轴交于点D(点D在点T的右边).现有点M(1,0),N(0,n),对于线段MN上每一点H,都存在点T,使∠DHE是DE关于⊙T的最佳内直角,请直接写出n的最大值,以及n取得最大值时t的取值范围.̂上的所有点都在△ABC的内部或边上,19.(2020•东城区一模)在△ABC中,CD是△ABC的中线,如果CD̂为△ABC的中线弧.则称CD(1)在Rt△ABC中,∠ACB=90°,AC=1,D是AB的中点.①如图1,若∠A=45°,画出△ABC的一条中线弧CD̂,直接写出△ABC的中线弧CD̂所在圆的半径r的最小值;②如图2,若∠A=60°,求出△ABC的最长的中线弧CD̂的弧长l.(2)在平面直角坐标系中,已知点A(2,2),B(4,0),C(0,0),在△ABC中,D是AB的中点.求̂所在圆的圆心P的纵坐标t的取值范围.△ABC的中线弧CD20.(2020•房山区一模)如图,平面上存在点P、点M与线段AB.若线段AB上存在一点Q,使得点M在以PQ为直径的圆上,则称点M为点P与线段AB的共圆点.已知点P(0,1),点A(﹣2,﹣1),点B(2,﹣1).(1)在点O(0,0),C(﹣2,1),D(3,0)中,可以成为点P与线段AB的共圆点的是;(2)点K为x轴上一点,若点K为点P与线段AB的共圆点,请求出点K横坐标x K的取值范围;(3)已知点M(m,﹣1),若直线y=12x+3上存在点P与线段AM的共圆点,请直接写出m的取值范围.21.(2019•石景山区二模)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.22.(2020•大兴区一模)已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点.点C为线段AB关于点A的逆转点的示意图如图1:(1)如图2,在正方形ABCD中,点为线段BC关于点B的逆转点;(2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.①补全图;②判断过逆转点G,F的直线与x轴的位置关系并证明;③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围.23.(2020•常州二模)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t 的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.24.(2020•平谷区一模)在△ABM中,∠ABM=90°,以AB为一边向△ABM的异侧作正方形ABCD,以A为圆心,AM为半径作⊙A,我们称正方形ABCD为⊙A的“关于△ABM的友好正方形”,如果正方形ABCD恰好落在⊙A的内部(或圆上),我们称正方形ABCD为⊙A的“关于△ABM的绝对友好正方形”,例如,图1中正方形ABCD是⊙A的“关于△ABM的友好正方形”.(1)图2中,△ABM中,BA=BM,∠ABM=90°,在图中画出⊙A的“关于△ABM的友好正方形ABCD”.(2)若点A在反比例函数y=kx(k>0,x>0)上,它的横坐标是2,过点A作AB⊥y轴于B,若正方形ABCD为⊙A的“关于△ABO的绝对友好正方形”,求k的取值范围.(3)若点A是直线y=﹣x+2上的一个动点,过点A作AB⊥y轴于B,若正方形ABCD为⊙A的“关于△ABO的绝对友好正方形”,求出点A的横坐标m的取值范围.25.(2020•顺义区一模)已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).①与直线y=3x﹣5相离的点是;②若直线y=3x+b与△ABC相离,求b的取值范围;(2)设直线y=√3x+3、直线y=−√3x+3及直线y=﹣2围成的图形为W,⊙T的半径为1,圆心T的坐标为(t,0),直接写出⊙T与图形W相离的t的取值范围.26.(2020•石景山区一模)在△ABC中,以AB边上的中线CD为直径作圆,如果与边AB有交点E(不与̂为△ABC的C﹣中线弧.例如,如图中DÊ是△ABC的C﹣中线弧.在平面直角坐点D重合),那么称DE标系xOy中,已知△ABC存在C﹣中线弧,其中点A与坐标原点O重合,点B的坐标为(2t,0)(t>0).(1)当t=2时,①在点C1(﹣3,2),C2(0,2√3),C3(2,4),C4(4,2)中,满足条件的点C是;②若在直线y=kx(k>0)上存在点P是△ABC的C﹣中线弧DÊ所在圆的圆心,其中CD=4,求k的取值范围;̂所在圆的圆心为定点P(2,2),直接写出t的取值范围.(2)若△ABC的C﹣中线弧DE27.(2020•密云区一模)对于平面直角坐标系xOy中的任意一点P,给出如下定义:经过点P且平行于两坐标轴夹角平分线的直线,叫做点P的“特征线”.例如:点M(1,3)的特征线是y=x+2和y=﹣x+4;(1)若点D的其中一条特征线是y=x+1,则在D1(2,2)、D2(﹣1,0)、D3(﹣3,4)三个点中,可能是点D的点有;(2)已知点P(﹣1,2)的平行于第二、四象限夹角平分线的特征线与x轴相交于点A,直线y=kx+b (k≠0)经过点P,且与x轴交于点B.若使△BP A的面积不小于6,求k的取值范围;(3)已知点C(2,0),T(t,0),且⊙T的半径为1.当⊙T与点C的特征线存在交点时,直接写出t 的取值范围.28.(2020•朝阳区一模)在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=√33,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.29.(2020•北京一模)在平面直角坐标系xOy中,过⊙T(半径为r)外一点P引它的一条切线,切点为Q,若0<PQ≤2r,则称点P为⊙T的伴随点.(1)当⊙O的半径为1时,①在点A(4,0),B(0,√5),C(1,√3)中,⊙O的伴随点是;②点D在直线y=x+3上,且点D是⊙O的伴随点,求点D的横坐标d的取值范围;(2)⊙M的圆心为M(m,0),半径为2,直线y=2x﹣2与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙M的伴随点,直接写出m的取值范围.30.(2020•西城区一模)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A与点B可以重合),在图形W2上存在两点M,N(点M与点N可以重合),使得AM =2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(1,0),D(﹣1,0),E(0,√3),点P在线段DE上运动(点P可以与点D,E 重合),连接OP,CP.①线段OP的最小值为,最大值为,线段CP的取值范围是;②在点O,点C中,点与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线y=√3x+b(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O 满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两点,分别以H,K为圆心,1为半径作圆得到⊙H 和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.31.(2020•延庆区一模)对于平面内的点P和图形M,给出如下定义:以点P为圆心,以r为半径作⊙P,使得图形M上的所有点都在⊙P的内部(或边上),当r最小时,称⊙P为图形M的P点控制圆,此时,⊙P的半径称为图形M的P点控制半径.已知,在平面直角坐标系中,正方形OABC的位置如图所示,其中点B(2,2).(1)已知点D(1,0),正方形OABC的D点控制半径为r1,正方形OABC的A点控制半径为r2,请比较大小:r1r2;(2)连接OB,点F是线段OB上的点,直线l:y=√3x+b;若存在正方形OABC的F点控制圆与直线l有两个交点,求b的取值范围.32.(2020•丰台区模拟)在平面直角坐标系xOy中,对于P、Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P、Q两点为“等距点”,如图中的P、Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1)①在点E(0,3)、F(3,﹣3)、G(2,﹣5)中,点A的“等距点”是;②若点B在直线y=x+6上,且A、B两点为“等距点”,则点B的坐标为;(2)直线l:y=kx﹣3(k>0)与x轴交于点C,与y轴交于点D.①若T1(﹣1,t1)、T2(4,t2)是直线l上的两点,且T1、T2为“等距点”,求k的值;②当k=1时,半径为r的⊙O上存在一点M,线段CD上存在一点N,使得M、N两点为“等距点”,直接写出r的取值范围.33.(2020•海淀区校级二模)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1),P 2(x 2,y 2),如果|x 1﹣x 2|+|y 1﹣y 2|=d ,则称P 1与P 2互为“d ﹣距点”.例如:点P 1(3,6),点P 2(1,7),由d =|3﹣1|+|6﹣7|=3,可得点P 1与P 2互为“3﹣距点”.(1)在点D (﹣2,﹣2),E (5,﹣1),F (0,4)中,原点O 的“4﹣距点”是 (填字母);(2)已知点A (2,1),点B (0,b ),过点B 作平行于x 轴的直线l .①当b =3时,直线l 上点A 的“2﹣距点”的坐标为 ;②若直线l 上存在点A 的“2﹣距点”,求b 的取值范围;(3)已知点M (1,2),N (3,2),C (m ,0),⊙C 的半径为√22,若在线段MN 上存在点P ,在⊙C 上存在点Q ,使得点P 与点Q 互为“5﹣距点”,直接写出m 的取值范围.34.(2020•丰台区三模)过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt△ABC中,∠A=90°,AB=AC=2.①在图中画出一条Rt△ABC的形内弧;②在Rt△ABC中,其形内弧的长度最长为.(2)在平面直角坐标系中,点D(﹣2,0),E(2,0),F(0,1).点M为△DEF形内弧所在圆的圆心.求点M纵坐标y M的取值范围;(3)在平面直角坐标系中,点M(2,2√3),点G为x轴上一点,点P为△OMG最长形内弧所在圆的圆心,求点P纵坐标y P的取值范围.35.(2020•朝阳区一模)如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O 到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.36.(2020•丰台区一模)在Rt△ABC中,∠A=90°,∠B=22.5°,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D 为线段BC延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE⊥BD交图形W于点E,EP的延长线交AB于点F,当a=2时,求线段EF的长.37.(2020•海淀区校级模拟)在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为,线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤P A≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为;②记直线l:y=kx+k+3(k≠0).在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.38.(2020•海淀区校级模拟)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler )是瑞士数学家,在数学上经常见到以他的名字命名的重要常数、公式和定理,下面是欧拉发现的一个定理:在△ABC 中,R 和r 分别为外接圆和内切圆的半径,O 和I 分别为其外心和内心,则OI 2=R 2﹣2Rr .下面是该定理的证明过程(借助了第(2)问的结论):延长AI 交⊙O 于点D ,过点I 作⊙O 的直径MN ,连接DM ,AN .∵∠D =∠N ,∴∠DMI =∠NAI (同弧所对的圆周角相等),∴△MDI ∽△ANI .∴IM IA =ID IN ,∴IA ⋅ID =IM ⋅IN ①如图②,在图1(隐去MD ,AN )的基础上作⊙O 的直径DE ,连接BE ,BD ,BI ,IF∵DE 是⊙O 的直径,∴∠DBE =90°.∵⊙I 与AB 相切于点F ,∴∠AFI =90°,∴∠DBE =∠IF A .∵∠BAD =∠E (同弧所对圆周角相等),∴△AIF ∽△EDB .∴IA DE =IF BD ,∴IA •BD =DE •IF ②由(2)知:BD =ID∴IA •ID =DE •IF又∵DE •IF =IM •IN∴2Rr =(R +d )(R ﹣d ),∴R 2﹣d 2=2Rr∴d 2=R 2﹣2Rr任务:(1)观察发现:IM =R +d ,IN = (用含R ,d 的代数式表示);(2)请判断BD 和ID 的数量关系,并说明理由.(请利用图1证明)(3)应用:若△ABC 的外接圆的半径为6cm ,内切圆的半径为2cm ,则△ABC 的外心与内心之间的距离为 cm .39.(2020•丰台区模拟)在平面直角坐标系xOy 中,⊙O 的半径为r (r >0).给出如下定义:若平面上一点P 到圆心O 的距离d ,满足12r ≤d ≤32r ,则称点P 为⊙O 的“随心点”. (1)当⊙O 的半径r =2时,A (3,0),B (0,4),C (−32,2),D (12,−12)中,⊙O 的“随心点”是 ;(2)若点E (4,3)是⊙O 的“随心点”,求⊙O 的半径r 的取值范围;(3)当⊙O 的半径r =2时,直线y =x +b (b ≠0)与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在⊙O 的“随心点”,直接写出b 的取值范围.40.(2020•北京模拟)对于平面直角坐标系xOy中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d (M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=,d(B,⊙O)=;②如果直线y=x+b与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在x轴上,半径为1,直线y=﹣x+5与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.41.(2020•丰台区模拟)在平面直角坐标系xOy 中,对于两个点P ,Q 和图形W ,如果在图形W 上存在点M ,N (M ,N 可以重合)使得PM =QN ,那么称点P 与点Q 是图形W 的一对平衡点.(1)如图1,已知点A (0,3),B (2,3).①设点O 与线段AB 上一点的距离为d ,则d 的最小值是 ,最大值是 ;②在P 1(32,0),P 2(1,4),P 3(﹣3,0)这三个点中,与点O 是线段AB 的一对平衡点的是 (2)如图2,已知圆O 的半径为1,点D 的坐标为(5,0),若点E (x ,2)在第一象限,且点D 与点E 是圆O 的一对平衡点,求x 的取值范围.(3)如图3,已知点H (﹣3,0),以点O 为圆心,OH 长为半径画弧交x 轴的正半轴于点K ,点C (a ,b )(其中b ≥0)是坐标平面内一个动点,且OC =5,圆C 是以点C 为圆心,半径为2的圆,若弧HK 上的任意两个点都是圆C 的一对平衡点,直接写出b 的取值范围.。
2018北京中考数学一模代几综合

28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A 是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的附点”,直接写出b 的取值范围.x28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (,则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线y x = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.28. P是⊙C外一点,若射线..PC交⊙C于点A,B两点,则给出如下定义:若0<PA PB≤3,则点P为⊙C的“特征点”.(1)当⊙O的半径为1时.①在点P1(2,0)、P2(0,2)、P3(4,0)中,⊙O的“特征点”是;②点P在直线y=x+b上,若点P为⊙O的“特征点”.求b的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是...⊙C的“特征点”,直接写出点C的横坐标的取值范围.28.在平面直角坐标系xOy 中,对于点P 和⊙C ,给出如下定义:若⊙C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在⊙C 上,则称P 为⊙C 的反射点.下图为⊙C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),⊙A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,⊙A 的反射点是____________; ②点P 在直线y x =-上,若P 为⊙A 的反射点,求点P 的横坐标的取值范围; (2)⊙C 的圆心在x 轴上,半径为2,y 轴上存在点P 是⊙C 的反射点,直接写出圆心C 的横坐标x 的取值范围.28. 对于平面直角坐标系xOy中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点.(1)当t=-3时,①在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是;②在直线y=2x+b上存在线段AB的伴随点M、N,且MN=b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围.28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,22N ⎛- ⎝⎭.在A (1,0),B (1,1),)C 三点中,是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线23y x =-+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.28. 在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1. ①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ; ②若点P 位于⊙O 内部,且为双曲线ky x=(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11Ax ,y ,()22B x ,y ,且122x x -=,求二次函数图象的顶点坐标.28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图...直接..写出半径r 的取值范围.备用图1 备用图22018大兴一模28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N . (1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.图22018顺义一模28.如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.2L 1图22018通州一模28.在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距PQ D ”.例如在下图中,点()1,1P ,()3,2Q ,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”=3PQ D .特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则_______=AO D ,_______=BO D ;② 点C 在直线3y x =-+上,请你求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点;点F 是直线24y x =+上一动点.请你直接写出点E 与点F 之间“直距EF D ”的最小值.2018燕山一模27.如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由.,备用图准蝶形AMB A BM。
2018北京市中考数学二模分类28题新定义

2018北京市中考数学二模分类28题新定义2018北京市中考数学二模分类28题新定义 2018东城二模28. 研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则. 基于上述发现,对于平面直角坐标系xOy 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ;(2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)C t +, ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物PH PF=2018西城二模28. 对于平面直角坐标系xOy 中的点(,)Q x y (x ≠0),将它的纵坐标y 与横坐标x 的比yx 称为点Q 的“理想值”,记作QL .如(1,2)Q -的“理想值”221QL==--.(1)①若点(1,)Q a 在直线4y x =-上,则点Q 的“理想值”QL 等于_________;②如图,3,1)C ,⊙C 的半径为1. 若点Q 在⊙C上,则点Q 的“理想值”QL 的取值范围是 . (2)点D 在直线3+3y x =上,⊙D 的半径为1,点Q 在⊙D 上运动时都有0≤L Q 3,求点D 的横坐标Dx 的取值范围;(3)(2,)M m (m >0),Q 是以r 为半径的⊙M 上任意一点,当0≤L Q ≤22相应的半径r 的值.(要求画图位置准确,但不必尺规作图)2018海淀二模28.对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21bb k-≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21ba =-+,故211bb k-=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数;(2)0m >,已知1y x =(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围.(3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.54411231213xOy6654327654326554411231213x Oy665432765432652018朝阳二模28. 对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时, ①在点P 1(1,1),P 2(0,2),P 3(22 ,22)中,直线m 的平行点是 ;②⊙O的半径为10,点Q在⊙O上,若点Q为直线m 的平行点,求点Q的坐标.(2)点A的坐标为(n,0),⊙A半径等于1,若⊙A 上存在直线xy3的平行点,直接写出n的取值范围.2018丰台二模28.在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q ,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MND=-+---=.已知点A (1,0)、点B (-1,4).(1)则_______=AO D ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.54411231213xOy6654327654326554411231213x Oy665432765432652018石景山二模28.在平面直角坐标系xOy 中,对于任意点P ,给出如下定义:若⊙P 的半径为1,则称⊙P 为点P 的“伴随圆”. (1)已知,点()1,0P ,①点13,2A ⎛ ⎝⎭在点P 的“伴随圆” (填“上”或“内”或“外”);②点()1,0B -在点P 的“伴随圆” (填“上”或“内”或“外”); (2)若点P 在x 轴上,且点P 的“伴随圆”与直线x y 33=相切,求点P 的坐标;(3)已知直线2+=xy=xy与x、y轴分别交于点A,B,直线2-与x、y轴分别交于点C,D,点P在四边形ABCD的边上并沿DA→的方向移动,直接写出点P的“伴随圆”→CDBCAB→经过的平面区域的面积.2018门头沟二模28.在平面直角坐标系xOy 中的某圆上,有弦MN ,取MN 的中点P ,我们规定:点P 到某点(直线)的距离叫做“弦中距”,用符号“d 中”表示.以(3,0)W -为圆心,半径为2的圆上. (1)已知弦MN 长度为2.①如图1:当MN ∥x 轴时,直接写出到原点O 的d 中的长度;②如果MN 在圆上运动时,在图2中画出示意图,并直接写出到点O 的d 中的取值范围.(2)已知点(5,0)M -,点N 为⊙W 上的一动点,有直线2y x =-,求到直线2y x =-的d 中的最大值.xyWO xyP NWOM图1图2xyWO用图2018顺义二模28.已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果a≤PQ2a,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(-1,1),B(-1,-1),C(1,-1),D(1,1) .(1)在11(,0)2-P ,213()2P ,32)P 中,正方形ABCD 的“关联点”有 ;(2)已知点E 的横坐标是m ,若点E 在直线3y x上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31=+y x 与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.yxO2018房山二模28. 已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (-12,32 ),M (0,-1)中,⊙O 的“关联点”为 ; (2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为 5 ,求n 的值;(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线443y x =-+与x 轴,y 轴分别交于点A ,B .若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.2018怀柔二模28. A 为⊙C 上一点,过点A 作弦AB ,取弦AB 上一点P ,若满足131<≤ABAP,则称P 为点A 关于⊙C 的黄金点.已知⊙C 的半径为3,点A 的坐标为(1,0). (1)当点C 的坐标为(4,0)时,①在点D (3,0),E (4,1),F (7,0)中,点A 关于⊙C 的黄金点是 ; ②直线3333-=x y上存在点A 关于⊙C 的黄金点P ,求点P 的横坐标的取值范围;(2)若y 轴上存在..点A 关于⊙C 的黄金点,直接写出点C 横坐标的取值范围.2018平谷二模28.对于平面直角坐标系xOy 中的点P 和⊙M ,给出如下定义:若⊙M 上存在两个点A ,B ,使AB =2PM ,则称点P 为⊙M 的“美好点”.(1)当⊙M 半径为2,点M 和点O 重合时, ○1点()120P -, ,()211P ,,()322P ,中,⊙O 的“美好点”是 ; ○2点P 为直线y=x+b 上一动点,点P 为⊙O 的“美好点”,求b 的取值范围;(2)点M 为直线y=x 上一动点,以2为半径作⊙M ,点P 为直线y =4上一动点,点P 为⊙M 的“美好点”,求点M 的横坐标m 的取值范围.2018昌平二模28.在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0) ,点 B (1,1) ,点 C (1-, 2-),则A 、B 、C 三点的 “横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b=|1(2)--|=3. 因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5) ,S (3,2-) ,T (4-,3-)中,与点A 、B 为正方点的是 ;(2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为 ;(3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形;BC –1–2–3–41234–1–2–3–41234AO xy②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.y xD O A–1–2–3–4–512345–1–2–3–4–512345yxD O A–1–2–3–4–512345–1–2–3–4–512345。
【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案

北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。
2018年北京初中数学一模28题汇编

2018(28) 一模大题压轴1.(2018东城一模28)28.(8 分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P(M,O,N 三点不共线,且点P,O 在直线MN 的异侧),当∠MPN+∠MON=180°时,则称点P 是线段MN 关于点O 的关联点.图1 是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系 xOy 中,⊙O 的半径为 1.(1)如图 2,已知 M (,),N ((,﹣),在 A (1,0),B (1,1),C (,0)三点中,是线段 MN 关于点 O 的关联点的是 ________;(2)如图 3,M (0,1),N (,﹣),点 D 是线段 MN 关于点 O 的关联点.①∠MDN 的大小为 ___________; ②在第一象限内有一点 E (m ,m ),点 E 是线段 MN 关于点 O 的关联点,判断△MNE 的形状,并直接写出点 E 的坐标; ③点 F 在直线 y=﹣33x+2 上,当∠MFN ≥∠MDN 时,求点 F 的横坐标 x 的取值范围.2.(2018西城一模28)3.(2018朝阳一模28)4.(2018海淀一模28)5.(2018丰台一模28)6.(2018石景山一模28)8.(2018通州一模28)9.(2018顺义一模28)28.如图1,对于平面内的点P 和两条曲线L 1、L2给出如下定义:若从点P 任意引出一条射线分别与L1、L2交于Q1、Q2,总有P Q 1PQ2是定值,我们称曲线L1与L2“曲似”,定值P Q 1PQ2为“曲似比”,点P 为“曲心”.例如:如图2,以点为圆心,半径分别为r 1、r2都是常数 的两个同心圆C1、C2,从点任意引出一条射线分别与两圆交于点M 、N ,因为总有是定值,所以同心圆C1与C 2曲似,曲似比为r 1r2,“曲心”为. 1 在平面直角坐标系xOy 中,直线y kx 与抛物线yx2、y 12x2分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;2 在 1 的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使 O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由;3 在 1 、 2 的条件下,若将“y12x 2”改为“y1mx2”,其他条件不变,当存在 O与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.10.(2018大兴一模28)11.(2018房山一模28)12.(2018门头沟一模28)28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”.(1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径r 的取值范围.14.(2018怀柔一模28) 28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ;②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都.不是..⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.15.(2018平谷一模28)16.(2018延庆一模28)28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点.已知:点C (3,4)(1)下列各点中, 与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.17.(2018燕山一模28)2018(28) 一模大题压轴答案1.(2018东城一模28)28.(1)易(2)①易②(中)③(难)(未看完)【分析】(1)由题意线段MN 关于点O 的关联点的是以线段MN 的中点为圆心,为半径的圆上,所以点C 满足条件;(2)①如图3﹣1 中,作NH⊥x 轴于H.求出∠MON 的大小即可解决问题;②如图3﹣2 中,结论:△MNE 是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E 四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;③如图3﹣3 中,由②可知,△MNE 是等边三角形,作△MNE 的外接圆⊙O′,首先证明点E 在直线y=﹣x+2 上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;【解答】解:(1)由题意线段MN 关于点O 的关联点的是以线段MN 的中点为圆心,为半径的圆上,所以点C 满足条件,故答案为C.(2)①如图3﹣1 中,作NH⊥x 轴于H.∵N(,﹣),∴tan∠NOH= ,∴∠NOH=30°,∠MON=90°+30°=120°,∵点D 是线段MN 关于点O 的关联点,∴∠MDN+∠MON=180°,∴∠MDN=60°.故答案为60°.②如图3﹣2 中,结论:△MNE 是等边三角形.理由:作EK⊥x 轴于K.∵E(m,m),∴tan∠EOK=,∴∠EOK=30°,∴∠MOE=60°,∵∠MON+∠MEN=180°,∴M、O、N、E 四点共圆,∴∠MNE=∠MOE=60°,∵∠MEN=60°,∴∠MEN=∠MNE=∠NME=60°,∴△MNE 是等边三角形.③如图 3﹣3 中,由②可知,△MNE 是等边三角形,作△MNE 的外接圆⊙O ′,易知 E (,1),∴点 E 在直线 y=﹣x+2 上,设直线交⊙O ′于 E 、F ,可得 F (,),观察图象可知满足条件的点 F 的横坐标 x 的取值范围≤xF ≤ .(备注:y=-x 33+2,T (23,0),OT=23)(备注:OG=3,G{23,23},OG=3)(备注:y=-x 33+2,∴323≤≤F x )【点评】本题考查一次函数综合题、直线与圆的位置关系、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题. 2.(2018西城一模28)28.(1)①②易;(2)①易②中(3)难(未看)3.(2018朝阳一模28)4.(2018海淀一模28)28、(1)①易;②、(2)难(未做出)5.(2018丰台一模28)6.(2018石景山一模28)8.(2018通州一模28)9.(2018顺义一模28)28【答案】解:1是,过点A、B作x轴的垂线,垂足分别为D、C,依题意可得A k k2、B2k2k2,因此D k0、C2k0,A D x轴、BC x轴,A DB C,O A O B O DO Ck2k12,两抛物线曲似,曲似比为12;2假设存在k值,使O与直线BC相切,则O A O C2k,又O D k、A D k2,并且O D2A D2O A2,k2k222k2,解得:k3负值舍去,由对称性可取k3,综上,k3;3根据题意得A k k2、B m k m k2,因此D k0、C m k0,O与直线BC相切,O A O C m k,由O A O D可得m k k,则m1,由O D k、A D k2,并且O D2A D2O A2,k2k22m k2,整理,得:k2m21.【解析】1过点A、B作x轴的垂线,垂足分别为D、C,根据题意可得A k k 2、B2k2k2、D k0、C2k0,由A D B C知O A O B O DO Ck2k12,据此可得答案;2假设存在k值,使O与直线BC相切,据此知O A O C2k,根据O D 2A D2O A2及对称性可得答案.3同理可得A k k2、B m k m k2、D k0、C m k0,由切线性质知O A O C m k,根据O AO D可得m的范围,由O D2A D2O A2可得k与m之间的关系式.本题主要考查二次函数的综合问题,解题的关键是理解“曲似”的定义及平行线分线段成比例定理、切线的性质、勾股定理等知识点.10.(2018大兴一模28)11.(2018房山一模28)12.(2018门头沟一模28)28.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分②由图可知,B )3,5(∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k 2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k 4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y(2)当点F 在点E 左侧时:2r ∴≤当点F 在点E 右侧时:r …………………………………7分综上所述:2r ∴≤ …………………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2018一模新定义

1.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A +是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k =r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的附点”,直接写出b 的取值范围.x2. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.3.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线3y x = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.2018怀柔一模4. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA ⋅PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ;②点P 在直线y=x+b 上,若点P 为⊙O的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.5.在平面直角坐标系xOy 中,对于点P 和⊙C ,给出如下定义:若⊙C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在⊙C 上,则称P 为⊙C 的反射点.下图为⊙C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),⊙A 的半径为2, ①在点(0,0)O ,(1,2)M ,(0,3)N -中,⊙A 的反射点是____________;②点P 在直线y x =-上,若P 为⊙A 的反射点,求点P 的横坐标的取值范围;(2)⊙C 的圆心在x 轴上,半径为2,y 轴上存在点P 是⊙C 的反射点,直接写出圆心C 的横坐标x 的取值范围.2018朝阳一模6. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =,求b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.7.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,22,22M⎛⎫⎪⎪⎝⎭,22,22N⎛-⎝⎭.在A(1,0),B(1,1),)2,0C三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N3122⎛⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E)3,m m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线32y x=+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.8.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.9. 在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”.(1)已知⊙O 的半径为1. ①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ; ②若点P 位于⊙O 内部,且为双曲线ky x=(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11Ax ,y ,()22B x ,y ,且122x x -=,求二次函数图象的顶点坐标.2018门头沟一模10. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”. (1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径r 的取值范围.备用图1 备用图211.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N . (1)点N 的横坐标为 ;(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤≤︒∠时,求m 的取值范围.图22018顺义一12.如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.图1Q 2Q 1L 2L 1P图2C 2C 1NMO'2018通州一模13.在平面直角坐标系xOy 中有不重合的两个点()11,y x Q 与()22y x P ,.若Q ,P 为某个直角三角形的两个锐角顶点,且该直角三角形的直角边均与x 或y 轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和定义为点Q 与点P 之间的“直距PQ D ”.例如在下图中,点()1,1P ,()3,2Q ,则该直角三角形的两条直角边长为1和2,此时点Q 与点P 之间的“直距”=3PQ D .特别地,当PQ 与某条坐标轴平行(或重合)时,线段PQ 的长即为点Q 与点P 之间的“直距”.(1)①已知O 为坐标原点,点()2,1A -,()2,0B -,则_______=AO D ,_______=BO D ; ② 点C 在直线3y x =-+上,请你求出CO D 的最小值;(2)点E 是以原点O 为圆心,1为半径的圆上的一个动点;点F 是直线24y x =+上一动点.请你直接写出点E 与点F 之间“直距EF D ”的最小值.2018燕山一模14.如图,抛物线)0(2>++=a c bx ax y 的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线221x y =对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线)0(3542>--=a a ax y 对应的碟宽在x 轴上,且AB =6. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (p x ,p y ),使得∠APB 为锐角,若有,请求出p y 的取值范围.若没有,请说明理由.,备用图准蝶形AMB A BM15延庆.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点.已知:点C (3,4)(1)下列各点中, 与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4) (2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围.1西城.解:(1).………………………………………………………………………… 1分②是.……………………………………………………………………………2分(2)①如图9,当r =1时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM ⊥CM . ∵ (1,0)Q -,(1,0)C ,r =1, ∴ 2CQ =,1CM =.∴ MQ =此时2MQk CQ==.…………………………………………………… 3分 图9 图10②如图10,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN <QM ,点N ,M 在x 轴下方时同理). 作CD ⊥QM 于点D ,则MD=ND .∴ ()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=. ∵ 2CQ =,∴ 2MQ NQ DQk DQ CQ CQ+===.∴ 当k =3时,3DQ =. 此时221CD CQ DQ =-=.假设⊙C 经过点Q ,此时r = 2.∵ 点Q 在⊙C 外,∴ r 的取值范围是1≤r <2. …………………………………………… 5分(3)3-<b <33.……………………………………………………………… 7分 2平谷.解:(1)60; ···················································································· 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. ........................................ 3 ∴直线CD 的表达式为1y x =+或3y x =-+. .. (5)(3)15m ≤≤或51m -≤≤-. (7)3石景山.解:(1)25π; (2)分(2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE∠=°,3AB =, ∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B 的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥. ………………… 8分4怀柔(1)①P 1(,0)、P 2(0,2)…………………………………………………………………2分 ②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2.2直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=2. 可得b 1=2.同理可得b 2=-2.∴b 的取值范围是:≤b ≤. ………………6分 (2)x>或 . ………………………………………8分5海淀.解(1)①A 的反射点是M ,N . ……………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为322-.同理可求得点E ,F ,G 的横坐标分别为22-,22,322. 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x 的取值范围是32222≤≤x --,或23222≤≤x . ………………4分(2)圆心C 的横坐标x 的取值范围是44≤≤x -. ………………7分6朝阳. 解:(1)①线段AB 的伴随点是: 23,P P . ……………………………2分 ②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值. ……4分如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值.……5分∴ b 的取值范围是3≤b ≤5. ……………………………………6分22222-2233-<x(2)t 的取值范围是-12.2t ≤≤……………………………8分7东城. 解:(1)C ; --------------2分 (2)① 60°;② △MNE 是等边三角形,点E 的坐标为()31,;--------------5分③ 直线32y =+交 y 轴于点K (0,2),交x 轴于点()23T ,0. ∴2OK =,23OT = ∴60OKT ∠=︒.作OG ⊥KT 于点G ,连接MG . ∵()M 0,1, ∴OM =1. ∴M 为OK 中点 . ∴ MG =MK =OM =1.∴∠MGO =∠MOG =30°,OG 3 ∴33.2G ⎫⎪⎪⎝⎭, ∵120MON ∠=︒, ∴ 90GON ∠=︒. 又3OG =1ON =,∴30OGN ∠=︒. ∴60MGN ∠=︒.∴G 是线段MN 关于点O 的关联点.经验证,点()31E,在直线32y x =+上. 结合图象可知, 当点F 在线段GE 上时 ,符合题意.∵G F E x x x ≤≤,图1 图2∴332F x ≤≤.--------------8分.8丰台.解:(1)点和线段的“中立点”的是点D ,点F ; ………2分(2)点A 和⊙G 的“中立点”在以点O 为圆心、半径为1的圆上运动.因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1),则x 2+(- x +1)2=12,解得x 1=0,x 2=1.所以点K 的坐标为(0,1)或(1,0). ………5分(3)(说明:点与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分9房山8. (1)①F ; ………………………………………………………………………1分 ② ∵⊙O 的半径为1.∴⊙O 的“梦之点”坐标为(-22 ,-22 )和(22 ,22).………………2分 又∵双曲线ky x=(k ≠0)与直线y =x 的交点均为双曲线的“梦之点”, ∴将(-22 ,-22)代入双曲线表达式中,得, 1=2k xy =……………………………………………………………………3分 ∵点P 位于⊙O 内部.∴102k <<……………………………………………………………………4分 (2) -1≤t ≤3……………………………………………………………………………6分 (3)由“梦之点”定义可得: ()11A x ,x ,()22B x ,x . 则21x ax ax =-+.整理得,()2110ax a x -++=A BC N xyxy解得,11x =,21x a=. 把两个根代入122x x -=中,即112a-= 解得,11a =-,213a =. 当1a =-时,21y x x =-++ ,其顶点坐标为(12 , 54 )………………………7分当13a =时,211133y x x =-+,其顶点坐标为(12 , 1112 )……………………8分10门头沟.(本小题满分8分)解: (1)①)5,3()5,1(21C C 或. ……………………………………………2分②由图可知,B )3,5( ∵A (1,3) ∴AB =4∵ABC ∆为等腰直角三角形 ∴BC =4∴)1,5()7,5(21-C C 或设直线AC 的表达式为(0)y kx b k =+≠ 当)7,5(1C 时,⎩⎨⎧=+=+753b k b k ⎩⎨⎧==∴21b k2+=∴x y …………………………………3分 当)1,5(2-C 时,⎩⎨⎧-=+=+153b k b k ⎩⎨⎧=-=∴41b k4+-=∴x y …………………………………4分 ∴综上所述,直线AC 的表达式是2+=x y 或4+-=x y (2)当点F 在点E 左侧时:xyFDE O217r ∴≤≤当点F 在点E 右侧时:517r ∴≤≤ …………………………………7分 综上所述:217r ∴≤≤ …………………………………8分11大兴.(1)9 ………………………………………………………………… 1分 (2)方法一:MK ⊥MN ,∴要使线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合,也就是使以FN 为直径的圆与OC 有两个交点,即m r >.29=r , 29<∴m .又0>m ,290<<∴m . ………………………………………………4分方法二: 0>m ,∴点K 在x 轴的上方.过N 作NW ⊥OC 于点W ,设OM x =,OK y =, 则 CW =OC -OW =3,WM =9x -. 由△MOK ∽△NWM , 得,∴9y x x m=-. ∴x mx m y 912+-=.当m y =时, 219m x x m m =-+,化为0922=+-m x x .xy FD E O当△=0,即22940m -=, 解得92m =时, 线段OC 上有且只有一点M ,使相应的点K 与点F 重合.0>m ,∴ 线段OC 上存在不同的两点M 1、M 2,使相应的点K 1、K 2都与点F 重合时,m 的取值范围为290<<m . (4)分(3)设抛物线的表达式为:)12)(3(-+=x x a y (a ≠0),又 抛物线过点F (0,m ), a m 36-=∴.m a 361-=∴.m x m x x m y 1625)29(361)12)(3(3612+--=-+-=∴.…………………………………5分过点Q 做QG ⊥x 轴与FN 交于点RFN ∥x 轴∴∠QRH =90°tan BG BQG QG∠=,2516QG m =,152BG =∴,又4560QHN ︒≤∠≤︒,∴3045BQG ︒≤∠≤︒∴当30BQG ∠=︒时,可求出3524=m ,…………… 6分 当45BQG ∠=︒时,可求出524=m . ……………………… 7分m ∴的取值范围为242435m ≤≤. ………………………… 8分2018新定义 21又∵OD=k ,AD=k 2,并且OD 2+AD 2= OA 2,∴k 2+(k 2)2=(2k )2.∴k =(舍负)由对称性可取k =综上,k =. ………………………… 6分(3)m 的取值范围是m >1,k 与m 之间的关系式为k 2=m 2-1 . ……… 8分14燕山.解:(1) ①∠DCB=60°…………………………………1′②补全图形CP=BF …………………………………3′△ DCP ≌△ DBF …………………………………6′(2)BF -BP=2DE ⋅tan α…………………………………8′15延庆.(1)F ……1分(2) -3≤p x ≤3 且p x ≠0 ……4分(3)4 < r≤5 ……7分。
2018年北京市中考数学一模分类28题新定义

2018年北京市中考数学一模分类——28题新定义东28.给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,2222M⎛⎫⎪⎪⎝⎭,2222N⎛⎫-⎪⎪⎝⎭.在A(1,0),B(1,1),)2,0C三点中, 是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N3122⎛⎫-⎪⎪⎝⎭,点D是线段MN关于点O的关联点.①∠MDN的大小为°;②在第一象限内有一点E)3,m m,点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线323y x=-+上,当∠MFN≥∠MDN时,求点F的横坐标Fx的取值范围.西28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”.特别地,当点A和点B 重合时,规定AQ =BQ ,2AQ k CQ =(或2BQCQ).已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r .(1)如图1,当r =时,①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为______;②2(1A +是否为⊙C 的“2相关依附点”?答:是______(选“是”或“否”); (2)若⊙C 上存在“k 相关依附点”点M ,①当r =1,直线QM 与⊙C 相切时,求k 的值;②当k r 的取值范围;(3)若存在r 的值使得直线y b =+与⊙C 有公共点,且公共点是⊙C 的相关依附点”,直接写出b 的取值范围.图1 备用图海28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.朝28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针 旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.丰28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x .已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标;(3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.石28.对于平面上两点A ,B , AB 长为半径的圆称为点A 的“确定圆”的示意图.... (1)已知点A 的坐标为(- 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线y = 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.门28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”.(1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径r 的取值范围.备用图1 备用图2顺28.如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'. (1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.图2C 2C 1NMO'通怀28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ;②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.2房28. 在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”.(1)已知⊙O 的半径为1.①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ; ②若点P 位于⊙O 内部,且为双曲线ky x=(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11Ax ,y ,()22B x ,y ,且122x x-=,求二次函数图象的顶点坐标.大28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;图2(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤∠≤︒时,求m 的取值范围.平28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙OP 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.延28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4) (2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点, 求r 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年北京市中考数学一模分类——28题新定义东28.给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2,22M ⎛⎫ ⎪ ⎪⎝⎭,22N ⎛⎫- ⎪ ⎪⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °; ②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F在直线23y x =-+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.西28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”.特别地,当点A和点B 重合时,规定AQ =BQ ,2AQ k CQ =(或2BQCQ).已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r .(1)如图1,当r =时,①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为______;②2(1A +是否为⊙C 的“2相关依附点”?答:是______(选“是”或“否”); (2)若⊙C 上存在“k 相关依附点”点M ,①当r =1,直线QM 与⊙C 相切时,求k 的值;②当k r 的取值范围;(3)若存在r 的值使得直线y b =+与⊙C 有公共点,且公共点是⊙C 的相关依附点”,直接写出b 的取值范围.图1 备用图海28.在平面直角坐标系xOy中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O重合,使点P 关于直线OT 的对称点'P 在C 上,则称P为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.朝28. 对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为 线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是 ;②在直线y =2x +b 上存在线段AB 的伴随点M 、N , 且MN =b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针 旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围.丰28.对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标; (3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.石28.对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心, AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B 的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B在直线3y x =-若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围.门28. 在平面直角坐标系xOy 中,点M 的坐标为11(,)x y ,点N 的坐标为22(,)x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使M N P ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的 “和谐点”.(1)已知点A 的坐标为)3,1(,①若点B 的坐标为)3,3(,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点D (1,4)为点E (1,2)、F ),(n m 的“和谐点”,若使得△DEF 与⊙O 有交点,画出示意图直接.....写出半径r 的取值范围.备用图1 备用图2顺28.如图1,对于平面内的点P 和两条曲线1L 、2L 给出如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有12PQ PQ 是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.图2通怀28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.①在点P 1(,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.2房28. 在平面直角坐标系xOy 中,当图形W 上的点P 的横坐标和纵坐标相等时,则称点P 为图形W 的“梦之点”. (1)已知⊙O 的半径为1.①在点E (1,1),F (-22 ,-22),M (-2,-2)中,⊙O 的“梦之点”为 ;②若点P 位于⊙O 内部,且为双曲线ky x=(k ≠0)的“梦之点”,求k 的取值范围. (2)已知点C 的坐标为(1,t ),⊙C 的半径为 2 ,若在⊙C 上存在“梦之点”P ,直接写出t 的取值范围.(3)若二次函数21y ax ax =-+的图象上存在两个“梦之点”()11Ax ,y ,()22B x ,y ,且122x x-=,求二次函数图象的顶点坐标.大28.在平面直角坐标系xOy 中,过y 轴上一点A 作平行于x 轴的直线交某函数图象于点D ,点P 是x 轴上一动点,连接D P ,过点P 作DP 的垂线交y 轴于点E (E 在线段OA 上,E 不与点O 重合),则称∠DPE 为点D ,P ,E 的“平横纵直角”.图1为点D ,P ,E 的“平横纵直角”的示意图.图1如图2,在平面直角坐标系xOy 中,已知二次函数图象与y 轴交于点(0,)F m ,与x 轴分别交于点B (3-,0),C (12,0). 若过点F 作平行于x 轴的直线交抛物线于点N .(1)点N 的横坐标为 ;图2(2)已知一直角为点,,N M K 的“平横纵直角”,若在线段OC 上存在不同的两点1M 、2M ,使相应的点1K 、2K 都与点F 重合,试求m 的取值范围;(3)设抛物线的顶点为点Q ,连接BQ 与FN 交于点H ,当4560QHN ︒≤∠≤︒时,求m 的取值范围.平28. 在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______; (2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.延28.平面直角坐标系xOy 中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B 互为反等点. 已知:点C (3,4)(1)下列各点中, 与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O的半径为r,若⊙O与(2)中线段CG的两个交点互为反等点,求r的取值范围.。