影响风力发电机出力的因素
风力发电机对气象因素的灵敏度分析

风力发电机对气象因素的灵敏度分析风力发电机是一种利用风能来产生电力的装置,它不仅是一种环保的能源利用方式,还具有可再生性和广泛的应用前景。
然而,风力发电机的发电效率受到气象因素的影响,如风速、风向、温度等。
本文将从风速、风向和温度三个方面,分析风力发电机对于气象因素的灵敏度。
首先,风速是影响风力发电机发电效率的主要因素之一。
当风速较低时,风力发电机的转子叶片无法获得足够的风能,因而无法正常运转。
而当风速过高时,叶片的运转速度过快,容易造成叶片损坏,甚至导致整个设备的损失。
因此,风力发电机对于风速的灵敏度较高。
实际应用中,通常会根据当地的风速情况选择适合的风力发电机型号,以达到最佳的发电效果。
其次,风向也是影响风力发电机发电效率的重要因素之一。
风向的变化会影响风力发电机所面对的风能大小和叶片受力情况。
一般情况下,风力发电机的设计都考虑了风向的变化,使得其能够通过转动机构实现叶片的自动调整,以使得叶片与风方向保持一定的夹角,从而获得最大的风能。
但是,如果风向变化过于频繁或幅度过大,可能会影响风力发电机的工作效率,甚至引起设备的故障。
因此,风力发电机对于风向的灵敏度也是需要考虑的因素之一。
最后,温度是影响风力发电机发电效率的重要因素之一。
风力发电机通常在室外工作,而温度的变化会直接影响风机的材料特性、摩擦力和空气密度等因素,进而影响发电机的工作效率。
一般来说,温度过高会增加风力发电机的摩擦损耗,导致能量损失;而温度过低则容易导致机械设备的冻结和失效。
因此,合理控制温度对于提高风力发电机的发电效率至关重要。
综上所述,风力发电机对于气象因素的灵敏度是不可忽视的。
风速、风向和温度等因素对于风力发电机的发电效率均有重要影响。
在实际应用中,我们应根据当地的气象条件,选择适合的风力发电机型号,并加强设备的保养和维护,以提高发电效率和延长设备的使用寿命。
同时,也需要不断研发和改进相关技术,提高风力发电机对气象因素的适应性和稳定性,以推动风力发电产业的进一步发展。
影响风力发电机出力的因素

影响风力发电机出力的因素影响风力发电机出力的因素风力发电机在工作时由于受到环境或本身结构的影响,其功率会受到影响,目前大坝风场使用华锐3MW风机32台,现就一些影响风机出力的因素进行简单分析:一、功率曲线与上网发电量1、功率曲线反映了风力发电机组的功率特性,是衡量机组风能转换能力的指标之一,设备验收时功率曲线往往是被重点考核的对象。
下图为华锐3MW风机理论设计功率曲线下图为风机实际功率曲线从标准功率曲线与实际功率曲线对比可以看出,风机实际出力功率曲线与设计理论功率曲线趋近于相同(达到满发点有差异)。
但实际风场中还有个别风机存在功率曲线异常情况,如下图所示:下图为风机异常功率曲线:造成功率曲线异常有以下几点:一是华锐3MW远程监控系统数据记录错误或丢失。
二是我风场由于受到功率限制,大风期部分风机风机停运。
三是由于故障风机长时间停机,导致主控检测到的数据为零等。
2、因玉门地区发电量送出通道有限,导致我风场负荷受到严重限制,平常全厂出力为3万千瓦时左右(容量十万),大风期我风场风机大部分不能满负荷发电。
二、风况及地理位置对风力发电机出力的影响风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。
1、目前我风场年平均风速为6.3m/s(以2013年为例,90m高度),设计之初年平均风速为7.86m/s(70m高度,出自大坝风场可研性报告),风场年平均风速有所下降。
2、目前我风场所处位置西南及南面均有山,成西高东低地理位置不理想,根据风场玫瑰图可以看出我风场主导风向为东风和西风,山对风的影响比较大。
3、因风场地理位置、环境等客观因素,风切变也是影响风机出力的不可抗力的原因之一。
风切变,又称风切或风剪,是指风矢量(风向、风速)在空中水平和(或)垂直距离上的剧烈变化。
现场风速及风向的剧烈变化,造成风机出力不稳定、偏航、变桨调整时间延长等,致使风机出力受影响。
风力发电存在的问题及解决措施

风力发电存在的问题及解决措施一、前言随着能源危机的日益加剧,风力发电作为一种清洁、可再生的新型能源,受到了广泛的关注和研究。
然而,在实际应用中,风力发电也存在一些问题,如风速不稳定、噪声污染等。
本文将从这些问题入手,提出解决措施。
二、风力发电存在的问题1. 风速不稳定风速的不稳定性是影响风力发电效率的主要因素之一。
由于气象条件的变化,风速会时而增强、时而减弱,导致风轮转速不稳定。
这样一来,发电机输出功率就会波动不定。
2. 噪声污染由于涡轮机旋转时所产生的空气振动和机械摩擦等原因,风力发电机组会产生较大的噪声。
这对周围环境和人们健康造成了一定程度上的影响。
3. 飞鸟碰撞在适宜鸟类迁移路线上设置大型风力发电设备时,很容易造成鸟类与涡轮机叶片碰撞,对鸟类的生存造成很大的威胁。
4. 维护成本高风力发电设备需要经常进行维护和检修,这需要耗费大量的人力、物力和财力。
三、解决措施1. 风速不稳定问题的解决为了解决风速不稳定问题,可以采用多台风机组串联或并联的方式组成风电场。
这样一来,即使某个风机组输出功率波动较大,也可以通过其他风机组来平衡。
同时,在设计风机组时也应该考虑到气象条件的变化规律,尽可能地提高其适应性。
2. 噪声污染问题的解决为了减少噪声污染,可以采用以下措施:(1)选择低噪声涡轮机和叶片材料;(2)采用隔音材料对涡轮机进行包覆;(3)将涡轮机安装在远离居民区和敏感区域的地方。
3. 飞鸟碰撞问题的解决为了避免鸟类与涡轮机碰撞,可以采用以下措施:(1)在选址时要注意避开鸟类迁徙路线;(2)在涡轮机叶片上安装鸟类警示设备;(3)在涡轮机周围设置鸟类保护网等措施。
4. 维护成本高的问题的解决为了降低维护成本,可以采用以下措施:(1)在设计风机组时,尽可能地提高其可靠性和稳定性;(2)采用先进的监测技术,对风电场进行实时监测和维护;(3)通过大数据分析等手段,优化维护计划,降低维护成本。
四、结语风力发电是一种清洁、可再生的新型能源,具有广阔的应用前景。
影响风力发电机功率的因素分析 岳刚

影响风力发电机功率的因素分析岳刚摘要:本文将对风力发电机功率与性能做出简单分析,并分析风力发电机功率的影响因素,目的是帮助风力发电厂有效利用风力资源,提高电力生产效率。
关键词:风力发电机;功率;影响因素1风力发电功率与性能评定风力发电机组是风力发电基础设施,能够实现风能向电能的转化,通常来讲,风速越大,可利用的能量就越多,但不同风力发电机受风力驱使产生的电量却大有不同,原因是风力发电机功率不同,风力发电功率很大程度上取决于风力发电机组的转化能力,因此评判风力发电机组性能即是考察风力发电机组的转化能力。
我国多数发电站设施老旧,也无法快速实现风力发电设施大规模改造,并且大功率的风力发电机组也无法在小型风力发电站中发挥较好的性能,但可以先进行小规模风力发电机组试验,根据试验结果选择与发电站规模相适应的机组进行过渡性改造。
利用功率和风速的关系评价风力发电机组的风能转化能力仅仅是为风力发电厂建设改造提供数据支持,而更多应考虑如何提高风力发电机组的风力转化能力,增大风力发电机组的功率,相当于从源头上寻找提高风力发电机组性能的方法。
影响风力发电机功率的因素是多方面的,首先负责接收风能的桨叶会影响风能的输入,虽然风力资源来源广泛,越大的风速会携带越大的动能,但风向通常不固定,如果桨叶叶片设计不科学,就无法大量接收风力动能转化为叶片的机械动能,因此桨叶应具有一定的科学设计结构满足气动性需求;其次负责将桨叶转化的机械动能转化为机组内能的叶尖扰流器会影响能量转化效率,通常情况下,桨叶与叶尖扰流器之间形成阻尼漩涡,当桨叶受动能驱使旋转时,叶尖扰流器通过阻尼作用起到动力刹车效果,从而吸收桨叶动能转化为其他形式的能量,但如果叶尖扰流器阻尼效果较差,就会大大降低能量转化效率;除此之外,风力发电机组中的构成元件性能也会对电能转化效率产生影响,例如部分元件工作时容易受外界低温环境影响而导致硬化,从而无法承受较大的冲击,不仅会降低风力发电机组整体抗性,还会大大降低能量传输效率。
风电理论发电功率及受阻电量计算方法

风电理论发电功率及受阻电量计算方法风电是一种利用风能转化为电能的可再生能源。
风电发电的理论发电功率可以通过迎风面效应、能量损失和气密度来计算。
受阻电量则是通过考虑风轮转速和风机特性来确定。
以下是风电理论发电功率和受阻电量的计算方法。
一、风电理论发电功率的计算方法:1.迎风面效应:风轮叶片迎风面的风速大于背风面的风速,这种差异导致了风轮叶片的扭转,进而驱动发电机发电。
迎风面效应可以通过风轮叶片的角度和二维气动力学系数来计算。
2.能量损失:风能转化为电能时会有一定的能量损失,主要包括机械传动和发电设备转换效率的损失。
机械传动损失可以通过考虑摩擦和机械振动来计算。
发电设备转换效率损失可以根据具体的发电设备来确定。
3.气密度:气密度是影响风电理论发电功率的重要因素。
气密度越大,单位体积的空气中所包含的能量也就越多。
气密度可以通过海拔高度和温度来计算,一般使用气压计和温度计等仪器进行测量。
二、风电受阻电量的计算方法:1.风轮转速:风轮转速是影响风电受阻电量的关键因素。
风轮转速与迎风面风速的大小和发电机输出电压的需求有关。
风速越大,风轮转速也就越快,从而增加受阻电量。
2.风机特性:风机特性是指风轮与风机发电机之间的关系,主要包括功率曲线和电压曲线。
通过分析风机特性曲线,可以确定特定风速下的风电受阻电量。
需要注意的是,风电理论发电功率和受阻电量是根据一定的理论模型和参数计算得出的,实际发电量会受到多种因素的影响,如风速变化、设备疲劳、运行维护等。
因此,在实际应用中还需要考虑这些因素来进行准确的发电量预测和优化控制。
总结起来,风电理论发电功率的计算方法包括迎风面效应、能量损失和气密度的考虑;而风电受阻电量的计算方法则主要考虑风轮转速和风机特性。
这些计算方法可用于对风电场的发电量进行初步估算和优化控制。
风力发展的制约因素

风力发展的制约因素
风力发展的制约因素包括以下几点:
1. 地理条件:风力发电需要有充足的风资源。
某些地区由于地形或气候条件不利于风力发电,导致风能资源的利用受限。
2. 建设成本:风力发电需要大规模的风力发电机组以及风电场的建设,这涉及到高额的资金投入和工程技术难题。
特别是在远离电网的偏远地区,电网接入是一个巨大的挑战和成本压力。
3. 风力发电的不稳定性:风力发电是受天气和季节性影响较大的能源形式,风速的变化会导致风力发电的不稳定性,这增加了电网调度和运营的难度。
4. 环境影响:风力发电机组在运行时会产生一定的噪音和对飞鸟的影响,这可能对周围的居民和生态环境造成一定的影响。
5. 能源政策和市场环境:风力发电需要政府的支持和产业政策的配套,比如优惠的补贴政策和电力市场的规范化。
如果政策环境不利或者电力市场的竞争不充分,风力发电的发展可能受到限制。
综上所述,风力发展的制约因素是多方面的,要实现全面利用风能的发展,还需要克服这些制约因素,并进行技术创新和政策支持。
影响风电机组发电量的因素

影响风电机组发电量的因素风能是一种无污染、可再生的清洁能源,风力发电作为电力工业电源的一部分,已经受了30 余年的进展。
并网运行的风力发电技术兴起于20 世纪80 年月,并快速实现了商品化、产业化,作为一项新的能源技术开头受到更多国家的重视。
在近10 年内,我国的风电技术也在不断成熟和完善,已成为第三大主力电源,对优化能源结构、促进节能减排的作用日益凸显。
风电的经济效益与机组发电量是直接挂钩的,影响发电量的因素也是多方向性的,因此在风电场选址建设到运行维护必需以评估的客观因素为准则。
机组在正常运行状态由于受到天气和人为因素的影响,实际发电量与理论相比存在差别,为使风电场投运后能达到最好经济效益,就要详细分析影响机组发电量的主要因素。
本文结合宁夏贺兰山风电场的实际状况就相关问题进行阐述分析。
风能资源因风能资源具有差异性大的特点,所以对年发电量的影响甚大。
如贺兰山某风电场2023 年可行性讨论报告上推算的年平均风速为7.7m/s,3m/s - 10m/s 的风速占65.1%,17m/s以上的风速为1%,年发电小时2700小时。
但在10 年的实际运行中,平均风速均低于7.7m/s,在全年大风月3、4、5 月份的平均风速分别为7m/s、6.4m/s和 5.88m/s。
由于评估报告中没有客观测量数据,因此,实际发电小时数小于2000 小时。
2023 年4 月为贺兰山风电场全年大风月,平均风速在7.2m/s,1 万千瓦机组发电量在220 万千瓦时左右;2023 年9 月是全年小风月,平均风速仅4.5m/s 左右,1 万千瓦机组发电量在100 万千瓦时左右。
由以上数据可以看出,风能资源对发电量的影响很大,因此,建设大型风电场的首要前提是选择风资源较好的地方。
风能密度是打算风能潜力大小的重要因素。
风能密度和空气密度有直接关系,而空气密度则取决于气压和温度。
因此,不同地方、不同条件的风能密度是不同的。
一般说,海边地势低、气压高,空气密度大,风能密度也就高。
风电基础知识培训风能发电限制因素

风电基础知识培训风能发电限制因素风能是一种可再生的清洁能源,而风电发电则是利用风能转化为电能的过程。
风能作为一种绿色能源,具有广泛的发展前景。
然而,风电发电也存在一些限制因素,本文将对风电基础知识以及风能发电的限制因素进行详细介绍。
一、风电基础知识1. 风电原理风电原理是指将风能转化为电能的过程。
当风吹向风力发电机的扇叶时,扇叶被风力推动旋转。
扇叶与发电机内部的转子相连,转动的同时驱动发电机发出电能。
通过变压器将发电机产生的低电压电能转化为可以供电的高电压电能。
2. 风电装机容量风电装机容量是指特定时间内风力发电装置额定输出功率的总和。
通常以千瓦(kW)或兆瓦(MW)来表示。
装机容量是衡量风电项目规模大小的重要指标。
3. 风力资源评估风力资源评估是指对特定地理位置的风能资源进行测量和评估的过程。
通过对风速、风向等参数的测量和分析,可以确定是否适合建设风电项目,并评估该项目的潜在发电量。
二、风能发电限制因素尽管风能作为一种可再生的清洁能源,具有许多优势,但也受到一些限制因素的制约,下面将详细介绍这些因素。
1. 风速不稳定风速是影响风能发电量的主要因素之一。
风速的不稳定性会导致风电机组的发电量波动较大。
当风速低于风力发电机组的额定切入风速时,发电机组无法启动发电;当风速超过额定切出风速时,发电机组会自动停机,以保护设备。
2. 风能密度风能密度是指单位面积或单位体积内风能含量的大小。
风能密度越高,表示单位面积或单位体积内的风能含量越大,从而产生更多的风能发电。
然而,许多地区的风能密度较低,限制了风电项目的发展。
3. 建设地点限制风电项目的建设需要占用较大的土地面积,而且需要考虑到风速和风向等因素,选择合适的建设地点。
然而,由于土地利用规划、环境保护和生态保护等因素的限制,许多地区无法建设风电项目,进一步限制了风能发电的规模和发展。
4. 噪音和视觉影响风力发电机组在运行时会产生噪音,尤其是在高速旋转的情况下噪音更加明显。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响风力发电机出力的因素风力发电机在工作时由于受到环境或本身结构的影响,其功率会受到影响,目前大坝风场使用华锐3MW风机32台,现就一些影响风机出力的因素进行简单分析:一、功率曲线与上网发电量1、功率曲线反映了风力发电机组的功率特性,是衡量机组风能转换能力的指标之一,设备验收时功率曲线往往是被重点考核的对象。
下图为华锐3MW风机理论设计功率曲线下图为风机实际功率曲线从标准功率曲线与实际功率曲线对比可以看出,风机实际出力功率曲线与设计理论功率曲线趋近于相同(达到满发点有差异)。
但实际风场中还有个别风机存在功率曲线异常情况,如下图所示:下图为风机异常功率曲线:造成功率曲线异常有以下几点:一是华锐3MW远程监控系统数据记录错误或丢失。
二是我风场由于受到功率限制,大风期部分风机风机停运。
三是由于故障风机长时间停机,导致主控检测到的数据为零等。
2、因玉门地区发电量送出通道有限,导致我风场负荷受到严重限制,平常全厂出力为3万千瓦时左右(容量十万),大风期我风场风机大部分不能满负荷发电。
二、风况及地理位置对风力发电机出力的影响风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。
1、目前我风场年平均风速为6.3m/s(以2013年为例,90m高度),设计之初年平均风速为7.86m/s(70m高度,出自大坝风场可研性报告),风场年平均风速有所下降。
2、目前我风场所处位置西南及南面均有山,成西高东低地理位置不理想,根据风场玫瑰图可以看出我风场主导风向为东风和西风,山对风的影响比较大。
3、因风场地理位置、环境等客观因素,风切变也是影响风机出力的不可抗力的原因之一。
风切变,又称风切或风剪,是指风矢量(风向、风速)在空中水平和(或)垂直距离上的剧烈变化。
现场风速及风向的剧烈变化,造成风机出力不稳定、偏航、变桨调整时间延长等,致使风机出力受影响。
三、风机自身特性和缺陷1、叶片基准位置大坝风电厂32台风机自安装调试、投入运行,到现在已经运行一年有余。
在此期间风机未进行风机维护,尤其未进行叶片基准位置校准,风机主控检测位置与叶片实际位置有偏差,导致风机出力受影响。
2、风机主控程序升级及参数设置大坝风机自投入运行以来已经进行多次风机主控升级改造,在此过程中风机并网条件受到影响。
以3m~4m风速为例,在此风速段我厂大部分风机均处于加速不并网状态。
如图所示风速为3.85m/s ,过滤风速为3.85m/s,发电机转速达到928RPM,风机任然加速不并网。
年平均风速在3m~4m之间所占比例为18.2%,此项累计损失发电量无法估算。
3、风机启机参数设置风机在较低温度下启机,风机调整时间较长,主要为风机部件加热(齿轮箱加热)。
4、风机风向标安装目前我风场风机风速仪30台为FT、2台tines,三、故障风机损失发电量1、大部件损坏风机大部件损坏后更换时间长,以下为我厂风机自投运以来大部件损坏更换情况:2、风机疑难故障处理时间较长风机遇到疑难故障后,处理时间过长(大于48h),自2013年风机投运至今全场风机累计停机11208.9h(除大件更换)。
一是因为现场人员处理故障经验不足;二是因为等待风机备件时间较长。
变频器、发电机、参数设置、桨叶角度、风速风向标的安装、叶轮对风速度、叶片基准位置、风速仪安装偏差、风况、地形。
摘要:风力发电机作为一种绿色能源有着改善能源结构、经济环保等方面的优势,也是未来能源电力发展的一个趋势。
但风力发电机在工作时由于受到环境或本身结构的影响,其功率会受到影响。
文章就影响风力发电机组功率的各方面因素进行探讨。
关键词:风力发电机;功率影响因素;功率曲线;发电量一、功率曲线与发电量功率曲线反映了风力发电机组的功率特性,是衡量机组风能转换能力的指标之一,设备验收时功率曲线往往是被重点考核的对象。
其实,评价一种机型功率曲线的好坏不应单纯地只关注那些图表中所给定的“风速—功率”对应值,还应根据现场情况进行具体分析:风力机组的功率特性关键取决于叶片的气动特性和机组的控制策略。
众所周知,叶片的气动设计实际上是一个优化的结果,受其他条件限制,无法达到所有风速工况下效率均最好的目标。
而机组实际运行的外部条件可能与设计存在较大差异,因此需要采取技术措施以实现发电量最大。
一般来讲,失速型机组应根据风频分布调整合适的安装角,使风频最高的风速段出力最好。
而变桨距机组则应根据湍流等风速特性优化控制策略。
因此为了追求发电量优化的目标,实际的功率曲线与理论值会存在一个合理的偏差。
二、风力发电机组实际功率曲线与标准功率曲线的差异根据风力发电机组在一段时间内输出功率和同一时刻的风速之间的对应关系,即可得到风电机组的实际功率曲线,比较理想的状况是单独设立一套独立的测量系统,对机组的功率数据进行记录,同时测量环境气温、大气压力和风速等环境参数,根据记录的数据,绘制出风力发电机组的实际功率曲线,同时根据环境气温、大气压力对实际功率曲线进行修正,观察机组实际功率曲线与标准功率曲线的差异是否在正常的范围内。
在实际工作中,由于受现场条件和机组数量较大的限制,多利用机组控制系统的测量数据,通过中央监控系统进行记录,这种方式存在两个弊端:一是多数风力机的风速仪位于叶轮的后部,风速的测量准确度受到影响,其次机组控制系统没有环境气温、大气压力等环境参数的测量或测量值不准确,需要补充其它辅助装置进行数据的补充。
因此采用这种方式分析处理得到的机组实际功率曲线应允许有一定的误差。
本文所有数据源于一套为上海电气的SEG—1250风机监控系统,数据存储时间间隔为1分钟。
选定这种风力机的数据,是因为这种风力机在风力机类型上比较普遍,同属于三叶片、上风向、定桨距失速调节型风力机,额定功率相同,叶轮转速相同,均为33rpm,叶轮直径普遍。
在图1中,风力机的实际功率曲线均未经过环境温度和大气压力的修正,与标准功率曲线相比,除A2风力机外,其它机组功率曲线均较低,最大偏差可达25%(A4风力机19m/s风速点)。
A2风力机功率曲线基本达到标准功率曲线,且低风速段输出功率较高。
如果考虑由于空气密度的变化造成的影响,在标准条件下,其功率曲线高出标准功率曲线。
三、风力发电机组功率的影响因素(一)输出功率根据风能转换的原理,风力发电机组的功率输出主要取决于风速,但除此以外,气压、气温和气流扰动等因素也显著地影响其功率输出。
因为定桨距叶片的功率曲线是在空气的标准状态下测出的。
而桨叶的失速性能只与风速有关,只要达到了叶片气动外形所决定的失速调节风速,不论是否满足输出功率,桨叶的失速性能都要起作用,影响功率输出。
因此,当气温升高,空气密度就会降低,相应的功率输出就会减少,反之,功率输出就会增大。
(二)叶尖扰流器的影响由于风力机风轮巨大的转动惯量,如果风轮自身不具备有效的制动能力,在高风速下要求脱网停机是不可想象的。
早年的风力发电机组正是不能解决这一问题,使灾难性的飞车事故不断发生。
目前所有的定桨距风力发电机组均采用了叶尖扰流器的设计。
当风力机正常运行时,在液压系统的作用下,叶尖扰流器与桨叶主体部分精密地合为一体,组成完整的桨叶,当风力机需要脱网停机时、液压系统按控制指令将扰流器释放并使之旋转,形成阻尼板,由于叶尖部分处于距离轴最远点,整个叶片作为一个长的杠杆,使扰流器产生的气动阻力相当高,足以使风力机在几乎没有任何磨损的情况下迅速减速,这一过程即为桨叶空气动力刹车。
叶尖扰流器是风力发电机组的主要制动器、每次制动时都是它起主要作用。
(三)低温对零部件的影响客观上因为低温的应用范围毕竟有限,此类设备的经验和知识远没有常温和高温环境那样受到广泛的关注。
不同种类的零部件受低温的影响是不同的,对于金属机件应根据承受载荷的形式予以区别对待。
例如传动系统中的齿轮箱、主轴等,承受冲击载荷,这类零部件需重点防止低温时的脆性断裂,提高材料和机件的多次冲击抗力。
材料的化学成分、冶炼方法、晶粒尺寸、扎制方向、应变时效以及冶金缺陷等是影响冲击韧度和冷脆转变温度影响的主要因素,需要在设计时认真对待。
采取适当的热处理方法。
能显著提高材料多冲抗力,避免应力集中,表面冷作硬化和提高零件的表面加工质量等措施均能提高多冲载荷下的破断抗力。
当然避免在低温情况下出现较大的冲击载荷也是非常关键的,例如在风速较高时机组频繁投切启动,紧急制动等工况对机组的影响是非常不利的,应在设计上采取措施降低此类情况发生的概率。
(四)风力发电场的规模大小目前,我国正在进行全国电网互联,电网规模日益增大。
对于接入到大电网的风电场,其容量在电网总装机容量中占的比例很小,风电功率的注入对电网频率影响甚微,不是制约风电场规模的主要问题。
然而,风能资源丰富的地区人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了电网的潮流分布,对局部电网的节点电压产生较大的影响,成为制约风电场规模的重要问题。
风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点。
在现有的技术水平下风力发电还无法准确预报,因此风电基本上是不可调度的。
从电网的角度看,并网运行的风电场相当于一个具有随机性的扰动源,对电网的可靠运行造成一定的影响。
由此可见,确定一个给定电网最大能够承受的风电注入功率成为风电场规划设计阶段迫切需要解决的问题。
(五)桨叶的调节当气流流经上下翼面形状不同的叶片时,因突面的弯曲而使气流加速,压力较低;凹面较平缓面使气流速度缓慢,压力较高,因而产生升力。
桨叶的失速性能是指它在最大升力系数CTMAX、附近的性能。
当桨叶的安装角B不变,随着风速增加攻角i增大,升力系数cT线性增大;在接近CTMAX时,增加变缓;达到后CTMAX开始减小。
另一方面,阻力系数初期不断增大;在升力开始减小时,阻力系数继续增大,这是由于气流在叶片上的分离随攻角的增大而增大,分离区形成大的涡流,流动失去翼型效应,与未分离时相比,上下翼面压力差减小,致使阻力激增,升力减少,造成叶片失速,从面限制了功率的增加。
失速调节叶片的攻角沿轴向由根部向叶尖逐渐减少,因而根部叶面先进入失速,随风速增大,失速部分向叶尖处扩展,原先已失速的部分,失速程度加深,未失速的部分逐渐进入失速区。
失速部分使功率减少,未失速部分仍有功率增加。
从而使输入功率保持在额定功率附近。
(六)风资源多少的影响年平均风速:以测量记录的风速计算出的某一高度的年度平均风速。
风功率密度:气流垂直通过单位面积的风的能量,单位:W/m2年有效风速小时:在一年之中风速在3-20m/s之间出现的累积时间。
年有效风能功率密度:根据年有效风速范围内采集到的数据计算出单位垂直面积的风的能量。