核酸分子杂交的种类及应用

合集下载

核酸分子杂交与应用

核酸分子杂交与应用
加水至 20μl
(2)加入所需的限制酶,并在适当条件下温育
(3)加入适量T4DNA聚合酶。
(4)当切除了所需数量的核苷酸后,加入 1μl2mmol/L四种核苷酸(其中一种为标记核苷酸),37oC保温一小时。
*
标记步骤
*
加入除标记核苷酸外的其他三种脱氧核糖核苷酸溶液(也可以是多种标记核苷酸),20mmol/L溶液各1μl。
以下操作要在同位素工作室中有防护措施的情况下进行操作 加入100μCi(10μl)标记的核苷酸溶液。注:应贮存在-20oC冰箱中,使用前在室温下放置15~30分钟融化。要尽量减少冻融次数。
*
随机引物标记法特点
*
STEP3
STEP2
STEP1
除能进行双链DNA标记外,也可用于单链DNA或RNA探针的标记。当用RNA为模板是,操作方法同上,但必须采用反转录酶。
标记活性高,只需25ng样品DNA,可在3小时内使40%~60%以上甚至90%的标记dNTP掺入到探针DNA链上
操作方便
*
3’末端标记
探针的标记
*
随机引物法 标记原理:随机引物是含有各种可能排列的寡聚核苷酸片段的混合物,可以与任何核酸序列杂交,起到聚合酶促反应的引物作用。将待标记的探针模板与随机引物一起退火,合成标记探针。
*
标记步骤
*
*
标记步骤
*
取200ng双链DNA溶于1μl蒸馏水中,在蜡膜上与1μl随机引物充分混匀,吸入一毛细玻璃管中,用火封严两端。置沸水浴中30分钟并迅速置冰水浴中1分钟。将DNA转入上述离心管中
STEP4
STEP3
STEP2
STEP1
影响变性的因素:
影响变性的因素:
*

核酸分子杂交与应用

核酸分子杂交与应用
• 基因组DNA探针:有细菌、病毒、原虫、真菌、动物和人类细胞DNA探针,多为某一基 因的全部或部分序列,或某一非编码序列。
• cDNA探针:以mRNA为模板经过逆转录酶催化产生的互补于mRNA的DNA链。
2020年10月29日星期
5

探针的种类
• DNA探针优点: • 1、一般克隆在质粒载体中,可以无限繁殖; • 2、DNA探针不易降解 • 3、DNA的标记方法比较成熟。
牛血清白蛋白
2020年10月29日星期
12

标记步骤
• 3、加入除标记核苷酸外的其他三种脱氧核糖核苷酸溶液(也可以是多种标记核苷酸), 20mmol/L溶液各1μl。 以下操作要在同位素工作室中有防护措施的情况下进行操作
• 4、加入100μCi(10μl)标记的核苷酸溶液。注:应贮存在-20oC冰箱中,使用前在室 温下放置15~30分钟融化。要尽量减少冻融次数。
大肠杆菌DNA聚合酶I Klenow片段末 端标记法
T4DNA聚合酶标记法
2020年10月29日星期
23

大肠杆菌DNA聚合酶I Klenow片段末
端标记法:
标记反应步骤: (1)在反应管中依次加入下列试剂并混匀
DNA
1μg
10xKlenow片段缓冲液
2mmol/L3种dNTP(无dATP)
[α-32P]dATP
2020年10月29日星期
13

标记步骤
• 5、加入无菌蒸馏水,至终体积为46.5μl,混匀 • 6、加入0.5μl稀释的DNase I溶液,混匀 • 7、加入1μl(5U)DNA聚合酶I溶液,混匀 注:以上操作均在冰浴中进行 • 8、置14~16oC水浴中保温1~2小时 • 9、加入2μl 0.5mol/L EDTA终止反应 • 10、纯化标记的DNA探针

核酸分子杂交的几种类型 -回复

核酸分子杂交的几种类型 -回复

核酸分子杂交的几种类型-回复核酸分子杂交是一种用于研究DNA和RNA相互作用的常见实验技术。

该技术可以用于研究基因表达、蛋白质相互作用、突变分析等。

在核酸分子杂交中,两条核酸链通过互补配对形成杂交(或杂交化合物)。

下面将介绍几种常见的核酸分子杂交类型。

1. 片段杂交(Dot blot)片段杂交是一种最简单的核酸杂交技术。

在这种方法中,目标DNA片段(或RNA)以单链形式固定在固相载体上,如膜片或微孔板。

然后,配对探针标记有放射性同位素或荧光染料,与目标DNA一起进行杂交。

通过检测标记的探针,可以确定是否与目标DNA片段杂交。

2. 南方杂交(Southern blot)南方杂交是一种用于检测和定量目标DNA片段的杂交技术。

在这种方法中,DNA经电泳分离后,转移到膜片上。

然后,膜片上的DNA与互补的探针分子杂交,并通过标记的探针检测杂交的目标DNA。

3. 北方杂交(Northern blot)北方杂交是一种用于检测和定量RNA的杂交技术。

在这种方法中,RNA经电泳分离后,转移到膜片上。

然后,膜片上的RNA与互补的探针分子杂交,并通过标记的探针检测杂交的目标RNA。

4. 原位杂交(In situ hybridization)原位杂交是一种用于检测细胞和组织中RNA或DNA的特定序列的杂交技术。

在这种方法中,标记的探针与固定的细胞或组织中的目标核酸序列杂交。

然后,通过显微镜观察标记的探针和目标核酸的共定位,从而确定目标序列的存在。

5. 竞争性杂交(Competitive hybridization)竞争性杂交是一种用于研究不同核酸序列之间互相竞争结合的杂交技术。

在这种方法中,标记的探针与非标记的探针或样品中的DNA或RNA 竞争杂交。

通过比较标记的探针与不同浓度的非标记探针或样品杂交的强度,可以确定不同序列之间的亲和力或结合特性。

总之,核酸分子杂交是一种重要的实验技术,广泛应用于生物医学研究和临床诊断。

核酸杂交的常用方法及应用

核酸杂交的常用方法及应用

核酸杂交的常用方法及应用核酸杂交是一种基于互补配对的技术,主要用于研究和分析DNA或RNA的序列、结构和功能。

它是分子生物学和遗传学领域中重要的实验方法之一,具有广泛的应用。

以下将详细介绍核酸杂交的常用方法以及应用领域。

一、核酸杂交的常用方法1. Northern blotting:该技术用于检测和分析RNA的存在和表达水平。

首先,将RNA样本经电泳分离,并转移到固定在膜上的核酸上。

接下来,使用与待测序列互补的探针进行核酸杂交,通过探针与RNA的互补配对形成的杂交物质来检测目标RNA分子。

最后,将膜进行显影和成像,从而获得感兴趣的RNA片段的信息。

2. Southern blotting:该技术用于检测和分析DNA的存在和序列特性。

与Northern blotting相似,该方法也是将DNA样本经过电泳分离后转移到固定在膜上的核酸上。

然后,使用与目标DNA序列互补的探针进行核酸杂交,并通过探针与DNA的互补配对形成的杂交物质来检测目标DNA分子。

3. Fluorescence in situ hybridization (FISH):该技术是一种高分辨率的细胞遗传学方法,用于检测和定位特定DNA或RNA序列在细胞核中的位置。

这种方法使用标记了荧光染料的探针与待测核酸序列进行杂交,然后通过荧光显微镜观察荧光信号的分布情况,从而确定目标序列在细胞中的位置。

4. Hybridization chain reaction (HCR):该技术通过设计一组特定的序列探针,使其形成一个连锁反应,从而实现特定核酸序列的多重扩增。

这种方法可以用于检测特定的DNA或RNA序列,例如基因突变、病原体等,具有高灵敏度和高特异性。

5. DNA microarray:该技术基于DNA杂交原理,可以同时检测上千个DNA 序列。

首先,将多个探针序列固定在特定的载体上,与待测DNA样本进行核酸杂交。

然后通过检测与目标DNA杂交的标记物来确定样本中的目标DNA序列,从而分析样本中大量的DNA信息。

核酸的分子杂交技术及其应用

核酸的分子杂交技术及其应用

核酸的分子杂交技术及其应用1概述核酸的分子杂交(molecular hybridization)技术是目前生物化学和分子生物学研究中应用最广泛的技术之一,是定性或定量检测特异RNA或DNA序列片段的有力工具。

它是利用核酸分子的碱基互补原则而发展起来的。

在碱性环境中加热或加入变性剂等条件下,双链DNA之间的氢键被破坏(变性),双链解开成两条单链。

这时加入异源的DNA或RNA(单链)并在一定离子强度和温度下保温(复性),若异源DNA或RNA之间的某些区域有互补的碱基序列,则在复性时可形成杂交的核酸分子。

在进行分子杂交技术时,要用一种预先分离纯化的已知RNA或DNA序列片段去检测未知的核酸样品。

作为检测工具用的已知RNA或DNA序列片段称为杂交探针(probe)。

它常常用放射性同位素来标记。

虽然核酸分子杂交技术的应用仅有二十多年的历史,但它在核酸的结构和功能的研究中作出了重要贡献,在基因的表达调控和物种的亲缘关系研究中也发挥重要作用。

而且,随着核酸探针制备及标记技术的丰富和完善以及以不同材料为支持物的固相杂交技术的发展,使核酸分子杂交技术在分子生物学领域中的应用更加广泛。

这里我们将就分子杂交技术的几个主要过程及其应用进行介绍。

2核酸探针的制备核酸分子杂交的灵敏性主要依赖杂交探针的放射性比活度。

比活度高就可提高反应的灵敏性,减少待测样品的用量。

目前一般所用的是体外标记,这里介绍几种最常用的方法:2.1DNA的切口平移双链DNA分子的一条链有切口时,大肠杆菌DNA聚合酶Ⅰ可把核苷酸残基加到切口处的3’端,同时由于此酶具有5’→3’外切核酸酶活性,它还可从5’端除去核苷酸。

这样5’端核苷酸的去除与3’端核苷酸的加入同时进行,导致切口沿着DNA链移动,称切口平移(nicktranslation)。

常用于在双链DNA 上打开切口的酶为胰DNA酶Ⅰ。

由于高放射性比活度的核苷酸置换了原有核苷酸,就有可能制备比活度大于108计数/(分.μg)的32P标记的DNA探针。

核酸分子杂交

核酸分子杂交

RNA提取
RNA变性电泳 印迹转移 预杂交 杂交
RNase 具有活性高,不 易灭活 抑制RNase活 性
所有的试剂和器皿都 必须进去除RNase 处理!!
变性处理:甲醛、乙二醛
破坏RNA二级结构
洗膜
放射自显影或化学显色
基本步骤
1. RNA经变性电泳完毕后,可立即将RNA转 移至硝酸纤维素滤膜上。 2. 将该杂交膜夹于两张滤纸中间,用真空烤箱 于80℃干燥0.5-2小时。 3. 预杂交,时间为1-2小时。 4. 杂交 过夜 5. 洗膜 6. 用X光片进行放射自显影,附加增感屏于70℃曝光24-48小时。

Northern 杂交与Southern 杂交很相似。主 要区别是被检测对象为RNA,其电泳在变 性条件下进行,以去除RNA 中的二级结构, 保证RNA 完全按分子大小分离。

变性电泳主要有3 种:
甲醛变性电泳 乙二醛变性电泳
羟甲基汞变性电泳

电泳后的琼脂糖凝胶用与Southern 转移相 同的方法将RNA 转移到硝酸纤维素滤膜上, 然后与探针杂交。
3. 屏蔽防护:利用射线通过物质时,与物 质相互作用使其能量被物质吸收而逐渐 减弱的原理,可以设置一定的屏障物来 进行防护。常用的材料有水、砖、大理 石、混凝土、重金属铅等。
32P
有机玻璃版 铅衣
4. 利用衰变:可利用放射性物质存在自发 衰变,其活性随之减少的原理进行外照 射防护。如:半衰期小于15天的放射性 废物,允许放置10个半衰期后作一般废 物处理。
注意事项 1. DNase I的量 2. dNTP a-P 3. 温度4-16℃
Pol I DNase I
两条链都可 被标记
随机引物合成法

核酸分子杂交的种类及应用

核酸分子杂交的种类及应用

核酸分子杂交摘要:核酸分子杂交技术是基因工程中重要的研究手段,是目前生物化学、分子生物学、和细胞生物学研究中应用最广泛的技术之一。

也是现阶段定性、定量和定位检测DNA与RNA序列片段必须掌握的基本技术和方法。

本文主要介绍了核酸分子的原理,分类以及它的相关应用。

关键词:核酸分子;分类;应用;1.核酸杂交技术的原理核酸分子(DNA、RNA)是由许多单核苷酸分子通过3,5磷酸二酯键相互连接所形成的生物大分子。

DNA分子双链的形成,DNA的复制,以及RNA的转录等都遵循碱基互补配对原则。

DNA是由两条互补配对的单核苷酸链通过氢键连接的双链分子。

双链结构的核酸分子在加热、偏碱环境或受尿素、甲酰胺等氢键解离剂的作用,则形成单链分子,称为核酸“变性”。

两条单链核甘酸若有同源顺序,则在一定条件下,他们的碱基互补配对,从而形成双链分子,称为核酸“复性”或核酸“杂交”[1]。

核酸分子杂交是用核酸分子的变性,复性等理化性质而设计的一种常用技术。

通常利用一种顺序已知,并被放射性同位素标记的核酸片段看作为探针,与未知样品的核酸进行分子杂交,如果样品中的核酸与探针有碱基互补顺序就能形成杂交分子。

此时标有同位素或生物素的探针则固定在标本上,用放射性自显影法或免疫组化法可显示出探针[2]。

核酸分子杂交可分为液相杂交、固相杂交和原位杂交[3]。

2.固相分子杂交:将待测的靶核甘酸链预先固定在固体支持物(硝酸纤维素膜或尼龙膜)上,而标记的探针则游离在溶液中,进行杂交反应后,使杂交分子留在支持物上,然后再进行检测和计算。

固相分子杂交又可分为:Southern印迹杂交、Northern印迹杂交、Western印迹杂交、斑点杂交、菌落原位杂交等。

2.1 Southern印迹杂交1975年建立的一种DNA转移方法。

该法利用硝酸纤维素膜(或经特殊处理的滤纸或尼龙膜)具有吸附DNA的功能。

首先用酚提法从待检测组织中提取DNA,然后以限制性内切酶消化待测的DNA片段,接着进行琼脂糖凝胶电泳使DNA按分子量大小分离,电泳完毕后,将凝胶放入碱性溶液中使DNA变性,解离为两条单链。

核酸的分子杂交

核酸的分子杂交
Home
3 核酸探针的标记
为确定探针是否与相应基因组DNA杂交,有必要对探针加以标记,以便在结合部位获得可识别的信号。
3.1 标记的种类
同位素: 32P、35S、3H、125I等标记探针 非同位素: 生物素、地高辛配体、荧光素等作为标记物 两者比较:后者不及前者敏感,但后者保存时间较长,无同位素污染。
有互补特定核苷酸序列的单链DNA或RNA混在一起时,其相应同源区段将会退火形成双链结构。
Home
应 用:
检测特定生物有机体之间是否存在亲缘关系; 用来揭示核酸片段中某一特定基因的存在与否、拷贝数及表达丰度。
2 核酸探针的制备
2.1 探针(Probe)的概念: 一段带有检测标记的与目的基因或目的DNA特异互补的已知核苷酸序列。
202X
CIICK HERE TO ADD A TITLE
单击添加副标题
第五节 核酸的分子杂交 Nucleic Acid Hybridization
Content of Table
CONTENTS
前 言
添加标题
单击添加文本具体内容
01
Part
添加标题
单击添加文本具体内容
02
前 言
Home
核酸分子杂交 把亲源关系较近的,不同生物个体来源的变性DNA或RNA单链,经退火处理形成DNA-DNA或DNA-RNA这一过程叫分子杂交。
2.2 探针的制备方法
01
02
03
PCR扩增
DNA重组技术
化学合成
长度一般以50~300bp为宜。制备方法:
2.3 探针的分类 据来源及性质不同可分为: 基因组DNA探针 cDNA探针 RNA探针 寡核苷酸探针
2.4 合成寡核苷酸探针注意原则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核酸分子杂交
摘要:核酸分子杂交技术就是基因工程中重要的研究手段,就是目前生物化学、分子生物学、与细胞生物学研究中应用最广泛的技术之一。

也就是现阶段定性、定量与定位检测DNA与RNA序列片段必须掌握的基本技术与方法。

本文主要介绍了核酸分子的原理,分类以及它的相关应用。

关键词:核酸分子;分类;应用;
1、核酸杂交技术的原理
核酸分子(DNA、RNA)就是由许多单核苷酸分子通过3,5磷酸二酯键相互连接所形成的生物大分子。

DNA分子双链的形成,DNA的复制,以及RNA的转录等都遵循碱基互补配对原则。

DNA就是由两条互补配对的单核苷酸链通过氢键连接的双链分子。

双链结构的核酸分子在加热、偏碱环境或受尿素、甲酰胺等氢键解离剂的作用,则形成单链分子,称为核酸“变性”。

两条单链核甘酸若有同源顺序,则在一定条件下,她们的碱基互补配对,从而形成双链分子,称为核酸“复性”或核酸“杂交”[1]。

核酸分子杂交就是用核酸分子的变性,复性等理化性质而设计的一种常用技术。

通常利用一种顺序已知,并被放射性同位素标记的核酸片段瞧作为探针,与未知样品的核酸进行分子杂交,如果样品中的核酸与探针有碱基互补顺序就能形成杂交分子。

此时标有同位素或生物素的探针则固定在标本上,用放射性自显影法或免疫组化法可显示出探针[2]。

核酸分子杂交可分为液相杂交、固相杂交与原位杂交[3]。

2、固相分子杂交:
将待测的靶核甘酸链预先固定在固体支持物(硝酸纤维素膜或尼龙膜)上,而标记的探针则游离在溶液中,进行杂交反应后,使杂交分子留在支持物上,然后再进行检测与计算。

固相分子杂交又可分为:Southern印迹杂交、Northern印迹杂交、Western印迹杂交、斑点杂交、菌落原位杂交等。

2、1 Southern印迹杂交
1975年建立的一种DNA转移方法。

该法利用硝酸纤维素膜(或经特殊处理的滤纸或尼龙膜)具有吸附DNA的功能。

首先用酚提法从待检测组织中提取DNA,然后以限制性内切酶消化待测的DNA片段,接着进行琼脂糖凝胶电泳使DNA按分子量大小分离,电泳完毕后,将凝胶放入碱性溶液中使DNA变性,解离为两条单链。

再在凝胶上贴上硝酸纤维素膜,使凝胶上的单链DNA区带按原来的位置吸印到膜上。

然后直接在膜上进行核酸探针(已被同位素标记)与被测样品之间的杂交,再通过放射自显影对杂交结果进行检测[4]。

2、2 Northern印迹杂交
1976年Alwine建立了该方法。

这就是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。

其检测过程与Southern转移杂交基本相同,所不同的就是用DNA探针检测经凝胶电泳分开的RNA分子。

它主要用于研究基因的转录活性及表达[5]。

2、3 Western印迹杂交
Western印迹就是指将蛋白质样品经聚丙烯酰胺凝胶电泳分离,然后转移至到固相载体上,然后用抗体通过免疫学反应检测目的蛋白,分析基因的表达程度。

固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。

以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分[6]。

2、4斑点杂交
将待测核酸样品进行DNA或RNA变性处理后,直接点在硝酸纤维素滤膜上,经烘烤固定后,与同位素或生物素标记的探针进行杂交,杂交后放射性双链DNA 可使X光胶片感光,形成自显影斑点。

2、5菌落原位杂交
将培养基上长出的菌落通过影印方法转移到硝酸纤维素膜上,碱变性破坏细菌的细胞壁使其释放出DNA,并经变性处理使双链DNA解链,经烘烤固定后,用同位素标记的探针进行杂交,最后放射自显影。

如果底片上出现蝌蚪状黑点,即证明相应的菌落中具有与探针DNA同源的核酸片段。

3、液相分子杂交[5]
液相分子杂交就是将待测的核酸样品与同位素标记的DNA探针同时溶于杂交液中进行反应,然后分离杂交双链与未参加反应的标记探针,用仪器检测并计算分析杂交结果。

4、原位杂交
将标记探针与细胞或组织中的核酸按碱基配对原则进行特异性杂交,并应用组织化学或免疫组织化学方法在显微镜下进行细胞定位或基因表达的检测技术。

5、应用
5、1基因诊断、传染病病原体的检测
核酸分子杂交具有很高的灵敏性与特异性,因而该技术目前已用于多种遗传性疾病的基因诊断、恶性肿瘤的基因分析、传染病病原体的检测等领域中,其成果大大促进了现代医学的进步与发展。

例如,我们可以用DNA杂交技术来检测某人就是否感染了乙肝病毒(乙肝病毒的遗传物质就是DNA)。

方法就是拿一个用荧光或同位素标记的DNA分子探针(这个探针就就是乙肝病毒DNA分子),如果被检测的DNA分子与探针杂交了,或者说杂交的部位非常多,则说明被测者感染了乙肝病毒;如果被检测的DNA与探针没有杂交,或者说杂交的部位非常少,则说明被测者没有感染乙肝病毒。

5、2在生物合成代谢研究中的应用
用逆转录酶可以在体外以mRNA为模板合成DNA,此种DNA称互补DNA(cDNA)。

用cDNA作为探针,可以检测细胞中的mRNA。

它的敏感性比直接测定蛋白质要高1000倍。

以cDNA作为探针的原位杂交技术结合蛋白测定技术,可以了解单个细胞内mRNA的翻译水平,即蛋白质合成能力,从而可以了解组织器官的代谢与功能状态,以及器官组织内不同细胞群的功能差异,并能同时进行形态学观察。

参考文献
[1]、王平,核酸分子杂交技术及其应用[J]、井冈山医专学报、1996,3(2):15-17、
[2]、宋胜华、核酸分子杂交技术及其应用[J]、临床与实验病理学研究、1987,3(3):185-188、
[3]、尹与平,张世荃、简述核酸分子杂交技术[J]、生物学通报、1992,6:16-48、
[4]、易先平、核酸杂交技术及其在医学中的应用[J]、中国冶金工业医学杂志、1994,11(6):374-375
[5]、张玉研,核酸分子杂交技术简介[J]、细胞生物学杂志、1980,2(2):43-48、
[6]、黄凤珍、分子杂交技术的应用简述[J]、中学生物学,2009,25(9):11-13、。

相关文档
最新文档