动态几何压轴题压点分析及教学启示

动态几何压轴题压点分析及教学启示
动态几何压轴题压点分析及教学启示

动态几何压轴题“压点”分析及教学启示

石树伟(江苏省扬州市广陵区教育局教研室)1

摘 要:动态几何压轴题是近年来数学中考命题的一个热点,其中真正具有区分选拔功能的“压点”常常是有规律可循的.从数学思想维度分析,“压点”常有数形结合思想、分类思想、方程思想;从数学知识维度分析,“压点”常有相似三角形和函数.针对这些“压点”提出了一些教学建议.

关键词:动态几何压轴题;“压点”分析;数学思想维度;数学知识维度;教学启示 动态几何题是近几年来数学中考命题的一个热点.根据运动元素,动态几何题可以分为“点动型”、“线动型”、“平面图形运动型”,它们通常对在图形的运动变化过程中相伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究考察.这类问题常常集几何、代数知识于一体,数形结合,有较强的综合性,因此常常成为许多省市数学中考试卷的压轴题,肩负一定的区分选拔功能.

分析各地的数学中考试卷,动态几何压轴题虽然变化万端,但也是有规律可循的,特别是真正具有区分选拔功能的“压点”常常是“英雄所见略同”.下面通过几道试题,分别从数学思想和数学知识两个维度分析动态几何压轴题“压点”的规律,并提出相应的教学建议.

一、动态几何压轴题“压点”分析——数学思想维度

各地的中考试题都十分重视对数学思想方法的考查,特别是突出考查能力的试题,其解题过程都蕴含着重要的数学思想方法.作为肩负区分选拔功能的压轴题,数学思想更是在其解决过程中起着统领解题策略和思维的作用.

例1 (2009年江苏卷)如图1,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.

(1)请用含t 的代数式分别表示出点C 与点P 的坐标;

(2)以点C 为圆心、12

t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为

收稿日期:2013-04-08

作者简介:石树伟(1971- ),男,江苏宝应人,中学高级教师,主要从事中学数学教育教学和命题研究.

等腰三角形时,求t 的值.

1

.动态几何压轴题数学思想“压点”之一:数形结合思想

例题分析:例1与一般压轴题类似,遵循“入口宽,出口窄”的原则.第(1)题学生

不难得出答案C (5-t ,0),P (3-35t ,45

t ).第(2)题难度开始提升,许多学生感到无从下手,原因在于原试题只提供了图1(点C 在射线DE 的右侧),对于点C 继续运动时C ⊙与射线DE 的位置关系的形象,学生在头脑中难以想象出来,此时应大致画出点C 继续运动时

C ⊙与射线DE 几种不同位置关系时的典型图形,

特别是点C 运动到射线DE 的左侧且C ⊙与射线DE 有公共点时的图形(如图2),图1和图2是点C 运动过程中两个典型图形,由此学生对整个运动过程的了解逐步清晰,第(2)题解题思路的探求就有了抓手和思考的依据.

规律总结:动态几何压轴题一般只提供运动起始时或运动过程中某一时刻的图形,学生要解决问题,必须在数形结合思想的指引下,大致画出运动过程中各种状态下的典型图形(包括一些特殊、临界状态时的图形),结合图形探求解题思路,结合图形书写解题过程.

教学启示:平时教学中应注重数形结合思想的渗透和培养,加强根据题意画出图形能力的训练,培养学生用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,以静制动,善于用图形去“捕捉”、“定格”各种不同的运动状态(即画出图形),特别是抓住某些特殊、临界状态.

2.动态几何压轴题数学思想“压点”之二:分类思想

例题分析:例1第(2)题第①问中,因为点C 是运动的,所以一看到C ⊙与射线DE 有公共点就应立即想到与圆心C 的位置有关,需分情况考虑:(i )当点C 在射线DE 的右侧或在射线DE 上时,需满足10=2(2

CD t t ≤-≤半径);(ii )当点C 在射线DE 的左侧时,需满足1((22

CF t MC t MD ?≤???=>=?弦心距)半径),分别求出t 的范围,最后综合得出结论.例1第(2)题第②问中,一看到PAB △为等腰三角形,第一反应就应是这里面有多种情况,需逐一考

图2

虑:(i )PA PB =;(ii )AP AB =;(iii )BA BP =,分别求出对应的t 值,最后综合得出结论.

规律总结:在中考中,命题者经常利用分类讨论题来加大试卷的区分度.动态几何压轴题也经常通过分类思想的应用来考查学生数学思维的深刻性、严密性,学生考虑不周、不深往往是这类试题失分的一个重要原因,因此分类思想是动态几何压轴题在数学思想维度的一个重要“压点”.

动态几何压轴题中因为常有某些不确定的数量、不确定的图形形状或位置等不确定的条件,为保证其完整性、使之具有确定性,通常需要要分类讨论.常见的需要分类讨论的情况有:

(1)已知图形运动,需按运动的位置进行分类讨论,如本文例1第(2)题第①问、本文例2第(2)(3)题;

(2)已知等腰三角形(未注明两腰),需按两腰进行分类讨论,如本文例1第(2)题第②问;

(3)已知两个三角形相似(未注明字母对应关系),需按不同的对应关系进行分类讨论,如本文例2第(3)题;

(4)已知直角三角形(未注明直角顶点),需按直角顶点进行分类讨论;

(5)已知特殊四边形(未注明顶点字母顺序),需按顶点字母顺序进行分类讨论. 教学启示:分类思想是我们数学中一种非常重要、也是很常见的思想,某些新知的形成过程中、某些问题的解决过程中常常蕴含着分类思想.平时新授和复习教学中应注重分类思想的渗透,教师讲解前先给学生分类讨论的机会,教师归纳总结后教给学生解答分类讨论问题的基本方法和步骤:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所做分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论.

3.动态几何压轴题数学思想“压点”之三:方程思想

例题分析:例1第(2)题第①问中,当点C 在射线DE 的左侧时,C ⊙与射线DE 有公共点需满足1((22

CF t MC t MD ?≤???=>=?弦心距)半径),求t 的范围需先求出弦心距CF 这个中间量(用含t 的代数式表示),直接求或逐步推导都很难.但我们发现有△CDF ∽△EDO ,则利用比例式CF CD EO ED

=可得含有中间量CF 的方程CF 4 = 3―(5―t )5,解得CF =4t ―85,从而求得t 的范围.例1第(2)题第②问已知PAB △为等腰三角形求t 的值,分类讨论的“大政方针”已定,下面我们可以将PA 、PB 、AB 分别用含t 的代数式表示出来,然后分别根据

PA PB

=、BA BP

=列出方程求出对应的t值,最后综合得出结论.=、AP AB

规律总结:动态几何压轴题之所以成为压轴题,就是因为其综合性强,不仅仅是几何内部的综合,还牵涉到代数的知识和思想方法.几何问题中最常用到的代数的思想方法就是方程思想,用几何方法直接求或逐步推导某些几何量(或中间量)常因缺少条件而举步维艰,换个思路用方程去求某些几何量(或中间量)简便、快捷,常常起到意想不到的效果.动态几何压轴题中常常可以用来布列方程的情况有:

(1)有直角三角形,通过勾股定理布列方程;

(2)有等腰三角形、特殊四边形,通过其中的相等线段布列方程,如本文例1第(2)题第②问;

(3)有相似三角形,通过比例式布列方程,如本文例1第(2)题第①问、本文例2第(2)(3)题;

(4)有直角三角形边角条件,通过边角关系(即三角函数)布列方程;

(5)有面积关系,通过面积关系布列方程,如本文例2第(2)题.

教学启示:动态几何压轴题中许多几何量或中间量的计算要通过列方程来解决.在平时教学中应注重方程思想的渗透,给学生建立起这样一个观念:欲求某些几何量,我们可以先设未知数,将其当作已知条件,把题目中的所有条件集中在一个图形中,通过勾股定理、相似三角形、等积变形等来建立方程求解,平时应加强这方面的训练.

二、动态几何压轴题“压点”分析——数学知识维度

新课程下的数学中考试题都非常注重对初中数学核心内容和主干知识的考查,作为对一线教学起重要导向作用的压轴题更是不能例外.但因为肩负区分选拔功能,因此压轴题所考查的知识点特别是作为“压点”的知识点一般在难度和综合性方面均要求较高.例2(2012年江苏模拟卷)如图3,在平面直角坐标系中,点C的坐标为(0,4),A (t,0)(t>0)是x轴上一动点,M是线段AC的中点.把线段AM绕点A按顺时针方向旋转90°,得到线段AB,过点B作x轴的垂线,过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E

(1)若t=3,则点B的坐标为____________;

(2)设△BCD的面积为S,求S与t的函数关系式,并求当t为何值时,S的值等于6;(3)是否存在t,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时t的值;若不存在,请说明理由.

1.动态几何压轴题数

学知识“压点”之一:相似三角形

例题分析:例2第(1)题为第(2)题作铺垫,两小题均需求出AE 、BE 的长(或是用含t 的代数式表示的中间量).因为90CAB COA AEB ∠=∠=∠=,易得△BEA ∽△AOC ,从而根据相似三角形对应边成比例易得AE 、BE 的长.例2第(3)题已知以B 、C 、D 为顶点的三角形与△AOC 相似,因为90COA BDC ∠=∠=,所以两三角形相似的对应方式仅剩两种:(i )△CDB ∽△AOC ;(ii )△BDC ∽△AOC ,从而根据相似三角形对应边成比例布列方程易得t 值.当然,例2第(2)题和第(3)题都应分别在图3、图4两种情况下予以讨论解决.

规律总结:相似三角形是初中几何的核心内容和主干知识,在直线型几何中无论是难度还是综合性,它都当之无愧地占据着“制高点”的地位.因此,相似三角形是肩负区分选拔功能的压轴题常常考查的知识点.

在动态几何压轴题复杂变化的图形中要能熟练应用相似三角形知识,需善于分解、抽取常见的三角形相似的基本图形.如图(5)—(10)所示是常见的三角形相似的基本图形,其中图5、图6均来自于本文例1;图8来自于本文例2;在图8、图9、图10中,当∠CAB=∠COA=∠AEB 时,△BEA ∽△AOC 均成立,理由是一脉相承的.

教学启示:相似三角形由于对应边成比例构成比例等式,因而成为初中几何中有关线段长度计算的重要途径和工具,主要知识内容包括:三角形相似的识别、利用比例式建立方程

求线段或问题中的中间量,其中三角形相似的识别是基础.在平时教学中应对学生加强复杂图形分解、基本图形识别的训练.

2.动态几何压轴题数学知识“压点”之二:函数

例题分析:例2第(2)题中求S与t的函数关系式,即用含t的代数式去表示S,因此可以将t看成已知量去求S.由△BEA∽△AOC根据相似三角形对应边成比例易得AE=2,

BE=1

2t,进而可得CD=OE=t+2,当求BD时会出现究竟BE=

1

2t ≤DE=4还是BE=

1

2t>

DE=4的问题,分类讨论就自然水到渠成,这里应抓住点B与点D重合这一特殊临界状态(易

得此时t=8)进行分类讨论:当0<t≤8时,如图3,BD=4-1

2t,S=

1

2CD·BD=

1

2(t+2)(4

-1

2t);当t>8时,如图4,BD=

1

2t-4,S=

1

2CD·BD=

1

2(t+2)(

1

2t-4).

规律总结:函数是初中数学的核心内容和主干知识,无论是难度还是综合性,它都当之

无愧地占据着初中代数的“制高点”,而且在动态几何题中一个元素的运动必然引起图形中其它几何量的变化,因此在图形的运动变化过程中常常伴随着函数关系,函数是动态几何压轴题常常考查的知识点.

求两个变量之间的函数关系式,即用含自变量的代数式去表示因变量,因此可以将自变量看成已知量去求因变量.动态几何题有时需根据图形运动的位置进行分类讨论,进而得到分段函数,注意应写出自变量的取值范围.

教学启示:初中代数函数部分的内容主要可归为以下三方面:函数关系的表示、函数的性质、函数的应用及函数思想的形成,其中函数关系的表示是基础.在平时教学中教师应多引导学生用式来表示中间量,强化公式变形的训练,特别应加强利用相似三角形来求出中间量,从而建立函数关系式的相关习题的训练.

结束语

动态几何压轴题变化万端,所考查的数学思想和知识当然不仅仅是以上所述.以上所述主要是对近几年来出现的动态几何压轴题中肩负区分选拔功能、我们称之为“压点”的重要数学思想和知识进行了简单的分析和归纳整理.不管分析是否有所偏颇,解动态几何压轴题都应以数学思想为纲,以数学知识为目,纲举目张.

注:本文发表于《中国数学教育》2013年第9期

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

初中数学动态几何问题

[导读] 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线 摘要:本文结合笔者的教学实践对初中数学教学中的动态几何问题进行了探讨。 关键词:二次函数;动点;动线;动态 作者简介:郭兴淑,任教于云南腾冲一中。 点动、线动、形动构成的问题称之为动态几何问题。它主要以几何图形为载体,运动变化为主线,函数为背景,集多个知识点为一体,集多种解题思想于一题。这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.本类问题主要有动点、动线、动面三个方面的问题。其中动点问题有单动点和双动点两种类型,无论是动点、动线、单动点还是双动点,我们都要注意到如何在动中求静,在静中求解,找到相应的关系式,把想知道的量用常量或含自变量的关系式表示出来。下面就以二次函数为背景的动态问题和单纯几何图形变化的动态问题采撷几例加以分类浅析,供读者参考。 动态问题在中考中占有相当大的比重,主要由综合性问题构成,就运动而言,可以分为三类:动点、动线、动形;就题型而言,包括计算题、证明题和应用题等。它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性。一般的,解题设计要因题定法。无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等。 动态问题一直是近几年数学中考的一个热点,随着编者的不断刨新,动态问题又有升温,比如双动问题就是中考中的最新风景区,他可以培养同学们在运动变化中发展空间想象能力.这类问题只要我们掌握“动中有静,静观其变,动静结合”的基本解题策略,我们就能以不变碰多变.以下列举近几年数学中考的两类双动问题供读者参考交流. 随着新课程改革的进行,全国各地的中考试卷异彩纷呈,尤其是解答题中的动态问题,集数与代数、空间与图形两大内容于一体,题型新颖,阅读量大,考查面广.为体现中考试

(完整)初三数学几何的动点问题专题练习及答案

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发,同时到达A点,运动停止.点 Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求出S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标. 3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k) 是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出 自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC 所夹锐角的正切值. A Q C D B P x A O Q P B y

中考压轴题系列动态几何之面动形成的函数关系问题完整版

中考压轴题系列动态几何之面动形成的函数关 系问题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《中考压轴题全揭秘》第二辑原创模拟预测题 专题26:动态几何之面动形成的函数关系问题数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。 动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。本专题原创编写面动形成的函数关系问题模拟题。 面动问题就是在一些基本几何图形上,设计一个动面(包括平移和旋转),或由点动、线动形成面动,并对面在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究 在中考压轴题中,面动形成的函数关系问题的重点和难点在于应用数形结合的思想准确地进行分类。 原创模拟预测题1.如图,点G、E、A、B在一条直线上,等腰直角△EFG从如图所示是位置出发,沿直线AB以1单位/秒向右匀速运动,当点G与B重合时停止运动。已知AD=1,AB=2,设△EFG与矩形ABCD重合部分的面积为S平方单位,运动时间为t秒,则S与t的函数关系 是。 【答案】 () () () 2 2 1 t t0t1 2 1 S1

初中数学几何图形综合题(供参考)

初中数学几何图形综合题 必胜中学2018-01-30 15:15:15 题型专项几何图形综合题 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC;

初中数学动态几何问题

MC NC EC CD (这个比例关系就是将静态与动态联系起来的关键) 中考数学专题 动态几何问题 第一部分真题精讲 【例1】如图,在梯形 ABCD 中,AD II BC , AD 3 , DC 5 , BC 10,梯形的高为4 ?动 点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点 C 运动;动点N 同时从C 点 出发沿线段CD 以每秒1个单位长度的速度向终点 D 运动?设运动的时间为t (秒)? (1 )当MN I AB 时,求t 的值; (2)试探究:t 为何值时,△ MNC 为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同 学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析 动态条件和静态条件之间的关系求解。 对于大多数题目来说, 都有一个由动转静的瞬间, 就 本题而言,M , N 是在动,意味着 BM,MC 以及DN,NC 都是变化的。但是我们发现,和 这些动态的条件密切相关的条件 DC,BC 长度都是给定的,而且动态条件之间也是有关系的。 所以当题中设定 MN//AB 时,就变成了一个静止问题。 由此,从这些条件出发,列出方程, 自然得出结果。 【解析】 解:(1 )由题意知,当 M 、N 运动到t 秒时,如图①,过 D 作DE II AB 交BC 于E 点,则 四边形 ABED 是平行四边形. ??? AB II DE , AB II MN ? ??? DE II MN ? (根据第一讲我们说梯形内辅助线的常用做法,成功将 MN 放在三角形 内,将动态问题转化成平行时候的静态问题)

最新初中数学动态几何探究题汇总大全

最新初中数学动态几何探究题汇总大全 【题型特征】以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角 函数等知识的综合运用. 【解题策略】解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解 决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、 覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含 的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综 合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题. 类型1 操作探究题 1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D 作DF⊥AC于点F. (1)如图1,若点F与点A重合,求证:AC=BC; (2)若∠DAF=∠DBA. ①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由; ②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.

初中数学动态几何问题

中考数学专题 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). C M B (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥.(根据第一讲我们说梯形辅助线的常用做法,成功将MN 放在三角形,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =.(这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017 t =. 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC

中考数学压轴题动态几何题型精选解析

2013中考数学压轴题动态几何题型精选解析(三) 例题如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为,点E的坐标为. (2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y 轴上时,正方形和抛物线均停止运动. ①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围. ②运动停止时,求抛物线的顶点坐标. 思路分析: (1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标; (2)利用待定系数法求出抛物线的解析式; (3)本问非常复杂,须小心思考与计算: ①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图(3)a;当<t≤1时,对应图(3)b;当1<t≤时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考; ②当运动停止时,点E到达y轴,点E(﹣3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标. 解:(1)由题意可知:OB=2,OC=1. 如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G. 易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(﹣1,3); 同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(﹣3,2). ∴D(﹣1,3)、E(﹣3,2). (2)抛物线经过(0,2)、(﹣1,3)、(﹣3,2), 则 解得

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

八年级数学动态几何综合探究题训练大全

八年级数学动态几何综合探究题训练大全 1.如图1,在正方形ABCD 中,点E ,F 分别是边BC ,AB 上的点,且CE=BF .连接DE ,过点E 作EG ⊥DE ,使EG=DE ,连接FG ,FC . (1)请判断:FG 与CE 的数量关系是________,位置关系是________; (2)如图2,若点E ,F 分别是边CB ,BA 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明; (3)如图3,若点E ,F 分别是边BC ,AB 延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断. 2.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交 ∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论. A B C E F M N O (第19题图) B C

3.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α. (1)如图①,若α=90°,求AA′的长; (2)如图②,若α=120°,求点O′的坐标; (3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时, 求点P′的坐标(直接写出结果即可) 4.正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE ⊥MN于点E,过点B作BF⊥MN于点F. (1)如图1,当O、B两点均在直线MN上方时,求证:AF+BF=2OE; (2)当正方形ABCD绕点A顺时针旋转至图2时.线段AF,BF与OE具有什么数量关系?并说明理由. (3)当运动到图3的位置时,线段AF、BF、OE之间又有怎样的数量关系?请直接写出你 的猜想.

初中数学几何的动点问题专题练习-附答案版

动点问题专题训练 1、如图,已知A B C △中,10A B A C ==厘米,8B C =厘米,点D 为A B 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,B P D △与 CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使B P D △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿A B C △三边运动,求经过多长时间点P 与点Q 第一次在A B C △的哪条边上相遇? 2、直线364 y x =- +与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发, 同时到达A 点,运动停止.点Q 沿线段O A 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485 S = 时,求出点P 的坐标,并直接写出以点 O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是 正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

专题二:动态几何型压轴题(中考压轴解析)

C 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且 4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法] 1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. 解:(1) 证明CDF ?∽EBD ?∴BE CD BD CF = ,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法 x CF 32 = , 相切时分外切和内切两种情况考虑: 外切, x x 32 1010+ -=,24=x ; 内切, x x 32 1010- -=,17210±=x .100<

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

热点专题8 动态几何问题(解析版)

热点专题8动点几何问题 考向1图形的运动与最值 1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.

【解析】如图, 过点P作PE⊙BD交AB的延长线于E, ⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB, ⊙, ⊙AB=4, ⊙AE=AB+BE=4+BE, ⊙, ⊙BE最大时,最大, ⊙四边形ABCD是矩形, ⊙BC=AD=3,CD=AB=4, 过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线, ⊙⊙GME=90°, 在Rt⊙BCD中,BD==5, ⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC, ⊙⊙BHC⊙⊙BCD,

⊙, ⊙, ⊙BH=,CH=, ⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA, ⊙⊙BHG⊙⊙BAD, ⊙=, ⊙, ⊙HG=,BG=, 在Rt⊙GME中,GM=EG?sin⊙AEP=EG×=EG, 而BE=GE﹣BG=GE﹣, ⊙GE最大时,BE最大, ⊙GM最大时,BE最大, ⊙GM=HG+HM=+HM, 即:HM最大时,BE最大, 延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=, 过点P'作P'F⊙BD交AB的延长线于F, ⊙BE最大时,点E落在点F处,

即:BE 最大=BF , 在Rt⊙GP 'F 中,FG ====, ⊙BF =FG ﹣BG =8, ⊙ 最大值为1+=3, 故答案为:3. 2. (2019 江苏省无锡市)如图,在ABC ?中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ?面积的最大值为 . 【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .

中考压轴题动态几何之其他问题

中考压轴题动态几何之其他问题 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何之其他问题(平面几何)是除前述动态几何问题以外的平面几何问题,本专题原创编写动态几何之其他问题(平面几何)模拟题. 在中考压轴题中,其他问题(平面几何)的难点在于准确应用适当的定理和方法进行探究. 原创模拟预测题1.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发.按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是() A.B.C.D. 【答案】D. 考点:动点问题的函数图象;压轴题;动点型;分段函数. 原创模拟预测题2.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()

A.B.C.D. 【答案】B. 考点:动点问题的函数图象;分段函数. 原创模拟预测题3.如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()学科网 A.B.C.D. 【答案】C. 考点:动点问题的函数图象. 原创模拟预测题4.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

动态几何问题 -

动态几何问题 动态几何形成的最值问题是动态几何中的基本类型,包括单动点形成的最值问题,双(多)动点形成的最值问题,线动形成的最值问题,面动形成的最值问题.本专题原创编写单动点形成的最值问题模拟题. 在中考压轴题中,单动点形成的最值问题的重点和难点在于应用数形结合的思想准确地进行分类和选择正确的解题方法. 原创模拟预测题1.如图,已知直线3 34y x = -与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB .则△PAB 面积的最大值是( ) A .8 B .12 C .21 2 D .172 【答案】C . 【解析】 试题分析:∵直线334y x = -与x 轴、y 轴分别交于A 、B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,﹣3),34120x y --=,即OA=4,OB=3,由勾股定理得:AB=5,∴ 点C (0,1)到直线34120x y --=223041234?-?-+16 5,∴圆C 上点到直线 334y x =-的最大距离是1615+=215,∴△PAB 面积的最大值是121525??=212,故选C . 考点:圆的综合题;最值问题;动点型. 原创模拟预测题2.菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB=60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP+BP 最短时,点P 的坐标为 .

【答案】(233-,23-). 【解析】 考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题;动点型;压轴题;综合题. 原创模拟预测题3.如图,已知抛物线 2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B . (1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式; (2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.

动态几何型压轴题

C 动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题 (一)点动问题. 1.(09年徐汇区)如图,ABC ?中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD , 以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长; (2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点] 本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系 (相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法] 1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解] 解:(1) 证明CDF ?∽EBD ?∴ BE CD BD CF = ,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法 x CF 32 = , 相切时分外切和内切两种情况考虑: 外切, x x 32 1010+ -=,24=x ;

相关文档
最新文档