人教A版高中数学选修2-1复习课件:3.2.3(共40张PPT)

合集下载

人教A版高中数学选修2-1课件本章归纳整合(三)(25张PPT)

人教A版高中数学选修2-1课件本章归纳整合(三)(25张PPT)

设 n=(x,y,z)是平面 B1EF 的一个法向量,则
nn··EE→→BF1==00,⇒-2y+2x4+z=20y,=0,
令 x=1,得 n=(1,1,- 42).
则|D→1B1·n|=4 2, ∴d=|D→1B|n1·| n|=161717.
∴点 D1 到平面 B1EF 的距离为161717.
又由nn··DD→→11AF1==00,⇒12xy2=2-0z,2=0.
令 z2=1,得 n=(0,2,1).∵m·n=(0,1,-2)·(0,2,1) =0,∴m⊥n,故平面 AED⊥平面 A1FD1.
专题三 空间向量与空间角
利用空间向量确定空间中的线线角、线面角、二面 角,避免了利用传统方法求角时先进行角的确定,然后求 角的弊端,只需要准确求解直线的方向向量和平面的法向 量,代入公式求角即可,大大体现了向量法的简捷之处.
∴当 F 为 CD 中点时,有 D1E⊥平面 AB1F.
【例4】 正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的 中点,求证:平面AED⊥平面A1FD1. 证明 如图,建立空间直角坐标系 D-
xyz. 设正方体棱长为 1,
则 E(1,1,12)、D1(0,0,1)、 F(0,12,0)、A(1,0,0).
D(0,2,0),∴P→C=(2,2,-2),P→D=
(0,2,-2).
设 M(x1,y1,z1),∵P→M=λP→D,
∴(x1,y1,z1-2)=λ(0,2,-2), ∴x1=0,y1=2λ,z1=-2λ+2, ∴M(0,2λ,2-2λ).
∵PC⊥平面 AMN,∴P→C⊥A→M, ∴P→C·A→M=0,
三、是对利用向量处理平行和垂直问题的考查,主要解 决立体几何中有关垂直和平行判断的一些命题.对于垂直,

高中数学 3.2.3用空间向量求空间角课件 新人教A版选修

高中数学 3.2.3用空间向量求空间角课件 新人教A版选修

uuur uuuur x uAuFur1 • uBuDuur1
1 1 4
30
| AF1 || BD1 |
5 3 10
42
30
所以 BD与1 A所F1成角的余弦值为 10
[悟一法] 利用向量求异面直线所成的角的步骤为: (1)确定空间两条直线的方向向量; (2)求两个向量夹角的余弦值; (3)确定线线角与向量夹角的关系;当向量夹角为锐角时, 即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向 量夹角的补角.
z
(1)求证: 直线B1O 面MAC;
(2)求二面角
uuur
Bu1uur
MA
uuuur
C
的余弦值.
D1
①证明:以 DA、DC、DD1为正交基底, A1 建立空间直角坐标系如图。则可得
M
uuur
uuuur
所以MA (2,0,1),MC (0,2,1),
uuur B1O (1,1, 2)
D O
A(2,0,0),C(0,2,0),M (0,0,1), A
xB
3
AD与平面ANM所成角的正弦值是3 34 34
Dy
C
[悟一法] 利用向量法求直线与平面所成角的步骤为: (1)确定直线的方向向量和平面的法向量; (2)求两个向量夹角的余弦值; (3)确定线面角与向量夹角的关系:向量夹角为锐角 时,线面角与这个夹角互余;向量夹角为钝角时,线面角 等于这个夹角减去90°.
①向量法
D1
C1 ② 传统法
A1
B1
O
D A
C B
练习:在长方体 ABCD A1B1C1D1中, AB 6, AD 8,
AA1 6, M为B1C1上的一点,且B1M 2, 点N在线段A1D上,

2020—2021学年人教A版高中数学选修2-1复习课件:(共41张PPT)

2020—2021学年人教A版高中数学选修2-1复习课件:(共41张PPT)

探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
反思感悟 利用空间向量证明面面平行的方法 (1)转化为线面平行、线线平行,然后借助向量共线进行证明; (2)通过证明两个平面的法向量平行证明.
探究一
探究二
探究三 思维辨析
变式训练3在长方体ABCD-A1B1C1D1中,DA=2,DC=3,DD1=4 ,M,N,E,F分别为棱A1D1,A1B1,D1C1,B1C1的中点.
如图①.
12
(2)直线的方向向量
图②
空间中任意一条直线l的位置可以由l上一个定点A以及一个定方
向确定,如图②,点A是直线l上一点,向量a表示直线l的方向(方向向
量),在直线l上取 =a,那么对于直线l上任意一点P,一定存在实数 t,使得
12
(3)平面的向量形式
图③ 空间中平面α的位置可以由α内两条相交直线来确定.如图③,设
12345
2.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则直线AB( ) A.与坐标平面xOy平行 B.与坐标平面yOz平行 C.与坐标平面xOz平行 D.与坐标平面yOz相交 解析:因为A(9,-3,4),B(9,2,1),所以 =(0,5,-3),而坐标平面yOz的 法向量为(1,0,0),显然(0,5,-3)·(1,0,0)=0,故直线AB与坐标平面yOz平 行.
探究一
探究二
探究三 思维辨析
利用向量方法证明线面平行
【例2】 如图,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1 的中点.求证:MN∥平面A1BD.
探究一
探究二
探究三 思维辨析
探究一
探究二

2020—2021学年人教A版高中数学选修2-1复习课件:(共40张PPT)

2020—2021学年人教A版高中数学选修2-1复习课件:(共40张PPT)

向量分别为(0,-1,3),(2,2,4),则这个二面角的余弦值为
.
易错分析将向量夹角的余弦值等同于二面角的余弦值.
探究一
探究二
探究三 思维辨析
纠错心得在一个二面角的两个面内和二面角的棱都垂直的两个 向量,其方向是不确定的,因此其夹角可能等于该二面角的大小,也 可能等于该二面角的补角.
探究一
探究二
(2)思路二:利用平面的法向量,将直线与平面所成的角转化为其 方向向量与平面法向量所成的锐角的余角进行求解.
以上两种思路中,思路一需要用到线面角的定义,在解题中并不 实用,而思路二则不需要找出要求的角,只需利用法向量求解即可, 因此一般多采用思路二.
探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
探究一
探究二
探究三 思维辨析
反思感悟 1.利用空间向量求两异面直线所成角的步骤. (1)建立适当的空间直角坐标系. (2)求出两条异面直线的方向向量的坐标. (3)利用向量的夹角公式求出两直线方向向量的夹角. (4)结合异面直线所成角的范围得到两异面直线所成角. 2.求两条异面直线所成的角的两个关注点. (1)余弦值非负:两条异面直线所成角的余弦值一定为非负值,而 对应的方向向量的夹角可能为钝角.
探究一
探究二
探究三 思维辨析
利用向量方法求两异面直线所成角
【例1】 如图所示,在三棱柱ABC-A1B1C1中,AA1⊥底面 ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,试求 直线EF和BC1所成的角.
思路分析建立空间直角坐标系,求出直线EF和BC1的方向向量的 坐标,求它们的夹角即得直线EF和BC1所成的角.

人教版高中数学选修2-1(A版)课件:第三章 阶段复习课 (共149张PPT)

人教版高中数学选修2-1(A版)课件:第三章 阶段复习课 (共149张PPT)
父。 只要还有明天,今天就永远是起跑线。 一个人如果不能从内心去原谅别人,那他就永远不会心安理得。 愚者用肉体监视心灵,智者用心灵监视肉体。 不要拿我跟任何人比,我不是谁的影子,更不是谁的替代品,我不知道年少轻狂,我只懂得胜者为。 不如意的时候不要尽往悲伤里钻,想想有笑声的日子吧! 所有欺骗中,自欺是最为严重的。 尽管社会是这样的现实和残酷,但我们还是必须往下走。 不会生气的人是愚者,不生气的人乃真正的智者。 付出了不一定有回报,但不付出永远没有回报。 成功永远属于那些爱拼搏的人。 成功永远属于一直在跑的人。 现实的压力压的我们喘不过气也压的我们走向成功。 不管失败多少次,都要面对生活,充满希望。 好习惯的养成,在于不受坏习惯的诱惑。 就算你的朋友再多,人脉再广,其实真正对你好的人,你一辈子也遇不到几个。 所有的胜利,与征服自己的胜利比起来,都是微不足道。 人必须有自信,这是成功的秘密。 早晨给自己一个微笑,种下一天旳阳光。 任何人都可以变得狠毒,只要你尝试过嫉妒。

人教A版高中数学选修21复习课件:3.2.3(共40张PPT)

人教A版高中数学选修21复习课件:3.2.3(共40张PPT)
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/102021/9/102021/9/102021/9/109/10/2021
•14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月10日星期五2021/9/102021/9/102021/9/10
B(1,1,0),A1(1,0,2),A(1,0,0),D1(0,0,2),1 =(0,1,-2),1 =(-1,0,2),co
1 ·1
-4
4
=
=- ,故异面直线 A1B 与 AD1 所成
5× 5 5
|1 ||1 |
4
4
角的余弦值为 . 答案:5
5
s<1 , 1 >=
探究一
探究二
探究三
思维辨析
利用向量方法求直线与平面所成角
【例2】 正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为 2a,求
AC1与侧面ABB1A1所成的角.
思路分析利用正三棱柱的性质,建立适当的空间直角坐标系,写
出有关点的坐标.求角时有两种思路:一种是由定义找出线面角;另
一种是利用平面ABB1A1的法向量n求解.
于是
1 ·
cos<1 , >=
|1 |||
=
1
2
2
× 2
2
,C1(0,1,1),
=
1
,
2
所以直线 EF 和 BC1 所成角的大小为 60°.
探究一
探究二
探究三
思维辨析
反思感悟 1.利用空间向量求两异面直线所成角的步骤.

人教版高中数学选修2-1(A版)课件:第三章 阶段复习课 (共149张PPT)

1、只要有坚强的意志力,就自然而然地会有能耐、机灵和知识。2、你们应该培养对自己,对自己的力量的信心,百这种信心是靠克服障碍,培养意志和锻炼意志而获得的。 3、坚强的信念能赢得强者的心,并使他们变得更坚强。4、天行健,君子以自强不息。5、有百折不挠的信念的所支持的人的意志,比那些似乎是无敌的物质力量有更强大 的威力。6、永远没有人力可以击退一个坚决强毅的希望。7、意大利有一句谚语:对一个歌手的要求,首先是嗓子、嗓子和嗓子……我现在按照这一公式拙劣地摹仿为:对 一个要成为不负于高尔基所声称的那种“人”的要求,首先是意志、意志和意志。8、执着追求并从中得到最大快乐的人,才是成功者。9、三军可夺帅也,匹夫不可夺志也。 10、发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志,并把研究继续下去。11、我的本质不是我的意志的结果, 相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。12、公共的利益,人类的福利,可以使可憎的工作变为可 贵,只有开明人士才能知道克服困难所需要的热忱。13、立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。14、意志的出现不是对愿 望的否定,而是把愿望合并和提升到一个更高的意识水平上。15、无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。16、即使 遇到了不幸的灾难,已经开始了的事情决不放弃。17、最可怕的敌人,就是没有坚强的信念。18、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下 去。19、意志若是屈从,不论程度如何,它都帮助了暴力。20、有了坚定的意志,就等于给双脚添了一对翅膀。21、意志坚强,就会战胜恶运。22、只有刚强的人,才有神 圣的意志,凡是战斗的人,才能取得胜利。23、卓越的人的一大优点是:在不利和艰难的遭遇里百折不挠。24、疼痛的强度,同自然赋于人类的意志和刚度成正比。25、能 够岿然不动,坚持正见,度过难关的人是不多的。26、钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什么也不怕。我们的一代也是这样的在斗争中和可怕的考验中 锻炼出来的,学习了不在生活面前屈服。27、只要持续地努力,不懈地奋斗,就没有征服不了的东西。28、立志不坚,终不济事。29、功崇惟志,业广惟勤。30、一个崇高 的目标,只要不渝地追求,就会居为壮举;在它纯洁的目光里,一切美德必将胜利。31、书不记,熟读可记;义不精,细思可精;惟有志不立,直是无着力处。32、您得相 信,有志者事竟成。古人告诫说:“天国是努力进入的”。只有当勉为其难地一步步向它走去的时候,才必须勉为其难地一步步走下去,才必须勉为其难地去达到它。33、 告诉你使我达到目标的奥秘吧,我唯一的力量就是我的坚持精神。34、成大事不在于力量的大小,而在于能坚持多久。35、一个人所能做的就是做出好榜样,要有勇气在风 言风语的社会中坚定地高举伦理的信念。36、即使在把眼睛盯着大地的时候,那超群的目光仍然保持着凝视太阳的能力。37、你既然期望辉煌伟大的一生,那么就应该从今 天起,以毫不动摇的决心和坚定不移的信念,凭自己的智慧和毅力,去创造你和人类的快乐。38、一个有决心的人,将会找到他的道路。39、在希望与失望的决斗中,如果 你用勇气与坚决的双手紧握着,胜利必属于希望。40、富贵不能淫,贫贱不能移,威武不能屈。41、生活的道路一旦选定,就要勇敢地走到底,决不回头。42、生命里最重 要的事情是要有个远大的目标,并借助才能与坚持来完成它。43、事业常成于坚忍,毁于急躁。我在沙漠中曾亲眼看见,匆忙的旅人落在从容的后边;疾驰的骏马落在后头, 缓步的骆驼继续向前。44、有志者事竟成。45、穷且益坚,不坠青云之志。46、意志目标不在自然中存在,而在生命中蕴藏。47、坚持意志伟大的事业需要始终不渝的精神。 48、思想的形成,首先是意志的形成。49、谁有历经千辛万苦的意志,谁就能达到任何目的。50、不作什么决定的意志不是现实的意志;无性格的人从来不做出决定。我终 生的等待,换不来你刹那的凝眸。最美的不是下雨天,是曾与你躲过雨的屋檐。征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。生活真象这杯浓酒,不经三番五次的提炼呵,就不会这样可口!人格的完善是本,财富的确立是末能力可以慢 慢锻炼,经验可以慢慢积累,热情不可以没有。不管什么东西,总是觉得,别人的比自己的好!只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹 出世间的绝唱。对时间的价值没有没有深切认识的人,决不会坚韧勤勉。第一个青春是上帝给的;第二个的青春是靠自己努力的。不要因为寂寞而恋爱,孤独是为了幸福而 等待。每天清晨,当我睁开眼睛,我告诉自己:我今天快乐或是不快乐,并非由我所遭遇的事情造成的,而应该取决于我自己。我可以自己选择事情的发展方向。昨日已逝,

人教A版高中数学选修21复习课件:3.1.3(共44张PPT)


1
1
1
×2- ×2+ ×2-4=-2,
4
2
2
所以向量 与向量 所成角的余弦值 cos θ=
·
||||
-2
2
=- .
3× 3 3
2
答案:(1)C (2)-3
=
探究一
探究二
探究三
探究四
规范解答
利用数量积证明垂直问题
【例3】如图,在正方体ABCD-A1B1C1D1中,P是DD1的中点,O是底
(1) ·;(2) · ;
(3) · ;(4) ·.
思路分析求出每个向量的模及其夹角,然后按照数量积的定义计
算求解,必要时,对向量进行分解.
探究一
探究二
探究三
探究四
规范解答
解(1) ·=||||cos <, >
=||||cos ∠AOB=2×2×cos 60°=2.
1
(
2
【做一做 1】 在正四面体 ABCD 中, 与的夹角等于
)
A.30°
B.60°
C.150° D.120°
解析:< , >=180°-<, >=180°-60°=120°.
答案:D
1
2
2.空间向量的数量积
(1)已知两个非零向量a,b,则|a||b|cos<a,b>叫做a,b的数量积,记作a·b.
所以 cos
1 ·
<1 , >=
|1 |||
=
1
2× 2
因为<1 , >∈[0°,180°],
所以<1 , >=60°.
所以向量1 与 的夹角为 60°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档