数列极限的解法(15种)
数列极限常见题型及其解法

数列极限常见题型及其解法01 什么是数列?(掌握难度:★)从字面意思就可以看出来:数列数列,就是将数排成队列。
详细点来说,就是将一堆数按照某种规律排成一排,p.s.类似军训,教官让我们按照从矮到高(某种规律)排成一排。
排成队列的数这时,有个数在开小差,教官就开始点名了。
还记得我们当时军训时教官是怎么点名的么?“第m排第n列,请出列”——这耳熟能详的语句。
由于我们的数只有一列,所以我们就变成了,“第n个数请出列”。
为了描述方便我们用符号 xn 表示,含义为第n个数,于是就有 x1=12 , x4=116 , x5=132 。
如果可以用某个含n的式子来表示 xn ,那么这个式子就叫做这个数列的通项公式,例如本文举例的数列,它的通项公式就是: xn=12n 。
有了它,我们就可以快速get 这一列数中的每一个数,是不是很方便。
但是,人总是贪心的。
所以一定会有人问:“你不是说每一项你都知道么?那么第无穷项是多少呢?”这个时候就涉及到了数列的极限。
02 数列的极限(掌握难度:★★)针对刚刚的问题——数列{ xn }的“无穷项”是多少?即当 n→∞时, xn 趋近于多少。
可见这是一个极限问题,用数学式来表示:limn→∞xn=?上式的结果,有些是可预测的(可计算出结果),有些是不可预测的(结果不确定),如下:例如:(1){ (−1)n }:−1,1,−1,1,−1,1……(2){ ln(n) } : ,ln1,ln2,ln3,……(3){12n } :,,,12,14,18,116……数列(1),在-1和1间摇摆不定,"第无穷项"鬼知道是1还是-1,因此极限不存在;数列(2),随n增大, xn 也无限制地增大,增大到无穷时,无法用一个具体的数来表示,其极限也不存在。
对于数列(1)和(2),我们称其为发散数列,或称这个数列是发散的。
数列(3),随n增大,每一项的分母都会无限制的增大,进而每一项会越来越小,最终 n→∞,xn→0(1∞) ,所以此时我们可以预测在“第无穷项”处,数列的值趋近于0,这个时候我们也称数列(3)收敛。
高考数学冲刺数列极限的求解方法

高考数学冲刺数列极限的求解方法在高考数学中,数列极限是一个重要的考点,也是许多同学感到棘手的问题。
在最后的冲刺阶段,掌握有效的求解方法对于提高成绩至关重要。
接下来,让我们一起深入探讨数列极限的求解方法。
一、数列极限的基本概念首先,我们要明确数列极限的定义。
如果当项数 n 无限增大时,数列的通项 an 无限趋近于一个常数 A,那么就称 A 是数列{an}的极限,记作lim(n→∞) an = A。
理解这个定义是求解数列极限的基础。
二、常见的数列极限类型1、简单数列的极限对于一些简单的数列,如常数数列{an = C},其极限就是这个常数C;对于等差数列{an = a1 +(n 1)d},当 n 趋向于无穷大时,如果公差 d = 0,则极限为 a1;如果d ≠ 0,则数列没有极限。
2、等比数列的极限对于等比数列{an = a1 q^(n 1)},当|q| < 1 时,极限为 0;当 q = 1 时,极限为 a1;当|q| > 1 时,数列没有极限。
三、数列极限的求解方法1、利用定义求解直接根据数列极限的定义来进行求解。
通过分析数列通项与极限值之间的差距,随着 n 的增大,这个差距趋向于零,从而证明极限的存在并求出极限值。
例如,对于数列{an = 1 / n},要证明其极限为 0。
对于任意给定的正数ε,要找到一个正整数 N,使得当 n > N 时,|1 / n 0| <ε 成立。
因为|1 / n 0| = 1 / n,所以只要取 N = 1 /ε + 1(x表示不超过 x 的最大整数),当 n > N 时,就有 1 / n < 1 / N <ε,从而证明了lim(n→∞) 1 / n = 0。
2、四则运算法则若lim(n→∞) an = A,lim(n→∞) bn = B,则有:(1)lim(n→∞)(an ± bn) = A ± B(2)lim(n→∞)(an bn) = A B(3)lim(n→∞)(an / bn) = A / B (当B ≠ 0 时)例如,求lim(n→∞)(2n + 1) /(3n 1),可以将分子分母同时除以 n,得到lim(n→∞)(2 + 1 / n) /(3 1 / n) = 2 / 3。
数列极限的几种求解方法

数列极限的几种求解方法张宇(渤海大学数学系辽宁锦州121000 中国)摘要在髙等数学中极限是一个重要的基本概念。
高等数学中其他的一些重要概念,如微分、积分、级数等都是用极限来定义的。
本文主要研究了求极限问题的若干种方法。
在纷繁众多的求极限方法中,同学们往往在求解极限时不知如何下手。
文章内容包括对求解简单极限问题的各种常用方法的总结:利用迫敛性:利用单调有界定理;利用柯西准则证明数列极限:这些方法对解决一般数列极限问题都很适用。
还包括在此基础上探索出来的解决各种复杂极限问题的特姝方法,例如:利用数列的构造和性质求数列的极限:利用定积分定义求数列极限以及利用压缩映射原理等特殊方法求数列极限,这些特殊方法对解决复杂极限有很重要的意义,而且还比较方便。
在实际求解过程中,要灵活运用以上各种方法。
关键词:数列,极限,槪念,泄理。
Solution of the limitAbstract : In the higher mathematics limit is an important basic concepts・ In the higher mathematics, some important concepts of other, such as the differential and integration. series are used to define the limit. This paper mainly studies the problem of several limit .In the numerous and numerous limit method. students often in solving limit doesn't know how to start. Tlie contents include the limit for solving all kinds of simple method using the summary: popularizes forced convergence property. Monotone have defined Daniel, Using the proof of cauchy criterion sequence limit. These methods of solving problems are generally sequence limit. Also included on the basis of exploring the problem solving complex limit methods, such as special stnictures and properties of invariable; the sequence limit, Using the integral definition for sequence limit and use the banach cotraction principle as a special method. these special method sequence limit to solve complex limit is important, but also more convenient. In the actual solving process, using various above methods・Key words: Series, limit, the concept, the theorem.引言极限的概念与运算贯穿了高等数学的始终。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高等数学数列极限收敛60道典型例题分步骤详解

高等数学数列极限收敛60道典型例题分步骤详解数列收敛,换言之就是数列极限存在,此类问题历来都是高数考试的重点和难点,也是倍受命题老师青睐的“宠儿”。
数列收敛题型大致可分为两大类:第一类,数列的一般项(也称“通项”)已知;第二类,数列的一般项(通项)未知,尤其是由递推公式60道数列收敛典型例题,每道题都给出了详细的解题步骤。
网友们请注意,本文60个例题中如果用方括号标明年份的,均为当年考研真题。
第一类数列的一般项(通项)已知1.【2008真题】设解:原式. 具体求解过程如下(运用“两边夹”定理):2.✧解法(一)原式✧解法(二)原式=3.✧解法(一)分子有理化(分母视为“1”)原式✧解法(二)利用等价无穷小替换原式【注:】4.✧解法(一)✧解法(二)原式【注:, 】5.解:本题求极限,推荐“两边夹定理”。
解题过程如下:令显然可知,当因此,根据“两边夹定理”得到6.解:本题求极限推荐“两边夹定理”.令7.解原式=8.解原式=】9.解法(一)利用公式原式】==1✧.原式=】==110.解:原式。
正确的解法如下:原式==【注:】==11.✧解法(一)利用等价无穷小替换原式=】==✧解法(二)利用中值定理,注意求导公式原式【注:】=12.【2002真题】,✧解法(一)利用等无穷小替换✧原式===✧解法(二)利用“两边夹定理”,【注意:】原式=13.✧原式=【注:】=✧解法(二)利用等价无穷小替换原式=】14.解:此数列求极限推荐等价无穷小替换。
解法如下:原式==】=】15.✧解法(一)利用等价无穷小替换原式【注:】=【注:归结原则】✧【注:】16.解:本题求极限,“两边夹”定理、单调有界准则、定积分定义等方法似乎均不太“给力”,需将变量连续化,也就是将离散变量n替换为连续变量x,再运用包括洛必达法则在内的求解函数极限的方法.详细过程如下:17.✧解法(一)利用导数定义原式===【注:的指数部分,正是按定义所求的函数在处的导数.】【】=✧解法(二)拉格郎日中值定理,注意求导公式原式=====【注:=【注:本题推荐中值定理。
数列极限求解技巧

数列极限求解技巧数列是数学中一种重要的概念,对于数列的极限求解是数学中的一项基本技能。
在求解数列的极限过程中,往往需要借助各种技巧和方法来优化计算过程,本文将介绍一些常用的数列极限求解技巧。
一、数列的收敛性判断:在进行数列的极限求解之前,首先需要判断数列是否收敛。
一般来说,数列如果满足以下条件,那么该数列就是收敛的:1. 数列具有界性:即存在正实数M,使得对于数列的所有项a[n],都有|a[n]|<=M。
2. 数列具有单调性:数列可以是递增的(即a[n]<=a[n+1])或递减的(即a[n]>=a[n+1])。
二、数列极限的基本性质:在数列极限的求解过程中,有一些基本性质可以帮助我们更好地理解和计算,这些性质包括:1. 数列唯一:每个数列只有唯一一个极限。
2. 数列极限的传递性:如果数列a[n]有极限L,而数列b[n]是从a[n]中选取的一些项,那么b[n]也有极限,并且极限值与a[n]的极限值相同。
3. 数列极限的加法和乘法:如果两个数列a[n]和b[n]都有极限L1和L2,那么a[n]+b[n]和a[n]*b[n]也都有极限,并且分别为L1+L2和L1*L2。
三、常见数列的极限求解技巧:1. 等差数列和等比数列的极限求解:对于等差数列an=a1+(n-1)d和等比数列an=a1*r^(n-1),可以利用数列的极限计算公式进行求解。
对于等差数列an,其极限为a1,而等比数列an如果|r|<1,则其极限为0。
2. 公式替代和分母有理化:对于一些较复杂的数列,可以通过公式替代来简化计算过程。
例如,对于数列an=(n^k)/(k^n),如果取ln(an),则该数列可以转化为等差数列。
此外,对于一些出现分母的数列,可以利用有理化的方法进行极限求解,通过乘以适当的分子因子,使得分母变为多项式形式。
3. 夹逼定理:夹逼定理是一种常用的判断数列极限的方法。
如果数列an和bn都趋向于同一个极限L,并且存在另一个数列cn,使得对于所有的n,都有an<=cn<=bn,那么cn也趋向于L。
求数列极限的若干方法

求数列极限的若干方法摘要:本文主要探讨了求数列极限的六种方法:极限定义法,迫敛性,单调有界定理,定积分的定义,施笃茨定理,以及利用函数极限求数列极限的方法,并对每一类方法进行了总结,这将有利于我们更好的学习后续课程。
关键词:极限;迫敛性;定积分数列极限是数学分析中最重要的概念之一,以极限作为工具去解决和处理数学问题是一种极其重要的方法。
许多学生在学习数列极限时感觉很困难,原因在于数列极限概念很抽象,而且计算也有一定的难度。
论文总结出了求数列极限的一些常用方法,为并结合实例进行了说明。
1. 数列极限概述对于数列{}n a ,若当n 无限增大时,{}n a 能无限地接近某一个常数a ,就称此数列为收敛数列,a 是此数列的极限。
例如,对于数列⎭⎬⎫⎩⎨⎧n 1,当∞→n 时,n 1能无限地接近于0,则称数列⎭⎬⎫⎩⎨⎧n 1为收敛数列。
就是说,当n 充分大时,数列的通项n a 与常数a 之差的绝对值可以任意小。
因此有下列数列极限的精确定义。
1.1数列极限的N -ε定义定义1 设{}n a 为数列,a 为定数.若对任给的正数ε,总存在正整数N ,使得当n >N 时有ε<-a a n ,则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限。
定理1 (唯一性) 若数列{}n a 收敛,则它只有一个极限。
一个收敛数列一般含有无穷多个数,而它的极限只有一个数。
定理 2 (有界性)若数列{}n a 收敛,则{}n a 为有界数列,即存在正数M ,使得对一切正整数n 有M a n <.定理3 (保号性)若)0(0lim <>=∞→a a n n ,则对任何)0,)(,0('')(或a a a a ∈∈,存在正数N ,使得当N n >时有)(''a a a a n n <>或。
定理 4 (保不等式性)设{}n a 与{}n b 均为收敛数列.若存在正数0N ,使得当0N n >时有n n b a ≤,则n n n n b a ∞→∞→≤lim lim 。
数列极限的几种求法

数列极限的几种求法一、定义法:数列极限的定义如下:设{n a }是一个数列,若存在确定的数a,对ε∀>0 ∃N>0使当n>N 时,都有a a n -<ε则称数列{n a }收敛于a ,记为n n a ∞→lim =a ,否则称数列{n a }不收敛(或称数列{n a }发散)。
故可从最原始的定义出发计算数列极限。
例1、 用ε-N 方法求 nn n 1lim +∞→解:令 n n 1+=t+1 则 t>0∴ n+1=nt )1(+2)1(2)1(122t n n t n n nt -≥+-++≥ΛΛ ∴ 12)1(4)1()1(211-≤-≤-+≤=-+n n n n n n n t n n ∴ε∀>0 取 ⎥⎦⎤⎢⎣⎡+=142εN 则当N n >时,有 ε<-≤-+1211n n n∴n n n 1lim +∞→=1二、单调有界法: 首先我们介绍单调有界定理,其内容如下:在实数系中,有界的单调数列必有极限。
证明:不妨设{n a }为有上界的递增数列。
由确界原理,数列{n a }有上界,记为sup =a {n a }。
以下证明a 就是{n a }的极限。
事实上,ε∀>0,按上确界的定义,存在数列{n a }中某一项N a ,使得N a a <-ε 又由{n a }的递增性,当N n ≥时有εε+<<-a a a n ,这就证得 a a n n =∞→lim 。
同理可证有下界的递减数列必有极限,且其极限即为它的下确界。
例2、证明数列ΛΛΛ,222,22,2+++ 收敛,并求其极限。
证:222Λ++=n a ,易见数列{n a }是递增的。
现用数学归纳法来证明{n a }有上界。
显然 221<=a 。
假设2<n a ,则有22221=+<+=+n n a a ,从而对一切n 有2<n a ,∑=∞→n k n k n 141lim ε即{n a }有上界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.定义法
N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a .记作:lim n n a a →∞
=.否则称{}
n a 为发散数列.
例1.求证1
lim 1,n
n a →∞
=其中0a >.
证:当1a =时,结论显然成立.
当1a >时,记11n
a α=-,则0α>,由()1111(1)n
n
a n n ααα=+≥+=+-
得1
11n
a a n --≤,任给0ε>,则当1
a n N ε
->=时,就有1
1n a ε-<,即
11n a ε-<即1lim 1,n
n a →∞
=
当
11
1
1
101,1,lim 1,lim 1
lim n n n n n
n a b b b a a
b
→∞→∞→∞
<<=>=∴=
=时,令则由上易知
综上,1lim 1,n
n a →∞
=0a >
例2.求7lim
!
n
n n →∞
解:77777777777771
!1278917!6!n n n n n n
=⋅⋅⋅⋅⋅⋅⋅⋅≤=-
77777171771
00,,0!6!6!!6!n n N n N n n n n εε⎡⎤∴-≤∴∀>∃=>-≤⎢⎥⎣⎦
则当时,有<ε 7lim 0!
n
n n →∞∴= 2.利用柯西收敛准则
柯西收敛准则:数列{}n a 收敛的充要条件是:0,ε∀>∃正整数N ,使得当,n m N
>时,有n m a a ε-<. 例3.证明:数列1sin (1,2,3,)2
n
n k
k k
x n ===⋅⋅⋅∑
为收敛数列.
证
11111sin(1)sin 111112()122222212
n m
n m m n m n m m m n x x m
-+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-0ε∀>,取1N ε⎡⎤
=⎢⎥⎣⎦
,当n m N >>时,有n m x x ε-<
由柯西收敛准则,数列{}n x 收敛.
例4.(有界变差数列收敛定理)若数列{}n x 满足条件 11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1,2,)n =⋅⋅⋅ 则称{}n x 为有界变差数列,试证:有界变差数列一定收敛 证:令1112210,n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-
那么{}n y 单调递增,由已知知{}n y 有界,故{}n y 收敛,从而0,ε∀>∃正整数
N ,使得当n m N >>时,有 n m y y ε-<
此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-< 由柯西收敛准则,数列{}n x 收敛.
注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a 只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理
单调有界定理:在实数系中,有界的单调数列必有极[]1
限.
例5.
证明数列n x =n 个根式,a>0,n=1,2,⋅⋅⋅)极限存在,并求
lim n n x →∞
.
证:由假设知n x = ⋅⋅⋅(1) 用数学归纳法易证:1,n n x x k N +>∈ ⋅⋅⋅ ()2 此即证{}n x 单调递增. 用数学归纳法可证1n n x x +>,。