电路板碱性蚀刻液处理技术

合集下载

在PCB碱性蚀刻中常见的问题的原因和故障解决方法

在PCB碱性蚀刻中常见的问题的原因和故障解决方法

在PCB碱性蚀刻中常见的问题的原因和故障解决方法
PCB蚀刻技术通常所指蚀刻也称光化学蚀刻,指通过曝光制版、显影后,将要蚀刻区域的保护膜去除,在蚀刻时接触化学溶液,达到溶解腐蚀的作用,形成凹凸或者镂空成型的效果。

随着PCB工业的发展,各种导线之阻抗要求也越来越高,这必然要求导线的宽度控制更加严格。

在生活中的广泛运用,PCB的质量越来越好,越来越可靠,它是设计工艺也越来越多样化,也更加的完善。

蚀刻技术在PCB设计中的也越来越广泛。

1.问题:印制电路中蚀刻速率降低
原因:
由于工艺参数控制不当引起的
解决方法:
按工艺要求进行检查及调整温度、喷淋压力、溶液比重、PH值和氯化铵的含量等工艺参数到工艺规定值。

2.问题:印制电路中蚀刻液出现沉淀
原因:
(1)氨的含量过低
(2)水稀释过量
(3)溶液比重过大
解决方法:
(1)调整PH值到达工艺规定值或适当降低抽风量。

(2)调整时严格按工艺要求的规定或适当降低抽风量执行。

(3)按工艺要求排放出部分比重高的溶液经分析后补加氯化铵和氨的水溶液,使蚀刻液的比重调整到工艺充许的范围。

3.问题:印制电路中金属抗蚀镀层被浸蚀
原因:。

电路板的刻蚀及废液的处理

电路板的刻蚀及废液的处理

电路板的刻蚀及废液的处理(浸泡时间对结果的影响)【实验目的】1.了解刻蚀及酸性、碱性刻蚀的原理。

2.用绿色化学理念处理产物。

3.掌握电路板化学刻蚀的方法、练习基本操作。

一、实验原理用胶带或腊做保护层将整个铜板都包上,然后将要刻蚀处的保护膜除去,使待腐蚀的部分暴露于空气中,未受保护的铜片与腐蚀液发生反应。

其原理是利用双氧水在酸性介质中为强氧化剂,可以把Cu氧化为Cu2+离子。

而H2O2本身则被还原为H2O。

反应如下:H2O2+2HCl+Cu=CuCl2+2H2O二、实验内容【探究:浸泡时间的比较】1.进行讨论,设定不同成员所浸泡的时间2.首先进行预处理,用砂纸对铜片进行打磨,并保持各组打磨程度相同;在将打磨后的铜片全部放到氢氧化钠溶液中加热碱洗,一段时间后取出并用蒸馏水清洗,擦干。

3.把铜片分发到各小组,用石蜡对铜板的覆盖处理,再覆盖完成后用小刀在表面将保护膜除去,待腐蚀的部分暴露于空气中。

4.将含腐蚀液烧杯放置在通风橱中,把铜片放置在烧杯中让其充分反应,到达自己预定时间后取出铜片,用清水冲洗铜片,擦干后即实验完成了。

三、结果与分析我做的是浸泡20min的实验,结果可以明显的看到刻蚀的现象。

实验还可以发现,我分别做了用石蜡和用胶布包裹的效果,发现用胶布的效果比用石蜡的效果要好很多,刻蚀出来的字要清除的很多。

小组讨论:组别1组(浸泡5min)2组(浸泡10min)3组(浸泡15min)4组(浸泡20min)5组(浸泡25min)6组(浸泡30min)实验现象初步分析由于浸泡时间太短,无明显现象看到模糊的“爱心”图样,刻蚀的效果还可以这张铜片的刻蚀效果最佳刻蚀效果较好,字样很清晰“寒”清晰可见,刻蚀效果显著铜片上字样清晰,刻蚀效果显著结果分析:经实验结果可以得到,在讨论刻蚀的实践的比较时,浸泡五分钟的那组无什么现象,实验失败,分析原因是浸泡时间太短,来不及反应。

以后的每组依次现象更加明显,浸泡10min的铜片虽然不是很明显的看出刻蚀的效果,但是还是可以看出效果,浸泡15min 以后现象基本没什么区别,都差不多,现象都能明显看见,所以15min-20min浸泡时间为宜。

碱性蚀刻制程讲义全

碱性蚀刻制程讲义全

碱性蚀刻制程讲义目录一、碱性蚀刻流程二、为什么要蚀刻三、碱性蚀刻制程需求四、制程及产品介绍五、特性及优点六、制程控制七、洗槽及配槽程序八、问题及对策九、信赖度测试方法十、药水分析方法一、碱性蚀刻流程剥膜→水洗→蚀刻→子液洗→水洗→剥锡→水洗→烘干二、为什么要蚀刻将基板上不需要的铜,以化学反应方式予以除去,以形成所需要的电路图形三、蚀刻制程需求1.适宜的抗蚀剂类型2.适宜的蚀刻液类型3.可实现自动控制4.蚀刻速度要快5.蚀刻因子要大,侧蚀少6.蚀刻液能连续运转和再生7.溶铜量要大,溶液寿命长四、制程及产品介绍PTL-503B为全溶碱性蚀刻液,适用于图形电镀金属抗蚀层,如镀覆镍.金.锡铅合金.锡镍合金及锡的印制电路板蚀刻1.剥膜成份:NaOH功能:剥除铜面上之干膜,露出底层铜面特性:强碱性,适用于水平及垂直设备2.碱性蚀刻主要成份:NH3H2O NH3Cl Cu(NH3)4Cl2①.Cu(NH3)4Cl2:具有蚀刻能力,与板面Cu反应,生成不具蚀刻能力之Cu(NH3)2Cl,在过量氨水和氯离子存在的情况下,Cu(NH3)2Cl很快被空气氧化生成具有蚀刻能力之Cu(NH3)4Cl2②.NH3.H2O:提供蚀刻所需之碱性环境,并与NH4Cl一道完对Cu(NH3)2Cl之氧化再生③.NH4Cl:提供再生时之Cl-反应原理: Cu+Cu(NH3)4Cl2→2Cu(NH3)2Cl2Cu(NH3)2Cl+2NH4Cl+2NH4OH+O2→2Cu(NH3)4Cl2+2H2OCu+2NH4Cl+2NH4OH+O2→Cu(NH3)4Cl2+2H2O3.剥锡铅:PTL-601D/605 PTL-602A/602B1功能:剥除线路板表面锡金属抗蚀层,露出线路板之铜面,并保持铜面之光泽主要成份:HNO3①.双液型:PTL-602A/602B1A.A液a.氧化剂:用以将Sn/Pb氧化成PbO/SnOb.抗结剂:将PbO/SnO转成可溶性结构,避免饱和沉淀氧化 氧化 氧化 氧化 c. 抑制剂:防止A 液咬蚀锡铜合金 B. B 液a. 氧化剂:用以咬蚀铜锡合金b. 抗结剂:防止金属氧化物沉淀c. 护铜剂:保护铜面,防止氧化 ②. 单液型a. 氧化剂:用以将Sn/Pb 氧化成PbO/SnOb. 抗结剂:将PbO/SnO 转成可溶性结构c. 护铜剂:保持铜面,防止氧化 反应原理: 1. 咬Sn/PbSn/Pb SnO/PbO SnL/Pb L H 2SnO 3(H 2O)X (a) 2. 铜锡合金剥除Cu 6Sn 5 Cu 2++Sn 2+(溶解) Cu 3Sn Cu 2++Sn 2+(溶解)五、 特性及优点六、制程控制1.操作参数表2.槽液维护:补充:蚀刻液比重超过1.21或铜含量超过160g/L时,抽出1/5槽液并添加PTL-501B到原液位管理:A.定期检查自动控制之比重和槽液比重是否符合而做适当校正B.定期分析槽液PH值,铜含量,氯含量,并作成管制图C.每日下班时使用子液冲洗蚀铜机前后进出之滚轮,避免干燥氢氧化铜之累积D.长期不使用时,可多添加3-5%子液,避免NH3过量损失E.停机超过45-60日以上时,清洗蚀刻机槽维护如下:a.将槽液排出到预备槽b.用水喷洗5分钟后排放c.用3%(V/V)HCl清洗并喷洗5分钟后排放d.检查喷洒情况是否正常e.用水再清洗一次并检查加热器,冷却水管及滤钢板f.加水与约2%氨水或子液混合后喷洗5分钟后排放g.将槽液抽回F.氯化铵添加时请先在槽外以槽液溶解后,再加入蚀铜机G.(氯离子标准值-分析值)×NH4Cl/Cl×槽体积(L)×1000=添加氯化铵Kg量H.PH值在50℃时与常温会呈现不同的值,换算公式如下:PH(50)=PH(X)-0.21×(50-X)/10例如:24℃时PH=8.86,问50℃时的PH值是多少?8.86-0.21×(50-24)/10=8.86-0.21×2.6=8.314I. PH值的误差影响因素:温度越低,PH值越高,50℃与常温有时会差约0.04电极会慢慢老化,而此过程中无法得知不同厂牌或不同电极,会差约0.15校正用标准液会吸收空气中的CO2形成碳酸,若溶入标准液时,则影响准确性用PH4.0-7.0与用PH7.0-10.0做校正,也会不同J. 蚀铜液的PH值变数太多,通常只作参考,用滴定碱当量法是比较准确的K. 比重在50℃的值与常温时约差0.01,比重差0.01时,铜含量约差10g/L50℃25℃铜(g/L)1.190 1.200 1401.200 1.210 1501.210 1.220 1601.215 1.225 165七、洗槽及配槽程序1. 新线洗槽程序a.以清水清洗所有药水槽及水洗槽,然后排放b.将各水洗槽及药水槽注满清水,加入5-10g/L片碱,开启循环过滤系统,维持四小时以上然后将废液排除c.用清水冲洗各槽体,并排放d.将各槽注满清水,循环30分钟后排放e.将各槽注入1/2槽体积水,加入1-2%槽体积H2SO4,然后注满清水,开启循环过滤系统,维持1-2小时后排放f.用清水冲洗各槽体,并将水排放g.以清水注满各槽,开启循环过滤系统,维持30分钟后排放h.剥膜槽用5-10g/L NaOH,蚀刻槽用1-2% NH3.H2O,剥锡槽用1-2% HNO3再次循环清洗1小时后,即可进行全线配槽2. 配槽程序A.剥膜槽a.注入1/2槽体积清水,加入50g/L NaOH(NaOH需预先溶解后再加入槽,以免堵塞管道)b.补充水至标准液位,循环20-30分钟c.分析调整药水浓度d.升温至50℃B.蚀刻槽a. 取蚀刻母液PTL-503A(可由旧蚀刻线接取),加入蚀刻槽b. 分析调整母液浓度c. 升温至50℃C.剥锡铅槽a. 单液型剥锡铅液:直接将剥锡铅液原液加入槽(PTL-601D,PTL-605),搅拌均匀b. 双液型剥锡铅液:(PTL-602A/PTL-602B1)①.将PTL-602A原液加入剥锡铅线A段②.将95%槽体积PTL-602B1加入剥锡铅线B段,并缓慢加入5%槽体积H2O2(35%)③.将槽液搅拌均匀八、问题与对策:1. 蚀铜液常见问题与对策2. 剥锡/铅液常见问题及对策九、 信赖度测试方法1. 蚀刻均匀性测试a. 取1PNL 24”×18”之2/2 OZ 含铜基板,两面至少各分为25个方格b. 测各小方格铜厚H 1并依次作好记录c. 以正常之蚀板速度,将2/2 OZ 基板进行蚀刻d. 测蚀刻后各小方块铜厚H 2,并与蚀刻前所测铜厚,相对应作记录e. 以蚀刻前之铜厚H 1,减去蚀刻后之铜厚H 2,即为蚀刻之铜厚hf. 以蚀刻掉铜厚之最小值H min 除去蚀刻掉铜厚之最大值H max ,即为蚀刻之均匀性均匀性= >80%g. ,可调整上下喷压,若同一面均匀性差,可调整板面各区压力分布来改变2. 蚀刻速率测定a. 取一2/2 OZ 含铜基板,称重W 1(g)b. 将板放入蚀刻线,按正常之生产速度进行蚀刻后,取出洗净,吹干称重W 2(g),c. 计算:mil/mind. 计算:蚀刻速率3. 蚀刻因子测定方法a. 取一做完电镀铜锡之PCB 板,要求该板具有朝向各个方向之线路,并有不同线宽线距(3/3mil 至10/10mil)在全板纵横分布b. 将测试板放入蚀刻线,走完蚀刻后出c. 对不同线宽线距之线路作切片分析,如下图d. 蚀刻因子蚀刻因子通常控制在3-5 4. 蚀刻点测试a. 取1/1 OZ 之含铜基板数片(宽度与机台同宽,基板数量应能使基板覆盖整个蚀刻段)b. 将喷压固定,并将速度调整至正常蚀刻之速度c. 将含铜基板逐一放入蚀刻段,板与板之间距须一致,当第一片基板走出蚀刻段后,立即关闭蚀刻之喷淋,待水洗后将蚀刻板逐一按顺序取出d. 将蚀刻板逐一按原蚀刻放置顺序摆放好,观察经由喷洒所造成之残铜是否形成均匀之波峰波谷e. 观察残铜之波峰是否落于蚀刻段长度之70-80%,若在此围,则表示蚀刻点正常,蚀刻速度合适,若不在此围则需调整速度,使蚀刻点落于蚀刻段长70-80%围十、 分析方法㈠. 剥膜液NaOH 化学分析试剂:酚酞指示剂 0.1N HCl方法:a. 取槽液5ml 于250ml 锥形瓶中b. 加50ml纯水c. 加3-5滴酚酞指示剂d. 用1N HCl滴定,溶液由红色变成无色为终点计算:NaOH=0.8×1N HCl滴定ml数㈡. 蚀刻液PTL-503B化学分析①.铜离子含量分析试剂:PH=10缓冲液PAN指示剂(1%) 0.1M EDTA方法:a. 取槽液10ml于100ml容量瓶中,加纯水至刻度线b. 从上述溶液中取5ml于250ml锥形瓶中c. 加入30ml纯水并加入20ml PH=10缓冲液d. 加入4-6滴PAN指示剂e. 用0.1M EDTA滴定,溶液由蓝色变成草绿色为终点计算:Cu2+(g/L)=12.71×0.1M EDTA滴定ml数②.氯离子含量分析试剂:20% 乙酸20% K2CrO40.1N AgNO3方法:a. 取槽液10ml于100ml容量瓶中,加纯水至刻度线b. 从上述溶液中取5ml于250ml锥形瓶中c. 加入30ml纯水并加入20ml 20%乙酸,15ml 20% K2CrO4缓冲液d. 用0.1N AgNO3滴定,溶液中沉淀细碎并呈粉红色为终点计算:[Cl-](N)=0.2×0.1N AgNO3滴定ml数③.剥锡/铅液PTL-601D化学分析试剂:酚酞指示剂(1%) 0.1N NaOH方法:a. 取槽液2ml于250ml锥形瓶中b. 加入20ml纯水并加入3-5滴酚酞指示剂c. 用0.1N NaOH滴定,溶液由无色变成粉红色为终点计算:[H+](N)=0.5×0.1N NaOH滴定ml数④.剥锡/铅液PTL-605化学分析试剂:酚酞指示剂(1%) 0.1N NaOH方法:a. 取槽液2ml于250ml锥形瓶中b. 加入20ml纯水并加入3-5滴酚酞指示剂c. 用0.1N NaOH滴定,溶液由无色变成粉红色为终点计算:[H+](N)=0.5×0.1N NaOH滴定ml数⑤.剥锡/铅液PTL-602A/B1化学分析A. PTL-602A含量分析试剂:甲基红指示剂(0.1%) 1N NaOH方法:a. 取5ml槽液于250ml锥形瓶中b. 加入50ml纯水c. 加入3-5滴甲基红指示剂d. 用1N NaOH溶液滴定,颜色由红色变成黄色为终点计算:PTL-602A(N)=0.2×1N NaOHB.PTL-602B1含量分析←酸当量分析试剂:甲基红指示剂(0.1%) 1N NaOH方法:a. 取5ml槽液于250ml锥形瓶中b. 加入50ml纯水c. 加入3-5滴甲基红指示剂d. 用1N NaOH溶液滴定,颜色由红色变成黄色为终点计算:PTL-602B1(N)=0.2×1N NaOH滴定ml数↑双氧水含量分析试剂:35% H2SO40.1M KMnO4方法:a. 取1ml槽液于250ml锥形瓶中b. 加入50ml纯水c. 加入20ml 35% H2SO4溶液d. 用0.1N KMnO4溶液滴定,颜色由无色变成微红色为终点计算:35% H2O2(%)=4.91×0.1M KMnO4滴定ml数。

蚀刻工艺(酸性、碱性、微蚀)

蚀刻工艺(酸性、碱性、微蚀)

PCB外层电路的蚀刻工艺在印制电路加工中﹐氨性蚀刻是一个较为精细和覆杂的化学反应过程, 却又是一项易于进行的工作。

只要工艺上达至调通﹐就可以进行连续性的生产, 但关键是开机以后就必需保持连续的工作状态﹐不适宜断断续续地生产。

蚀刻工艺对设备状态的依赖性极大, 故必需时刻使设备保持在良好的状态。

目前﹐无论使用何种蚀刻液﹐都必须使用高压喷淋﹐而为了获得较整齐的侧边线条和高质量的蚀刻效果﹐对喷嘴的结构和喷淋方式的选择都必须更为严格。

对于优良侧面效果的制造方式﹐外界均有不同的理论、设计方式和设备结构的研究, 而这些理论却往往是人相径庭的。

但是, 有一条最基本的原则已被公认并经化学机理分析证实﹐就是尽速让金属表面不断地接触新鲜的蚀刻液。

在氨性蚀刻中﹐假定所有参数不变﹐那么蚀刻的速率将主要由蚀刻液中的氨(NH3)来决定。

因此, 使用新鲜溶液与蚀刻表面相互作用﹐其主要目的有两个﹕冲掉刚产生的铜离子及不断为进行反应供应所需要的氨(NH3)。

在印制电路工业的传统知识里﹐特别是印制电路原料的供货商们皆认同﹐并得经验证实﹐氨性蚀刻液中的一价铜离子含量越低﹐反应速度就越快。

事实上﹐许多的氨性蚀刻液产品都含有价铜离子的特殊配位基(一些复杂的溶剂)﹐其作用是降低一价铜离子(产品具有高反应能力的技术秘诀)﹐可见一价铜离子的影响是不小的。

将一价铜由5000ppm降至50ppm, 蚀刻速率即提高一倍以上。

由于在蚀刻反应的过程中会生成大量的一价铜离子, 而一价铜离子又总是与氨的络合基紧紧的结合在一起﹐所以要保持其含量近于零是十分困难的。

而采用喷淋的方式却可以达到通过大气中氧的作用将一价铜转换成二价铜, 并去除一价铜, 这就是需要将空气通入蚀刻箱的一个功能性的原因。

但是如果空气太多﹐又会加速溶液中的氨的损失而使PH值下降﹐使蚀刻速率降低。

氨在溶液中的变化量也是需要加以控制的, 有一些用户采用将纯氨通入蚀刻储液槽的做法, 但这样做必须加一套PH计控制系统, 当自动监测的PH结果低于默认值时﹐便会自动进行溶液添加。

4-PCB碱性蚀刻液

4-PCB碱性蚀刻液
11
影响蚀刻速率的因素
4.温度的影响 蚀刻速率与温度有很大关系,蚀刻速率随着温度的
升高而加快。蚀刻液温度低于40℃,蚀刻速率很慢,而 蚀刻速率过慢会增大侧蚀量,影响蚀刻质量。温度高 于60℃,蚀刻速率明显增大。但NH3的挥发量也大大增 加,导致污染环境并使蚀刻液中化学组份比例失调。 故一般应控制在45℃~55℃为宜。
10
影响蚀刻速率的因素
3.溶液PH值的影响 蚀刻液的PH值应保持在8.0~8.8之间。当PH值降到8.0
以下时,一方面是对金属抗蚀层不利。另一方面,蚀刻液 中的铜不能被完全络合成铜氨络离子,溶液要出现沉淀, 并在槽底形成泥状沉淀。这些泥状沉淀能在加热器上结成 硬皮,可能损坏加热器,还会堵塞泵和喷嘴,给蚀刻造成 困难,如果溶液PH值过高,蚀刻液中氨过饱和,游离氨释 放到大气中,导致环境污染。另一方面,溶液的PH值增大 也会增大侧蚀的程度,而影响蚀刻的精度。
大家好
1
培训课题:PCB碱性蚀刻液 讲 师: 培训时间:
2
蚀刻
印制电路板(PCB)加工的典型工艺采用“图 形电镀法”。即先在板子外层需保留的铜箔部分上 (是电路的图形部分)预镀一层铅锡抗蚀层,然后 用化学方式将其余的铜箔腐蚀掉,称为蚀刻。
PCB蚀刻分为碱性和酸性两种,一为盐酸双氧 水体系(酸性);二为氯化铵氨水体系(碱性)。
注:1加仑(美制)=3.785升 1盎司=28.35克 1盎司/加仑 =28.35/3.785=7.5G/1
9
影响蚀刻速率的因素
2.氯化铵含量的影响 通过蚀刻再生的化学反应可以看出:[Cu(NH3)2]1+的再
生需要有过量的NH3和NH4Cl存在。如果溶液中缺乏 NH4Cl,而使大量的[Cu(NH3)2]1+得不到再生,蚀刻速率就 会降低,以至失去蚀刻能力。所以,氯化铵的含量对蚀 刻速率影响很大。随着蚀刻的进行,要不断补加氯化铵。 但是,溶液中Cl-含量过高会引起抗蚀层被浸蚀。一般蚀 刻液中NH4Cl含量在180g/l左右。

PCB碱性蚀刻常见问题原因及解决方法

PCB碱性蚀刻常见问题原因及解决方法

P C B碱性蚀刻常见问题原因及解决方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March碱性蚀刻常见问题原因及解决方法1.问题:印制电路中蚀刻速率降低; ....................................................... 错误!未定义书签。

2.问题:印制电路中蚀刻液出现沉淀 ....................................................... 错误!未定义书签。

3.问题:印制电路中金属抗蚀镀层被浸蚀 ............................................... 错误!未定义书签。

4.问题:印制电路中铜表面发黑,蚀刻不动 ........................................... 错误!未定义书签。

5.问题:印制电路中基板表面有残铜 ....................................................... 错误!未定义书签。

6.问题:印制电路中基板两面蚀刻效果差异明显 ................................... 错误!未定义书签。

7.问题:印制电路中板面蚀刻不均使部分还有留有残铜 ....................... 错误!未定义书签。

8.问题:印制电路中蚀刻后发现导线严重的侧蚀 ................................... 错误!未定义书签。

9.问题:印制电路中输送带上前进的基板呈现斜走现象 ....................... 错误!未定义书签。

10.问题:印制电路中板面线路蚀铜未彻底,部分边缘留有残铜 ....... 错误!未定义书签。

11.问题:印制电路中板两面蚀刻效果不同步 ....................................... 错误!未定义书签。

线路板蚀刻液的故障类型与解决方法

线路板蚀刻液的故障类型与解决方法
光致抗蚀剂被破坏
1.酸过量
2.板面清洗不干净
3.曝光不适当
4.涂复液态抗蚀剂时烘烤不当
1.用氢氧化钠中和或者用水稀释进行调整
2.加强板面清洁处理
3.用光密度表检查曝光时间
4.调整烘烤温度
在铜表面有黄色或白色沉淀
蚀刻液的氯离子和酸度太低
1.分析后补加盐酸
2.采用5%盐酸溶液清洗板面后再彻底用水清洗干净
线路板蚀刻液的故障类型与解决方法
一、酸性氯化铜蚀刻液蚀刻的故障类型、产生原因和解决办法
故障类型
产生主要原因
解决办法
蚀刻速率降低
1.蚀刻液的温度低
2.淋压力过低
3.蚀刻液的化学组份控制失调
1.调整溶液温度至40-50℃
2.调整喷淋压力到规定值
3.分析后进行调整
蚀刻液出现沉淀
络合剂氯离子不足
分析后补加盐酸
3.排放出部分比重高的溶液,经分析后补加氯化铵和氨的水溶液,使蚀刻液的比重调整到工艺允许的范围。
抗蚀镀层被浸蚀
1.蚀刻液PHபைடு நூலகம்过低
2氯离子含量过高
1.调整到合适的PH值
2调整氯离子浓度到规定值
铜表面发黑,蚀刻不动
蚀刻液中氯化铵含量过低
调整氯化铵含量到规定数值
基板表面有残铜
1.蚀刻时间不足
2.去膜不干净或有抗蚀金属(如:铅锡或锡)
二、碱性氯化铜蚀刻液蚀刻故障类型、产生原因和解决方法
故障类型
产生主要原因
解决办法
蚀刻速率降低
由于工艺参数控制不当引起的。
检查及调整温度、喷淋压力、溶液比重、PH值和氯化铵的含量等工艺参数到规定值。
蚀刻液出现沉淀
1.氨的含量过低2,水稀释过量

碱性蚀刻液循环再生系统

碱性蚀刻液循环再生系统

碱性蚀刻液循环再生系统
一、技术简介
碱性蚀刻液循环再生系统是专门针对PCB印制线路板厂生产中产生的碱性蚀刻废液而设计的,采用先进的封闭式自体循环和平行式无损分离技术(CSC-PLS)进行金属铜的分离和蚀刻液的回用,经严格有效的工艺过程,实现了溶液的长期循环再生和100%铜回收率的目标,同时将生产运行成本控制到最低。

该系统与蚀刻机在线闭环连接,自动循环运作。

二、设备说明
1、工艺流程
蚀刻机中溢流出的碱性蚀刻废液进入母液罐,再用泵送入电解槽。

调整主机内铜离子浓度、氯离子浓度和碱度至规定标准,然后通电电解。

取出产品电解铜,将溶液泵至再生子液罐,并检测溶液各离子浓度、pH值,根据检测结果调整各成分含量,调整完毕再次检测,合格后泵入子液罐中待PCB厂家使用。

三、环保指标
◆该系统采用封闭式自体循环和无损分离技术(CSC-PLS)实现了废液的100%回用
◆在整个过程中无固体废弃物、废液、废气产生
◆完全符合国家清洁生产、节能减排的环保要求
四、特点及优势
◆本系统采用PLS平行式无损分离技术,整个过程无需使用任何萃取剂、添加剂,真正实现了对废蚀刻液的无损分离,保证了蚀刻液回用的质量。

◆本系统采用CSC封闭式自体循环技术对废蚀刻液进行循环再生,整个过程既不带入其他外来物质,也没有产生有害物质,更不会破坏溶液成分,再生蚀刻液性能可以与新购子液相媲美,特别适用于高精度PCB 板制作。

◆该系统稳定性强,设备操作简便,便于维护。

采用一站式闭环控制系统,使设备运行更加可靠,运行成本为同行业最低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品整理
电路板碱性蚀刻液处理技术
一、技术概述
含铜废液经过多级(4~6级)错流萃取形成富铜萃取剂和萃余液,富铜萃取剂经过多级逆流洗涤去除氯离子和铵离子后,以硫酸和硫酸铜为反萃取剂对洗涤后的富铜萃取剂进行多级逆流反萃,获得硫酸铜溶液和萃取剂,硫酸铜电解得到电解铜,萃取剂经过多级逆流洗涤去除硫酸根离子后返回含铜废液错流萃取。

萃余液和洗涤液需单独处理。

反萃取中每一级富铜萃取剂与硫酸、硫酸铜混合溶液流量最佳比例为1:1~1:1.2,洗水与萃取剂的流量比为1.2:1~1:1。

二、技术优势
“多级错流萃取与逆流洗涤”保证了每段工序中物料不被杂质离子污染,相对延长了蚀刻液换缸周期。

三、适用范围
印制电路板企业碱性蚀刻液处理。

四、技术指标
铜回收率:≥91.9%
氯化物回收率:≥90.2%
氨氮回收率≥:83.3%。

相关文档
最新文档