2018年高考物理复习第八章 45分钟章末验收卷
2018届高考物理单元验收试题(附答案)

2018届高考物理单元验收试题(附答案)关于这篇2015高考物理单元验收试题,希望大家认真阅读,好好感受,勤于思考,多读多练,从中吸取精华。
第Ⅰ卷(选择题,共50分)一、选择题:本卷共10小题,每小题5分,共50分,每小题有一个或多个选项正确,全部选对得5分,选不全的得3分,有选错或不答的得0分。
1.劲度系数为20N/cm的弹簧振子,它的振动图象如图所示,在图中A点对应的时刻( )A.振子所受的弹力大小为0.5N,方向指向x轴的负方向B.振子的速度方向指向x轴的正方向C.在0~4s内振子作了1.75次全振动D.在0~4s内振子通过的路程为0.35cm,位移为02.一个质点做简谐运动的图象如图所示,下述正确的是( )A.质点振动频率为4 HzB.在10 s内质点经过的路程是20 cmC.在5 s末,质点的速度为零,加速度最大D.t =1.5 s和t = 4.5 s两时刻质点的位移大小相等,都是 cm3.一列简谐横波沿x轴正向传播,O、A、B、C、D为传播方向上的五个质点,相邻质点之间相隔1.0m,如图所示。
t=0时刻波源O点开始向y轴正方向运动.经过0.10s它第一次达到正向最大位移,而此时刻B质点开始从平衡位置开始向y轴正方向运动.由此可以确定( )A.这列波的波长为8.0m,周期为2.0sB.这列波的波速为20m/s,频率是2.5HzC.在0.30s末D质点刚开始振动D.在0.30s末D质点第一次达到正向最大位移4.在均匀介质中选取平衡位置在同一直线上的 9个质点,相邻质点间的距离均为 L,如图(a)所示。
一列横波沿该直线向右传播,t=0时到达质点1,质点1开始向下运动,经过时间t第一次出现如图(b)所示的波形,则该波的 ( )A.周期为t,波长为8 LB.周期为 t,波长为8 LC.周期为 t,波速为D.周期为t,波速为5.下列现象中由于光的折射而产生色散现象的是( )A.雨后美丽的彩虹B.对着日光灯从夹紧的两铅笔的缝隙中看到的彩色条纹C.阳光下肥皂泡膜上的彩色条纹D.光通过三棱镜产生的彩色条纹6.用包括红、绿、紫三种色光的复色光做光的双缝干涉实验,在所产生的干涉条纹中离中心条纹最近的干涉条纹是( )A.红色条纹;B.绿色条纹;C.紫色条纹;D.三种条纹中心条纹的距离相等7.一束复色光由空气射向一块平行平面玻璃砖,经折射分成两束单色光如a、b所示,已知a光的频率大于b光的频率,下列哪个光路图可能正确( )8.一列简谐横波在x轴上传播,某时刻的波形如图所示,a、b、c为介质中的三个质点,a正向上运动.由此可知()A.该波沿x轴正方向传播B.c正向上运动C.该时刻以后,b比c先到达平衡位置D.该时刻以后,b比c先到达离平衡位置最远处9.一列横波在x轴上传播,在x=0与x=1 cm的两点的振动图线分别如图中实线与虚线所示.由此可以得出()A.波长一定是4 cmB.波的周期一定是4 sC.波的振幅一定是2 cmD.波的传播速度一定是1 cm/s10.如图所示为一列沿x轴正方向传播的简谐波在t=0时的波形.当R点在t=0时的振动状态传到S点时,PR范围内(含P、R)有一些质点正在向y轴负方向运动,这些质点的x坐标取值范围是()A.2 cm4 cmB.2 cmC.2 cm3 cmD.2 cm第Ⅱ卷(非选择题,共50分)二、实验题:本题共2小题,共12分。
2018届高考物理一轮复习单元质检八 恒定电流

单元质检八恒定电流(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.某电路如图所示,已知电池组的总内阻r=1 Ω,外电路电阻R=5 Ω,理想电压表的示数U=3.0 V,则电池组的电动势E等于()A.3.0 VB.3.6 VC.4.0 VD.4.2 VI= A=0.6 A,又由闭合电路的欧姆定律得E=I(R+r)=0.6×(5+1) V=3.6 V。
2.(2016·湖南衡阳模拟)如图所示的U-I图象中,直线a为某一电源的路端电压与电流的关系图线,直线b为某一电阻R的伏安特性曲线,两图线相交于(2,2)。
用该电源和该电阻组成闭合电路,电源的输出功率和电源的内电阻分别是()A.6 W,1 ΩB.6 W,0.5 ΩC.4 W,1 ΩD.4 W,0.5 Ωa的截距可知,电源的电动势为E=3 V;由题图中图线a的斜率可知电源的内阻为r=0.5 Ω;由题图中a、b两图线的交点可知,闭合电路的总电流及路端电压分别为2 A和2 V。
因此,电源的输出功率为P=UI=4 W,A、B、C错误,D正确。
3.(2016·山东日照调研)如图所示,E为内阻不能忽略的电池,R1、R2、R3均为定值电阻,V与A均为理想电表;开始时开关S闭合,V与A均有读数,某时刻V和A的读数均变大,则电路中可能出现的故障是()A.R1断路B.R2断路C.R1短路D.R3短路R1断路时,电流表示数变为0,A错误;当R2断路时,外电路的总电阻变大,故路端电压变大,即电压表读数变大,电路的总电流减小,故R1上的电压减小,R3两端电压变大,故电流表读数变大,与题目所给的现象吻合,故电路是R2断路,B正确;当R1短路或R3短路时,外电路电阻变小,路端电压变小,即电压表示数变小,C、D错误。
2018版高考物理全国用大一轮复习讲义 第五章 机械能 4

45分钟章末验收卷一、单项选择题1.物体放在水平地面上,在水平拉力的作用下,沿水平方向运动,在6 s 内其速度与时间关系的图象和拉力的功率与时间关系的图象如图1甲、乙所示,由图象可以求得物体的质量为(取g =10 m/s 2)( )图1A .2 kgB .2.5 kgC .3 kgD .3.5 kg答案 B解析 匀速运动时拉力等于摩擦力,为: F 2=F f =P v =104N =2.5 N.物体做匀加速直线运动时,拉力为恒力,v 随时间均匀增大,所以P 随t 均匀增大. F 1=P ′v ′=304 N =7.5 N .F 1-F f =ma ,a =42m /s 2=2 m/s 2 可得m =2.5 kg.故B 正确,A 、C 、D 错误.2.如图2所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止开始下滑,到b 点开始压缩轻弹簧,到c 点时达到最大速度,到d 点(图中未画出)开始弹回,返回b 点离开弹簧,恰能再回到a 点.若bc =0.1 m ,弹簧弹性势能的最大值为8 J ,则下列说法正确的是( )图2A .轻弹簧的劲度系数是50 N/mB .从d 到b 滑块克服重力做功8 JC .滑块的动能最大值为8 JD .从d 点到c 点弹簧的弹力对滑块做功8 J 答案 A解析 整个过程中,滑块从a 点由静止释放后还能回到a 点,说明机械能守恒,即斜面是光滑的.滑块到c 点时速度最大,所受合力为零,由平衡条件和胡克定律有:kx bc =mg sin 30°,解得:k =50 N/m ,A 项正确;由d 到b 的过程中,弹簧弹性势能一部分转化为重力势能,一部分转化为动能,B 项错;滑块由d 到c 点过程中,滑块与弹簧组成的系统机械能守恒,弹簧弹性势能一部分转化为重力势能,一部分转化为动能,故到c 点时最大动能一定小于8 J ,又弹性势能减少量小于8 J ,所以弹簧弹力对滑块做功小于8 J ,C 、D 项错.3.如图3所示,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度大小等于23g .物块上升的最大高度为H ,则此过程中,物块的( )图3A .动能损失了23mgHB .动能损失了43mgHC .机械能损失了23mgHD .机械能损失了16mgH答案 B解析 物块所受的合外力F =ma =23mg ,ΔE k =W F =-23mg ×2H =-43mgH ,因此动能损失了43mgH ,A 项错误,B 项正确;根据机械能守恒,摩擦力做的功等于机械能的变化量,mg sin 30°+F f =23mg ,F f =16mg ,ΔE =W f =-13mgH ,机械能损失了13mgH ,C 、D 项错误.4.一汽车的额定功率为P ,设在水平公路行驶所受的阻力恒定,最大行驶速度为v m .则( ) A .若汽车以额定功率启动,则做匀加速直线运动B .若汽车匀加速启动,则在刚达到额定功率时的速度等于v mC .无论汽车以哪种方式启动,加速度与牵引力成正比D .汽车以速度v m 匀速行驶,若要减速,则要减少牵引力 答案 D解析 若汽车以额定功率启动,根据P =F v 可知随速度的增加,牵引力F 减小,则做变加速直线运动,选项A 错误;若汽车匀加速启动,则在刚达到额定功率时有:P =F v m ′,其中F -F f =ma ,则v m ′=P F f +ma,而v m =PF f ,所以v m ′<v m ,选项B 错误;无论汽车以哪种方式启动,则a =F -F fm ,加速度与牵引力不是正比关系,选项C 错误;汽车以速度v m 匀速行驶时,此时F =F f ,则若要减速,则要减少牵引力,选项D 正确;故选D.5.如图4所示,小物块以初速度v 0从O 点沿斜面向上运动,同时从O 点斜向上抛出一个速度大小也为v 0的小球,物块和小球在斜面上的P 点相遇.已知物块和小球质量相等(均可视为质点),空气阻力忽略不计.则下列说法正确的是( )图4A .斜面可能是光滑的B .小球运动到最高点时离斜面最远C .在P 点时,小球的动能大于物块的动能D .小球和物块到达P 点过程中克服重力做功的平均功率不相等 答案 C 二、多项选择题6.质量为m 1、m 2的两物体,静止在光滑的水平面上,质量为m 的人站在m 1上用恒力F 拉绳子,经过一段时间后,两物体的速度大小分别为v 1和v 2,位移分别为x 1和x 2,如图5所示.则这段时间内此人所做的功的大小等于( )图5A .Fx 2B .F (x 1+x 2)C.12m 2v 22+12(m +m 1)v 12 D.12m 2v 22 答案 BC解析 根据功的定义W =Fx ,而其x 应为拉过的绳子长度,也就是两个物体运动的位移之和,因此B 正确,A 错误;根据动能定理,拉力做的功等于两个物体增加的动能之和,即W =12m 2v 22+12(m +m 1)v 12,因此C 正确,D 错误. 7.如图6所示,轻弹簧的上端悬挂在天花板上,下端挂一质量为m 的小球,小球处于静止状态.现在小球上加一竖直向上的恒力F 使小球向上运动,小球运动的最高点与最低点之间的距离为H ,则此过程中(g 为重力加速度,弹簧始终在弹性限度内)( )图6A .小球的重力势能增加mgHB .小球的动能增加(F -mg )HC .小球的机械能增加FHD .小球的机械能不守恒 答案 AD8.如图7甲所示,质量m =1 kg 的物块(可视为质点)以v 0=10 m/s 的初速度从倾角θ=37°的固定粗糙长斜面上的P 点沿斜面向上运动到最高点后,又沿原路返回,其速率随时间变化的图象如图乙所示.不计空气阻力,取s in 37°=0.6,cos 37°=0.8,重力加速度g =10 m/s 2.下列说法正确的是( )图7A .物块所受的重力与摩擦力之比为5∶2B .在1~6 s 时间内物块所受重力的平均功率为50 WC .在t =6 s 时物块克服摩擦力做功的功率为20 WD .在0~1 s 时间内机械能的变化量与在1~6 s 时间内机械能的变化量大小之比为1∶5 答案 AD解析 0~1 s 时间内,由题中图象得加速度大小 a 1=101m /s 2=10 m/s 2,根据牛顿第二定律有mg sin θ+F f =ma 1,1~6 s 时间内,由题中图象得加速度大小a 2=106-1 m /s 2=2 m/s 2,根据牛顿第二定律有mg sin θ-F f =ma 2,解得mg F f =52,F f =4 N ,选项A 正确;1~6 s 时间内,v =0+102m /s =5 m/s ,平均功率P =mg sin θ·v =30 W ,选项B 错误;由题中图象知t =6 s 时物块的速率v 6=10 m/s ,物块克服摩擦力做功的功率P 6=F f v 6=40 W ,选项C 错误;根据功能关系,在0~1 s 时间内机械能的变化量大小ΔE 1=F f s 1,在1~6 s 时间内机械能的变化量大小ΔE 2=F f s 2,由题中图象得s 1=12×1×10 m =5 m ,s 2=12×(6-1)×10 m =25 m ,所以ΔE 1ΔE 2=s 1s 2=15,选项D 正确.9.有一辆质量为170 kg 、输出功率为1 440 W 的太阳能试验汽车,安装有约6 m 2的太阳能电池板和蓄能电池,该电池板在有效光照条件下单位面积输出的电功率为30 W /m 2.若驾驶员的质量为70 kg ,汽车最大行驶速度为90 km/h.假设汽车行驶时受到的阻力与其速度成正比,则汽车( )A .以最大速度行驶时牵引力大小为57.6 NB .刚启动时的加速度大小为0.24 m/s 2C .保持最大速度行驶1 h 至少需要有效光照8 hD .直接用太阳能电池板提供的功率可获得3.13 m/s 的最大行驶速度 答案 AC解析 根据P 额=F v max ,得:F =P 额v max =1 44025 N =57.6 N ,故A 正确;以额定功率启动时:P 额v-F f =ma ,而刚启动时v =0,则F f =0,故刚启动时加速度无穷大,B 错误;由公式W =Pt 和能量守恒得:1 440 W ×1 h =30×6 W ×t ,得:t =8 h ,即保持最大速度行驶1 h 至少需要有效光照8 h ,故C 正确;由题意知,汽车行驶时受到的空气阻力与其速度成正比,设F f =k v ,则结合前面分析:57.6=k ×25得:k =2.318,当直接用太阳能电池板提供的功率行驶获得最大速度时:牵引力=阻力,即:180v =k v 得:v ≈8.84 m/s ,故D 错误.三、非选择题10.用如图8所示的实验装置验证机械能守恒定律.实验所用的电源为学生电源,输出电压为6 V的交流电和直流电两种.重锤从高处由静止开始落下,重锤上拖着的纸带通过打点计时器打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律,已知重力加速度为g.图8(1)下面列举了该实验的几个操作步骤:A.按照图示的装置安装器件;B.将打点计时器接到电源的直流输出端上;C.用天平测量出重锤的质量;D.先释放悬挂纸带的夹子,然后接通电源开关打出一条纸带;E.测量打出的纸带上某些点之间的距离;F.根据测量的结果计算重锤下落过程中减少的重力势能在误差范围内是否等于增加的动能.其中没有必要或操作不恰当的步骤是________(填写选项对应的字母).(2)如图9所示是实验中得到一条纸带,将起始点记为O,并在离O点较远的任意点依次选取6个连续的点,分别记为A、B、C、D、E、F,量出各点与O点的距离分别为h1、h2、h3、h4、h5、h6,使用交流电的周期为T,设重锤质量为m,则在打E点时重锤的动能为________,在打O点和E点这段时间内的重力势能的减少量为________.图9(3)在本实验中发现,重锤减少的重力势能总是______(填“大于”或“小于”)重锤增加的动能,主要是因为在重锤下落过程中存在着阻力的作用,为了测定阻力大小,可算出(2)问中纸带各点对应的速度,分别记为v1至v6, 并作v n2—h n图象,如图10所示,直线斜率为k,则可测出阻力大小为________.图10答案 (1)BCD (2)m (h 6-h 4)28T 2 mgh 5(3)大于 m (g -k2)解析 (1)步骤B 应该将打点计时器接到电源的交流输出端上;步骤C 中没必要用天平测量出重锤的质量;步骤D 中应该先接通电源开关,后释放悬挂纸带的夹子,然后打出一条纸带;故没有必要或操作不恰当的步骤是B 、C 、D. (2)在打E 点时重锤的速度为:v E =h 6-h 42T ,则在打E 点时重锤的动能为:E k E =12m v E 2=12m (h 6-h 42T )2=m (h 6-h 4)28T 2;在打O 点和E 点这段时间内的重力势能的减少量为mgh 5.(3)在本实验中,重锤减少的重力势能总是大于重锤增加的动能;根据v n 2=2ah n 可知,v n 2—h n 图象的斜率k =2a ,而mg -F f =ma ,解得F f =m (g -k 2).11.已知半径为r 的小球在空气中下落时受到的粘滞阻力F f 满足如下规律:F f =6πηv r ,公式中η为空气与小球间的粘滞系数.一同学欲使用传感器通过实验测定粘滞系数,他将一个半径为r 0、质量为m 的小球从空中某位置由静止释放,测得小球速度为v 0时,加速度大小为a 0,若忽略空气浮力,已知当地重力加速度为g ,求: (1)粘滞系数η;(2)若测得小球下落h 高度时达到最大速度,求此过程中小球损失的机械能. 答案 (1)m (g -a 0)6πv 0r 0 (2)mgh -mg 2v 202(g -a 0)2解析 (1)对小球下落过程受力分析 mg -F f0=ma 0 F f0=6πηv 0r 0 η=m (g -a 0)6πv 0r 0(2)达到最大速度时,有 mg -F fm =0 F fm =6πηv m r 0v m =g v 0g -a 0mgh -ΔE =12m v m 2-0ΔE =mgh -mg 2v 202(g -a 0)2.12.如图11所示,传送带A 、B 之间的距离为L =3.2 m ,与水平面间夹角θ=37°,传送带沿顺时针方向转动,速度恒为v =2 m/s ,在上端A 点无初速度放置一个质量为m =1 kg 、大小可视为质点的金属块,它与传送带的动摩擦因数为μ=0.5,金属块滑离传送带后,经过弯道,沿半径R =0.4 m 的光滑圆轨道做圆周运动,刚好能通过最高点E ,已知B 、D 两点的竖直高度差为h =0.5 m(取g =10 m/s 2).求:图11(1)金属块经过D 点时的速度大小;(2)金属块在BCD 弯道上克服摩擦力做的功. 答案 (1)2 5 m/s (2)3 J 解析 (1)对金属块在E 点有mg =m v 2ER,解得v E =2 m/s在从D 到E 过程中,由动能定理得 -mg ·2R =12m v E 2-12m v D 2解得v D =2 5 m/s.(2)金属块在传送带上运行时有, mg sin θ+μmg cos θ=ma 1, 解得a 1=10 m/s 2.设经位移x 1金属块与传送带达到共同速度,则 v 2=2ax 1解得x 1=0.2 m<3.2 m继续加速过程中mg sin θ-μmg cos θ=ma 2解得a 2=2 m/s 2由v B 2-v 2=2a 2x 2,x 2=L -x 1=3 m 解得v B =4 m/s在从B 到D 过程中,由动能定理: mgh -W f =12m v D 2-12m v B 2解得W f =3 J.。
2018届高考物理一轮总复习章末检测卷:第八章 磁场 全国通用 含解析

一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错或不选的得0分.)1.(2017·河北省重点中学调研)如图所示,匀强磁场的边界为平行四边形ABDC,其中AC边与对角线BC垂直,一束电子以大小不同的速度沿BC从B点射入磁场,不计电子的重力和电子之间的相互作用,关于电子在磁场中运动的情况,下列说法中正确的是()A.从AB边出射的电子的运动时间都相等B.从AC边出射的电子的运动时间都相等C.入射速度越大的电子,其运动时间越长D.入射速度越大的电子,其运动轨迹越长解析:电子做圆周运动的周期T=2πmeB,保持不变,电子在磁场中运动时间为t=θ2πT,轨迹对应的圆心角θ越大,运动时间越长.电子沿BC方向入射,若从AB边射出时,根据几何知识可知在AB边射出的电子轨迹所对应的圆心角相等,在磁场中运动时间相等,与速度无关.故选项A正确,选项C错误;从AC边射出的电子轨迹对应的圆心角不相等,且入射速度越大,其运动轨迹越短,在磁场中运动时间不相等.故选项B、D错误.答案:A2.(2017·烟台模拟)初速度为v0的电子,沿平行于通电长直导线的方向射出,直导线中电流方向与电子的初始运动方向如图所示,则()A.电子将向右偏转,速率不变B.电子将向左偏转,速率改变C.电子将向左偏转,速率不变D.电子将向右偏转,速率改变解析:导线在电子附近产生的磁场方向垂直纸面向里,由左手定则知,电子受到的洛伦兹力方向向右,电子向右偏转,但由于洛伦兹力不做功,电子速率不变,A正确.答案:A3.(2016·新乡模拟)如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相同初速度由O点射入,从区域右边界穿出,则粒子b()A.穿出位置一定在O′点下方B.穿出位置一定在O′点上方C.运动时,在电场中的电势能一定减小D.在电场中运动时,动能一定减小解析:a粒子要在电场、磁场的复合场区内做直线运动,则该粒子一定沿水平方向做匀速直线运动,故对粒子a有Bqv=Eq,即只要满足E=Bv无论粒子带正电还是负电,粒子都可以沿直线穿出复合场区;当撤去磁场只保留电场时,粒子b由于电性不确定,故无法判断从O′点的上方还是下方穿出,选项A、B错误;粒子b在穿过电场区的过程中必然受到电场力的作用而做类平抛运动,电场力做正功,其电势能减小,动能增大,故选项C正确,D错误.答案:C4.(2016·黄冈模拟)如图所示,在纸面内半径为R的圆形区域中充满了垂直纸面向里、磁感应强度为B的匀强磁场,一点电荷从图中A点以速度v0垂直磁场射入,当该电荷离开磁场时,速度方向刚好改变了180°,不计电荷的重力,下列说法正确的是()A.该点电荷离开磁场时速度方向的反向延长线通过O点B.该点电荷的比荷qm=2v0BRC.该点电荷在磁场中的运动时间t=πR 3v0D.该点电荷带正电解析:根据左手定则可知,该点电荷带负电,选项D错误;粒子在磁场中做匀速圆周运动,其速度方向的偏向角等于其运动轨迹所对应的圆心角,根据题意,该粒子在磁场中的运动轨迹刚好是半个圆周,画出其运动轨迹并找出圆心O1,如图所示,根据几何关系可知,轨道半径r=R 2,根据r =mv 0Bq 和t =πr v 0可求出,该点电荷的比荷为q m =2v 0BR和该点电荷在磁场中的运动时间t =πR2v 0,所以选项B 正确,C 错误;该点电荷离开磁场时速度方向的反向延长线不通过O 点,选项A 错误.答案:B5.(2016·张家界模拟)如图所示,铜质导电板(单位体积的电荷数为n)置于匀强磁场中,用电源、开关、电流表、电压表可以测出磁感应强度的大小和方向.将电路接通,串联在AB 线中的电流表读数为I ,电流方向从A 到B ,并联在CD 两端的电压表的读数为U CD >0,已知铜质导电板厚h 、横截面积为S ,电子电荷量为e.则该处的磁感应强度的大小和方向可能是( )A .neSU Ih、垂直纸面向外 B .nSU Ih、竖直向上C .neSU Ih、垂直纸面向里 D .nSU Ih、竖直向下 解析:铜质导电板靠电子导电,当铜质导电板通电时,U he =Bev ,式中v 为电子定向运动的速度,由电流的微观定义得I =neSv ,得B =neSU Ih,B 、D 错;根据左手定则可知,磁感应强度的方向垂直纸面向外,A 对,C 错.答案:A6.(2017·衡水模拟)如图所示,从离子源发射出的正离子,经加速电压U 加速后进入相互垂直的电场(E 方向竖直向上)和磁场(B 方向垂直纸面向外)中,发现离子向上偏转.要使此离子沿直线通过电磁场,需要( )A .增加E ,减小B B .增加E ,减小UC .适当增加UD .适当减小E解析:要使粒子在复合场中做匀速直线运动,必须满足条件Eq =qvB.根据左手定则可知正离子所受的洛伦兹力的方向竖直向下,因正离子向上极板偏转的原因是电场力大于洛伦兹力,所以为了使粒子在复合场中做匀速直线运动,则要么增大洛伦兹力,要么减小电场力.增大电场强度E,即可以增大电场力,减小磁感应强度B,即减小洛伦兹力,不满足要求,故选项A错误;减小加速电压U,则洛伦兹力减小,而增大电场强度E,则电场力增大,不满足要求,故选项B错误;加速电场中,根据eU=12mv2可得v2=2eUm,适当地增大加速电压U,从而增大洛伦兹力,故选项C正确;根据适当减小电场强度E,从而减小电场力,故选项D正确.答案:CD7.如图所示,虚线空间中存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁混合场上方的某一高度自由落下,那么,带电小球可能沿直线通过的是()解析:带电小球进入复合场时受力情况:其中只有C、D两种情况下合外力可能为零或与速度的方向相同,所以有可能沿直线通过复合场区域,A项中力qvB随速度v的增大而增大,所以三力的合力不会总保持在竖直方向,合力与速度方向将产生夹角,做曲线运动,所以A错.答案:CD8.(2017·绵阳模拟)粒子回旋加速器的工作原理如图所示,置于真空中的D形金属盒的半径为R,两金属盒间的狭缝很小,磁感应强度为B 的匀强磁场与金属盒盒面垂直,高频交流电的频率为f,加速电压为U,若中心粒子源处产生的质子质量为m、电荷量为+e,在加速器中被加速.不考虑相对论效应,则下列说法正确的是()A.不改变磁感应强度B和交流电的频率f,该加速器也可加速α粒子B.加速的粒子获得的最大动能随加速电压U的增大而增大C.质子被加速后的最大速度不能超过2πRfD.质子第二次和第一次经过D形盒间狭缝后轨道半径之比为2∶1解析:质子被加速获得的最大速度受到D形盒最大半径的制约,v m=2πRT=2πRf,C正确;粒子旋转频率为f=Bq2πm,与被加速粒子的比荷有关,所以A错误;粒子被加速的最大动能E km=mv2m2=2mπ2R2f2,与加速电压U无关,B错误;因为运动半径R=mvBq,nUq=mv22,知半径比为2∶1,D正确.答案:CD二、非选择题(本题共5小题,共52分.按题目要求作答,解答题应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.) 9.(8分)如图所示,PQ和MN为水平平行放置的金属导轨,相距L =1 m.导体棒ab跨放在导轨上,棒的质量为m=0.2 kg,棒的中点用细绳经定滑轮与一物体相连(绳与棒垂直),物体的质量为M=0.3 kg.导体棒与导轨的动摩擦因数为μ=0.5(g取10 m/s2),匀强磁场的磁感应强度B =2 T,方向竖直向下,为了使物体匀速上升,应在棒中通入多大的电流?方向如何?解析:对导体棒ab受力分析,由平衡条件得,竖直方向F N=mg,(2分)水平方向BIL-F f-Mg=0,(2分)又F f=μF N.(2分)联立解得I=2A.(1分)由左手定则知电流方向由a指向b.(1分)答案:2 A电流方向由a指向b10.(10分)横截面为正方形abcd的匀强磁场磁感应强度为B,一个带电粒子以垂直于磁场方向、在ab边的中点与ab边成30°角的速度v0射入磁场,如图所示,带电粒子恰好不从ad边离开磁场,已知粒子的质量为m,正方形边长为L,不计重力,求:(1)粒子带何种电荷?粒子的电荷量是多少?(2)粒子在磁场中运动的时间.解析:(1)根据左手定则,粒子带正电荷,设粒子做圆周运动的半径为r.由几何条件有r+r cos 60°=L2,(1分)解得r=L3.(1分)根据牛顿第二定律qv0B=mv20r,(2分)所以q=mv0Br=3mv0BL.(1分)(2)设周期为T,由几何条件可知粒子轨道所对的圆心角为300°,(1分)所以t=56T,(1分)又T=2πrv0=2πL3v0,(2分)解得t=56T=5πL9v0.(1分)答案:(1)粒子带正电荷,3mv0BL(2)5πL9v011.(10分)如图甲所示,M、N为竖直放置彼此平行的两块平板,板间距离为d,两板中央各有一个小孔O、O′正对,在两板间有垂直于纸面方向的磁场,磁感应强度随时间的变化如图乙所示,设垂直纸面向里的磁场方向为正方向.有一群正离子在t=0时垂直于M板从小孔O射入磁场.已知正离子质量为m 、带电荷量为q ,正离子在磁场中做匀速圆周运动的周期与磁感应强度变化的周期都为T 0,不考虑由于磁场变化而产生的电场的影响,不计离子所受重力.求:(1)磁感应强度B 0的大小;(2)要使正离子从O′孔垂直于N 板射出磁场,正离子射入磁场时的速度v 0的可能值.解析:(1)正离子射入磁场,洛伦兹力提供向心力qv 0B 0=m v 20r,(2分) 做匀速圆周运动的周期T 0=2πr v 0.(2分) 联立两式得磁感应强度B 0=2πm qT 0.(1分) (2)要使正离子从O′孔垂直于N 板射出磁场,v 0的方向应如图所示,两板之间正离子只运动一个周期即T 0时,有r =d 4.(3分)当两板之间正离子运动n 个周期即nT 0时,有r =d 4n(n =1,2,3,…).(1分) 联立求解,得正离子的速度的可能值为v 0=B 0qr m =πd 2nT 0(n =1,2,3,…).(1分) 答案:(1)2πm qT 0 (2)πd 2nT 0(n =1,2,3,…)12.(12分)(2014·重庆卷)某电子天平原理如图所示,E 形磁铁的两侧为N 极,中心为S 极,两极间的磁感应强度大小均为B ,磁极宽度均为L ,忽略边缘效应,一正方形线圈套于中心磁极,其骨架与秤盘连为一体,线圈两端C 、D 与外电路连接,当质量为m 的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后外电路对线圈供电,秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流I 可确定重物的质量.已知线圈匝数为n ,线圈电阻为R ,重力加速度为g.问:(1)线圈向下运动过程中,线圈中感应电流是从C 端还是从D 端流出?(2)供电电流I 是从C 端还是从D 端流入?求重物质量与电流的关系;(3)若线圈消耗的最大功率为P ,该电子天平能称量的最大质量是多少?解析:(1)由右手定则可知线圈向下运动,感应电流从C 端流出.(1分)(2)设线圈受到的安培力为F A ,外加电流从D 端流入.(1分)由F A =mg ,①(2分)F A =2nBIL ,②(2分)得m =2nBL gI.③(1分) (3)设称量最大质量为m 0,由m =2nBL gI ,④(2分) P =I 2R ,⑤(2分)得m 0=2nBL g P R.⑥(1分) 答案:(1)电流从C 端流出 (2)从D 端流入 m =2nBL g I (3)2nBL g P R13.(12分)(2015·浙江卷)使用回旋加速器的实验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m ,速度为v 的离子在回旋加速器内旋转,旋转轨道是半径为r 的圆,圆心在O 点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B.为引出离子束,使用磁屏蔽通道法设计引出器.引出器原理如图所示,一堆圆弧形金属板组成弧形引出通道,通道的圆心位于O′点(O′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P 点进入通道,沿通道中心线从Q 点射出.已知OQ 长度为L ,OQ 与OP 的夹角为θ.(1)求离子的电荷量q 并判断其正负.(2)离子从P 点进入,Q 点射出,通道内匀强磁场的磁感应强度应降为B′,求B′.(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B 不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应.为使离子仍从P 点进入,Q 点射出,求通道内引出轨迹处电场强度E 的方向和大小.解析:(1)离子做圆周运动Bqv =m v 2r,①(2分) 解得q =mv Br,正电荷.②(2分) (2)如图所示.O ′Q =R ,OQ =L ,O ′O =R -r.引出轨迹为圆弧B′qv =m v 2R ,③(2分) 解得R =mvB ′q .④(1分)根据几何关系得R =r 2+L 2-2rR cos θ2r -2L cos θ.⑤(1分)解得B′=mv qR =2mv (r -L cos θ)q (r 2+L 2-2rR cos θ).⑥(1分)(3)电场强度方向沿径向向外⑦(1分)引出轨迹为圆弧Bqv -Eq =m v 2R ,⑧(1分) 解得E =Bv -2mv 2(r -L cos θ)q (r 2+L 2-2rR cos θ).(1分)答案:(1)q =mv Br ,正电荷 (2)2mv (r -L cos θ)q (r 2+L 2-2rR cos θ)(3)沿径向向外E =Bv -2mv 2(r -L cos θ)q (r 2+L 2-2rR cos θ)。
2018单元滚动检测卷高考物理江苏专用精练 第八章 磁场

单元滚动检测八 磁 场考生注意:1.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.2.本次考试时间90分钟,满分100分. 3.请在密封线内作答,保持试卷清洁完整.一、单项选择题:本题共7小题,每小题4分,共计28分,每小题只有一个选项符合题意. 1.将一个质量很小的金属圆环用细线吊起来,在其附近放一块条形磁铁,磁铁的轴线与圆环在同一平面内,且通过圆环中心,如图1所示,当圆环中通以顺时针方向的电流时,从上往下看( )图1A .圆环顺时针转动,靠近磁铁B .圆环顺时针转动,远离磁铁C .圆环逆时针转动,靠近磁铁D .圆环逆时针转动,远离磁铁2.将长为L 的导线弯成六分之一圆弧,固定于垂直于纸面向外、大小为B 的匀强磁场中,两端点A 、C 连线竖直,如图2所示.若给导线通以由A 到C 、大小为I 的恒定电流,则导线所受安培力的大小和方向是( )图2A .ILB ,水平向左 B .ILB ,水平向右 C.3ILB π,水平向右 D.3ILBπ,水平向左 3.如图3所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 为半圆弧的圆心,∠MOP =60°,在M 、N 处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O 点的磁感应强度大小为B 1.若将M 处长直导线移至P 处,则O 点的磁感应强度大小为B 2,那么B 2与B 1之比为( )图3A.3∶1B.3∶2C .1∶1D .1∶24.某空间有一圆柱形匀强磁场区域,磁感应强度大小为B .该区域的横截面的半径为R ,磁场方向垂直于横截面.一质量为m 、电荷量为q (q >0)的粒子以某一速率沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向74°.不计重力,则初速度v 0大小为(已知sin37°=35)( )A.4qBR 3mB.5qBR 3mC.3qBR 4m D.3qBR5m5.带电粒子以初速度v 0从a 点垂直y 轴进入匀强磁场,如图4所示.运动中经过b 点,Oa =Ob ,若撤去磁场加一个与y 轴平行的匀强电场,仍以v 0从a 点垂直于y 轴进入电场,粒子仍能通过b 点,不考虑粒子重力,那么电场强度E 与磁感应强度B 之比为( )图4A .v 0B .1C .2v 0D.v 026.如图5所示,abcd 为一正方形边界的匀强磁场区域,磁场边界边长为L ,三个粒子以相同的速度从a 点沿ac 方向射入,粒子1从b 点射出,粒子2从c 点射出,粒子3从cd 边垂直于磁场边界射出,不考虑粒子的重力和粒子间的相互作用.根据以上信息,可以确定( )图5A .粒子1带负电,粒子2不带电,粒子3带正电B .粒子1和粒子3的比荷之比为2∶1C .粒子1和粒子3在磁场中运动时间之比为4∶1D .粒子3的射出位置与d 点相距L27.如图6所示,带正电的A 粒子和B 粒子先后以同样大小的速度从宽度为d 的有界匀强磁场的边界上的O 点分别以30°和60°(与边界的夹角)射入磁场,又都恰好不从另一边界飞出,则下列说法中正确的是( )图6A .A 、B 两粒子在磁场中做圆周运动的半径之比是13B .A 、B 两粒子在磁场中做圆周运动的半径之比是32+3C .A 、B 两粒子m q 之比是13D .A 、B 两粒子mq 之比是32+3二、多项选择题:本题共5小题,每小题4分,共计20分.每小题有多个选项符合题意.全部选对得4分,选对但不全的得2分,错选或不答得0分.8.如图7所示为一个质量为m 、电荷量为+q 的圆环,可在水平放置的粗糙细杆上自由滑动,细杆处在磁感应强度为B 的匀强磁场中,圆环以初速度v 0向右运动直至处于平衡状态,则圆环克服摩擦力做的功可能为( )图7A .0B.12mv 20C.m 3g 22q 2B2 D.12m (v 20-m 2g 2q 2B2) 9.如图8所示,在平板PQ 上有一匀强磁场,磁场方向垂直纸面向里.某时刻有a 、b 、c 三个电子(不计重力)分别以大小相等、方向如图所示的初速度v a 、v b 和v c 经过平板PQ 上的小孔O 射入匀强磁场.这三个电子打到平板PQ 上的位置到小孔O 的距离分别是l a 、l b 和l c ,电子在磁场中运动的时间分别为t a 、t b 和t c .整个装置放在真空中,则下列判断正确的是( )图8A .l a =l c <l bB .l a <l b <l cC .t a <t b <t cD .t a >t b >t c10.如图9所示,在x 轴上的上方有沿y 轴负方向的匀强电场,电场强度为E ,在x 轴下方的等腰直角三角形CDM 区域内有垂直于xOy 平面向外的匀强磁场,磁感应强度为B ,其中C 、D 在x 轴上,它们到原点O 的距离均为a .现将质量为m 、带电荷量为+q 的粒子从y 轴上的P 点由静止释放,设P 点到O 点的距离为h ,不计重力作用与空气阻力的影响.下列说法正确的是( )图9A .若h =B 2a 2q 2mE ,则粒子垂直于CM 射出磁场B .若h =B 2a 2q2mE ,则粒子平行于x 轴射出磁场C .若h =B 2a 2q8mE ,则粒子垂直于CM 射出磁场D .若h =B 2a 2q8mE,则粒子平行于x 轴射出磁场11.如图10所示,竖直放置的两块很大的平行金属板a 、b ,相距为d ,a 、b 间的电场强度为E ,今有一带正电的微粒从a 板下边缘以初速度v 0竖直向上射入电场,当它飞到b 板时,速度大小不变,而方向变为水平方向,且刚好从高度也为d 的狭缝进入bc 区域,bc 区域的宽度也为d ,所加电场的场强大小为E ,方向竖直向上,磁感应强度方向垂直纸面向里,磁场磁感应强度大小等于E v 0,重力加速度为g ,则下列关于微粒运动的说法正确的是( )图10A .微粒在ab 区域的运动时间为v 0gB .微粒在bc 区域中做匀速圆周运动,圆周半径r =2dC .微粒在bc 区域中做匀速圆周运动,运动时间为πd6v 0D .微粒在ab 、bc 区域中运动的总时间为(π+6)d3v 012.如图11所示,两个倾角分别为30°和60°的光滑斜面固定于水平面上,并处于方向垂直纸面向里、磁感应强度为B 的匀强磁场中.两个质量均为m 、带电荷量均为+q 的小滑块甲和乙分别从两个斜面顶端由静止释放,运动一段时间后,两小滑块都将飞离斜面,在此过程中( )图11A .甲滑块飞离斜面瞬间的速度比乙滑块飞离斜面瞬间的速度大B .甲滑块在斜面上运动的时间比乙滑块在斜面上运动的时间短C .甲滑块在斜面上运动的位移与乙滑块在斜面上运动的位移大小相同D .两滑落块在斜面上运动的过程中,重力的平均功率相等 三、简答题(共计9分)13.(9分)霍尔效应是电磁基本现象之一,近期我国科学家在该领域的实验研究上取得了突破性进展.如图12所示,在一矩形半导体薄片的P 、Q 间通入电流I ,同时外加与薄片垂直的磁场B ,在M 、N 间出现电压U H ,这个现象称为霍尔效应,U H 为霍尔电压,且满足U H =k IB d,式中d 为薄片的厚度,k 为霍尔系数.某同学通过实验来测定该半导体薄片的霍尔系数.图12(1)若该半导体材料是空穴(可视为带正电粒子)导电,电流与磁场方向如图所示,该同学用电压表测量U H时,应将电压表的“+”接线柱与______(选填“M”或“N”)端通过导线连接.(2)已知薄片厚度d=0.40mm,该同学保持磁感应强度B=0.10T不变,改变电流I的大小,测量相应的U H值,记录数据如下表表示.根据表中数据在图13中的坐标纸上画出U H-I图线,利用图线求出该材料的霍尔系数为____________×10-3V·m·A-1·T-1(保留2位有效数字).图13(3)该同学查阅资料发现,使半导体薄片中的电流反向再次测量,取两个方向测量的平均值,可以减小霍尔系数的测量误差,为此该同学设计了如图14所示的测量电路.S1、S2均为单刀双掷开关,虚线框内为半导体薄片(未画出).为使电流自Q端流入,P端流出,应将S1掷向________(选填“a”或“b”),S2掷向________(选填“c”或“d”).图14为了保证测量安全,该同学改进了测量电路,将一合适的定值电阻串接在电路中.在保持其他连接不变的情况下,该定值电阻应串接在相邻器件________和________(填器件代号)之间.四、计算题:本题共4小题,共计43分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.14.(9分)如图15所示,在水平地面上固定一对与水平面夹角为α的光滑平行导电轨道,轨道间的距离为l,两轨道底端的连线与轨道垂直,顶端接有电源.将一根质量为m的直导体棒ab放在两轨道上,且与两轨道垂直.已知轨道和导体棒的电阻及电源的内电阻均不能忽略,通过导体棒的恒定电流大小为I,方向由a到b,图乙为图甲沿a→b方向观察的平面图.若重力加速度为g,在轨道所在空间加一竖直向上的匀强磁场,使导体棒在轨道上保持静止.图15(1)请在图乙所示的平面图中画出导体棒受力的示意图;(2)求出磁场对导体棒的安培力的大小;(3)如果改变导轨所在空间的磁场方向,试确定使导体棒在轨道上保持静止的匀强磁场磁感应强度B的最小值的大小和方向.15.(10分)在直径为d的圆形区域内存在着匀强磁场,磁感应强度为B,磁场方向垂直于圆面指向纸外.一电荷量为q、质量为m的带正电粒子,从磁场区域的一条直径AC上的A点沿纸面射入磁场,其速度方向与AC成α=15°角,如图16所示.若此粒子在磁场区域运动的过程中,速度的方向一共改变了90°.重力可忽略不计,求:图16(1)该粒子在磁场区域内运动所用的时间t;(2)该粒子射入时的速度大小v.16.(12分)如图17所示,在平面直角坐标系中AO 是∠xOy 的角平分线,x 轴上方存在水平向左的匀强电场,下方存在竖直向上的匀强电场和垂直纸面向里的匀强磁场,两电场的电场强度大小相等.一质量为m 、电荷量为+q 的质点从OA 上的M 点由静止释放,质点恰能沿AO 运动而通过O 点,经偏转后从x 轴上的C 点进入第一象限内并击中AO 上的D 点(C ,D 均未画出).已知OD =34OM ,匀强磁场的磁感应强度大小为B =m q (T),重力加速度为g =10m/s 2.求:图17(1)两匀强电场的电场强度E 的大小; (2)OM 的长度L ;(3)质点从M 点出发到击中D 点所经历的时间t .17.(12分)如图18所示,竖直平面坐标系xOy 的第一象限有垂直xOy 面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B 和E ;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E ;第三象限内有一绝缘光滑竖直放置的半径为R 的半圆轨道,轨道最高点与坐标原点O 相切,最低点与绝缘光滑水平面相切于N ,一质量为m 的带电小球从y 轴上(y >0)的P 点沿x 轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O ,且水平切入半圆轨道并沿轨道内侧运动,过N 点水平进入第四象限,并在电场中运动(已知重力加速度为g ).图18(1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2Rg小球距坐标原点O 的距离s 为多远?答案精析1.C 2.D 3.B4.A 5.C 6.B 7.D 8.ABD9.AD [由带电粒子在磁场中运动的特征可以画出这三个电子在磁场中运动的轨迹,如图所示.由带电粒子在磁场中运动的半径公式R=mv Bq和周期公式T =2πm Bq很容易得到l a =l c <l b ,t a >t b >t c ,所以B 、C 错误,A 、D 正确.] 10.AD 11.ABD 12.AD13.(1)M (2)见解析图 1.5(1.4~1.6均可) (3)b c S 1 E (或E S 2)解析 (1)根据左手定则可判断带正粒子向M 端偏转,故应将电压表的“+”接线柱与M 端连接.(2)作出U H -I 图线如图所示.由U H =k IBd 得k =U H dIB,求出图线斜率,再将题目中给出的B 、d 的值代入,可计算出k =1.5×10-3V·m·A -1·T -1.(3)S 1掷向b ,S 2掷向c .加入定值电阻的目的是为了防止两个开关同时掷向a 、c 或b 、d 而将电源短路,故应将定值电阻串接在相邻器件E 和S 1或E 和S 2之间. 14.(1)见解析图 (2)mg tan α (3)mg sin αIl,方向垂直于轨道平面向上解析 (1)如图所示.(2)根据共点力平衡条件可知,磁场对导体棒的安培力的大小F =mg tan α.(3)要使磁感应强度最小,则要求安培力最小.根据受力情况可知,最小安培力F min =mg sin α,方向平行于轨道斜向上,所以最小磁感应强度B min =F min Il =mg sin αIl,根据左手定则可判断出,此时的磁感应强度的方向为垂直于轨道平面向上. 15.(1)πm 2qB (2)6qBd4m解析 (1)粒子在匀强磁场中运动的周期:T =2πmqB带正电粒子的速度方向改变了90°,所用的时间:t =T4=πm 2qB(2)设粒子做圆周运动的半径为r ,则粒子的运动情况如图所示. 由几何关系知,△AOD 是等腰直角三角形. 所以AD =2r在△CAD 中,∠CAD =90°-α-∠OAD =30°,则AD =d cos30°=32d 解得半径r =64d 又因为qvB =m v 2r因此粒子射入时的速度大小v =6qBd4m. 16.(1)mg q (2)202m 或2029m (3)7.71s 或6.38s解析 (1)质点在第一象限内受重力和水平向左的电场力作用沿AO 做加速直线运动,所以有mg =qE ,即E =mg q(2)质点在x 轴下方,重力与电场力平衡,质点做匀速圆周运动,从C 点进入第一象限后做类平抛运动,其轨迹如图所示.有Bqv =m v 2R由运动学规律知v 2=2aL ,a =2g设粒子从C 点运动到D 点所用时间为t 3,由类平抛运动规律知R =vt 3,R -3L 4=12at 23 联立解得L =202m 或2029m. (3)质点做匀加速直线运动有L =12at 21 得t 1=2s 或23s 质点做匀速圆周运动有t 2=34×2πm Bq=4.71s 质点做类平抛运动有R =vt 3,得t 3=1s质点从M 点出发到击中D 点所经历的时间为 t =t 1+t 2+t 3=7.71s 或6.38s.17.(1)带正电 mg E (2)2E B R g(3)27R 解析 (1)小球进入第一象限正交的电场和磁场后,在垂直磁场的平面内做圆周运动,说明重力与电场力平衡,设小球所带电荷量为q ,则有qE =mg ①解得q =mg E②又电场方向竖直向上,故小球带正电. (2)设小球做匀速圆周运动的速度为v 、轨道半径为r .由洛伦兹力提供向心力得qBv =mv 2r③小球通过半圆轨道的最高点并恰能沿轨道运动,为满足题目要求,则有mg =mv 2R ④ 由②③④得r =EB R g⑤ 即PO 的最小距离为y =2r =2E B R g. (3)设小球到达N 点的速度为v N ,由机械能守恒定律得:mg ·2R =12mv 2N -12mv 2⑦ 由④⑦解得:v N =5gR ⑧小球从N 点进入电场区域后,在绝缘光滑水平面上做类平抛运动,设加速度为a ,则有 沿x 轴方向x =v N t ⑨沿电场方向z =12at 2⑩ 由牛顿第二定律得:a =qEm ⑪ t 时刻小球距O 点为s =x 2+(2R )2+z 2=27R ⑫。
2018年普通高等学校招生全国统一考试仿真卷+物理(八)

绝密★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科综合能力测试·物理(八)本试卷共16页,38题(含选考题)。
全卷满分300分。
考试用时150分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
可能用到的相对原子质量:H 1 C 12N 14O 16Na 23S 32 Cl 35.5Zn 65 Pb 207第Ⅰ卷二、选择题:本题共8小题,每题6分,在每小题给出的四个选项中,第14~18题只有一个选项符合题目要求。
第19~21题有多选项符合题目要求。
全部答对的得6分,选对但不全的得3分,有选错的得0分。
14.下列说法正确的是A .光电效应既显示了光的粒子性,又显示了光的波动性B .原子核内的中子转化成一个质子和一个电子,这种转化产生的电子发射到核外,就是β粒子,这就是β衰变C .一个氘核21H 与一个氚核31H 聚变生成一个氦核42He 的同时,放出一个质子D .按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能增大,电势能增大,原子的总能量增大【答案】B【解析】光电效应显示了光的粒子性,A 错误;β衰变的核反应方程为10n→11H +0-1e ,产生的电子发射到核外就是β粒子,B 正确;由核反应方程得21H +31H→42He +10n ,放出一个中子,C 错误;根据玻尔理论,氢原子核外电子获得能量,从半径较小的轨道跃迁到半径较大的轨道时,原子总能量增大,由于库仑引力提供向心力,即k Qe r 2=m v 2r,即v =kQe mr,半径增大则电子动能减小,由于库仑力做负功,则电势能增大,D 错误。
2018届高三理综物理部分下学期第八次练习试题
甘肃省白银市平川区第四中学2018届高三理综(物理部分)下学期第八次练习试题二、选择题(本题共8小题;每小题6分,共48分.其中14-18小题,在每小题给出的四个选项中,有一个选项是正确的。
19-21小题有多个选项是正确的,全部选对得6分,选得对但不全的给3分。
有选错或不答的得0分)14. A、B两辆汽车在平直公路上朝同一方向运动,如图所示为两车运动的v—t 图象,下面对阴影部分的说法正确的是A.若两车从同一点出发,它表示两车再次相遇前的最大距离B.若两车从同一点出发,它表示两车再次相遇前的最小距离C.若两车从同一点出发,它表示两车再次相遇时离出发点的距离D.表示两车出发时相隔的距离15.一个很高的容器内壁为圆柱形,里面装有n个质量均为m、大小相同的小球,容器的内半径与小球的半径之比为8:5,如图所示,现将小球从上至下依次编号为1、2、3、… n,不计一切摩擦,重力加速度设为g,则第4个小球对第5个小球的压力大小为A. 4mg B.4.5mg C.5mg D.6mg16.M、N为两块水平放置的平行金属板,距平行板右端L处有竖直屏,平行板板长、板间距均为L,板间电压恒定。
一带电粒子(重力不计)以平行于板的初速度v0沿两板中线进入电场,粒子在屏上的落点距O点的距离为,当左端入口处均匀分布的大量上述粒子均以平行于板的初速度v0从MN板左端各位置进入电场(忽略粒子间作用力),下列结论正确的是A.有的粒子能到达屏上 B.有的粒子能到达屏上C.有的粒子能到达屏上 D.有的粒子能到达屏上17.如图所示,两根材料相同的均匀导体柱m和n,m长为l,n长为2l,串联在电路中时,沿x轴方向电势变化如图像φ–x所示,选取x=3l处电势为零,则导体柱m、n的横截面积之比为A.B. C. D.18.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外、大小可调节的匀强磁场,质量为m、电荷量为+q的粒子在环中做半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子顺时针飞经A板时,A板电势升高为φ,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,粒子在电场中一次次加速下动能不断增大,而绕行半径不变,下列说法正确的是A.粒子从A板小孔处由静止开始在电场作用下加速,绕行n圈后回到A板时获得的总动能为2nqφB.在粒子绕行的整个过程中,A板电势可以始终保持为φC.在粒子绕行的整个过程中,每一圈的周期不变D.为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,则粒子绕行第n圈时的磁感应强度为19.在发射地球同步卫星的过程中,卫星首先进入椭圆轨道I,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道II,则A.该卫星的发射速度必定大于第二宇宙速度11.2km/sB.卫星在同步轨道II上的运行速度大于第一宇宙速度7.9km/sC.在轨道I上,卫星在P点的速度大于在Q点的速度D.卫星在Q点通过加速实现由轨道I进入轨道II。
2018版高考物理全国用大一轮复习讲义课件 第五章 机械能 45分钟章末验收卷 精品
45分钟章末验收卷
1.物体放在水平地面上,在水平拉力的作用下,沿水平方向运动,在6 s 内其速度与时间关系的图象和拉力的功率与时间关系的图象如图甲、乙 所示,由图象可以求得物体的质量为(取g=10 m/s2) 答案 解析
A.2 kg
√B.2.5 kg
C.3 kg
D.3.5 kg
1 2 3 4 5 6 7 8 9 10 11 12
√C.在P点时,小球的动能大于物块的动能
D.小球和物块到达P点过程中克服重力做功的平均功率不相等
1 2 3 4 5 6 7 8 9 10 11 12
6.质量为m1、m2的两物体,静止在光滑的水平面上,质量为m的人站在 m1上用恒力F拉绳子,经过一段时间后,两物体的速度大小分别为v1和v2, 位移分别为x1和x2,如图所示.则这段时间内此人所做的功的大小等于
mh6-h42 设重锤质量为m,则在打E点时重锤的动能为 8T2 ,在打O点和E 点这段时间内的重力势能的减少量为__m_g_h_5_. 答案 解析
1 2 3 4 5 6 7 8 9 10 11 12
(3)在本实验中发现,重锤减少的重力势能总是__大__于___(填“大于”或 “小于”)重锤增加的动能,主要是因为在重锤下落过程中存在着阻力的 作用,为了测定阻力大小,可算出(2)问中纸带各点对应的速度,分别记 为v1至v6, 并作vn2—hn图象,如图所示,直线斜率为k,则可测出阻力 大小为 m(g-2k) . 答案 解析
否等于增加的动能.
其中没有必要或操作不恰当的步骤是________(填写选项对应的字母).
答案 解析
1 2 3 4 5 6 7 8 9 10 11 12
(2)如图所示是实验中得到一条纸带,将起始点记为O,并在离O点较远 的任意点依次选取6个连续的点,分别记为A、B、C、D、E、F,量出各 点与O点的距离分别为h1、h2、h3、h4、h5、h6,使用交流电的周期为T,
2018年新课标高考物理总复习 高考复习验收卷 含解析
高考复习验收卷(时间:60分钟 满分:110分)一、选择题(共8小题,每小题6分。
在每小题给出的四个选项中,第1~4题只有一项符合题目要求,第5~8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错的得0分)1.如图所示,壁虎在竖直玻璃面上斜向上匀速爬行,关于它在此平面内的受力分析,下列图示中正确的是( )解析:选A 壁虎在竖直玻璃面斜向上做匀速爬行,即做匀速直线运动,所以壁虎所受合力为零,即所受重力mg 和竖直向上的摩擦力F ,是一对平衡力,故选项A 正确。
2.太空中运行的宇宙飞船处于完全失重状态,我国“神舟十号”宇航员王亚平在太空授课时利用质量测量仪完成了测量聂海胜质量的实验。
受这一实验启发,某实验小组在实验室也完成了一个不用天平测量物体质量的实验:如图在光滑水平台面右端固定一个永磁恒力器,在台面左端放一辆小车,车上固定一遮光条,遮光条宽度为d ,永磁恒力器通过一根细线给小车提供恒定拉力F ,使小车由静止开始依次经过两个光电门,光电门1、2记录的挡光时间分别为t 1、t 2,测得两光电门中心间距为x ,不计遮光条质量。
根据以上实验数据可得小车质量为( )A.Fx ⎝⎛⎭⎫d t 22-⎝⎛⎭⎫d t 12 B.2Fx ⎝⎛⎭⎫d t 22-⎝⎛⎭⎫d t 12 C.2Fx ⎝⎛⎭⎫d t 12-⎝⎛⎭⎫d t 22 D.Fx⎝⎛⎭⎫d t 12-⎝⎛⎭⎫d t 22解析:选B 对小车,由牛顿第二定律有F =ma ,对小车通过两光电门间距离的过程,由运动学公式有:⎝⎛⎭⎫d t 22-⎝⎛⎭⎫d t 12=2ax ,联立两式解得小车的质量为:m =2Fx ⎝⎛⎭⎫d t 22-⎝⎛⎭⎫d t 12,故B 正确,A 、C 、D 错误。
3.如图所示,关闭动力的航天飞机在月球引力作用下沿椭圆轨道向月球靠近,并将在P 处进入空间站轨道,与空间站实现对接。
已知空间站绕月轨道半径为r ,周期为T ,引力常量为G ,下列说法中正确的是( )A .航天飞机向P 处运动过程中速度逐渐变小B .根据题中条件不能计算出月球质量C .根据题中条件可以算出空间站受到月球引力的大小D .航天飞机在与空间站对接过程中速度将变小解析:选D 设航天飞机的质量为m ,月球的质量为M ,空间站的质量为m 0,对空间站的圆周运动有G Mm 0r 2=m 04π2T 2r ,得M =4π2r 3GT 2,故B 选项错误;由于不知空间站的质量,故C 选项错误;由机械能守恒或由万有引力做正功可知,A 选项错误;由高轨道到低轨道,应减速,由此可以判断出航天飞机在与空间站对接过程中速度将变小,D 选项正确。
2018年高考物理章末检测:8 含解析
章末检测八 恒定电流(时间:60分钟 满分:100分)一、选择题(本题共10小题,每小题6分,共60分,1~5题每小题只有一个选项正确,6~10小题有多个选项符合题目要求,全选对得6分,选对但不全得3分,有选错的得0分)1.三个阻值相同的电阻,它们的额定电压均为8 V ,现两个电阻并联后再与第三个电阻串联,这个电路允许的总电压的最大值为( )A .8 VB .10 VC .12 VD .16 V解析:选C.因为第三个电阻串联的电压就是并联部分电压的2倍,若让并联部分的电阻正常工作,则第三个电阻就超过额定电压,所以,让第三个电阻正常工作,则并联部分的电压为额定电压的一半;设三只同样的电阻的阻值都是R ,额定电压为U ,则并联部分的一个电阻的实际电压为U 2,所以电路允许消耗的最大电压为U +U 2=8 V +4 V =12 V. 2.在图甲所示的电路中,电流表A 1的指针指满刻度,电流表A 2的指针指满刻度的23处;图乙中,A 2的指针指满刻度,A 1的指针指满刻度的13处.已知A 1的电阻为0.45 Ω,则A 2的电阻为( )A .0.1 ΩB .0.15 ΩC.0.3 ΩD.0.6 Ω解析:选A.设电流表A1、A2的满偏电流分别为I1、I2;由题意知,当电流表串联时:I1=23I2,当电流表并联时:I2R2=13I1R1,由于R1=0.45 Ω,解得R2=0.1 Ω.3.如图所示的电路中,电源的电动势为E,内阻为r,正确接入电路中的电表a、b、c均有正常示数(既不为零,也不超量程,电表均为理想电压表或电流表),在滑动变阻器滑片P向右移动过程中,关于a、b、c三只电表示数的变化,以下说法正确的是( )A.a的示数将变大,c的示数将变小B.a的示数将变小,c的示数将变大C.a的示数将变小,b的示数将变小D.b的示数将不变,c的示数将变小解析:选A.根据题意,a是电流表,测量流过滑动变阻器的电流,b是电流表,测量干路电流,c是电压表,测量滑动变阻器(定值电阻)的电压.通过电路分析可知,当滑动变阻器的触头P向右滑动时,滑动变阻器的电阻变小,总电阻变小,总电流增大,a中电流增大,内电压增大,路端电压减小,则变阻器两端电压减小,A选项正确.4.在如图所示的电路中,开关S闭合后,由于电阻元件发生短路或断路故障,电压表和电流表的读数都增大,则可能出现了下列哪种故障( )A.R1短路B.R2短路C.R3短路D.R1断路解析:选A.若R1短路,则外部电路的电阻只有R3,故总电阻减小,总电流变大,电流表的示数变大,电压表的示数变大,A对;若R2短路,电流表的示数为零,故B错;若R3短路,电压表的示数为零,故C错;若R1断路,电流表的示数为零,D错.5. 如图所示的电路中,电源的电动势为E,内阻为r,闭合开关S,在滑动变阻器的滑片P向左移动的过程中,下列结论正确的是( )A.小灯泡L变暗B.电流表读数变大,电压表读数变小C.电容器C上电荷量增加D.电源的总功率变小解析:选B.滑动变阻器的滑片P向左移动的过程中,滑动变阻器接入电路的阻值减小,由闭合电路的欧姆定律得,干路的电流I增大,小灯泡L的功率P =I2R灯增大,小灯泡L变亮,路端电压U=E-Ir减小,电源的总功率P总=EI 增大,则A、D错误,B正确;滑动变阻器两端的电压U′=E-I(R灯+r)减小,电容器C上电荷量Q=CU′减小,则C错误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45分钟章末验收卷一、单项选择题1.经典物理学认为金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞,且金属导体中通过恒定电流形成了稳恒的电场,已知铜的电阻率为ρ,单位体积内的自由电子数量为n ,自由电子的质量为m 、带电荷量为e ,假设自由电子与金属离子碰撞后减速到零,且碰撞时间极短,则铜导线中自由电子连续两次与金属离子碰撞的时间间隔的平均值为( )A.2m nρeB.2m nρe 2C.2ρm ne 2D.2nm ρe 2 答案 B解析 设铜导线的长度为l ,横截面积为S ,金属导线内的匀强电场场强为E ,则电子定向移动的加速度为a =eE m ,经过时间t 获得的定向移动速度为v =at =eEt m,在时间t 内的平均速度为v =12v =eEt 2m ,则由电流微观表达式I =neS v =ne 2ES 2m t ,由欧姆定律和电阻定律可知ρl S =U I =El I ,联立解得t =2m nρe 2,B 正确. 2.在如图1所示的电路中,电源内阻不可忽略,在调节可变电阻R 的阻值过程中,发现理想电压表的示数减小,则( )图1A .R 的阻值变大B .路端电压不变C .干路电流减小D .路端电压和干路电流的比值减小答案 D解析 由题意知,理想电压表的示数减小,说明与电压表并联的电阻变小,即可变电阻R 接入电路的电阻变小,选项A 错误;由闭合电路欧姆定律知,电路总电流变大,路端电压变小,选项B 、C 错误;由于外电路总电阻变小,结合电阻定义式R =U I知,路端电压和干路电流的比值减小,选项D 正确.3.如图2所示,K 1、K 2闭合时,一质量为m 、带电荷量为q 的液滴,静止在电容器的A 、B 两平行金属板间.现保持K 1闭合,将K 2断开,然后将B 板向下平移到图中虚线位置,则下列说法正确的是( )图2A .电容器的电容增大B .A 板电势比电路中Q 点电势高C .液滴将向下运动D .液滴的电势能增加答案 B解析 由平行板电容器电容的决定式可知,板间距离增大,电容减小,A 项错误;K 1、K 2闭合时,R 1中无电流通过,故B 板电势为零,电容器两极板电势差与R 2两端电压相等,电阻R 2下端接地,故Q 点与电容器上极板电势相等.断开开关K 2,电路结构未发生变化,Q 点电势不变,电容器所带电荷量保持不变,B 板下移,即板间距离d 增大,由C =Q U =εr S 4πkd可知,d 增大,其他物理量保持不变,则两极板电势差U 增大,B 板电势为零不变,故A 板电势升高,B 项正确;由场强与电势差关系E =U d 及Q U =εr S 4πkd 可知,E =4πkQ εr S,故两极板间场强不变,因此带电液滴受电场力不变,液滴保持静止,C 项错;根据U =Ed 知,液滴距离下极板B 的距离增大,所以液滴所在位置与B 板的电势差增大,B 板电势为零,故液滴所在位置电势φ升高,液滴静止,上极板与电源正极相连,故液滴带负电,由E p =qφ可知液滴的电势能降低,D 项错.4.如图3所示,电源电动势为E ,内电阻为r .当滑动变阻器的滑片P 从右端滑到左端时,发现电压表V 1、V 2示数变化的绝对值分别为ΔU 1和ΔU 2,下列说法中正确的是( )图3A .小灯泡L 1、L 3变暗,L 2变亮B .小灯泡L 2、L 3变暗,L 1变亮C .ΔU 1<ΔU 2D .ΔU 1>ΔU 2答案 D解析 当滑动变阻器的滑片P 从右端滑到左端时,滑动变阻器接入电路的电阻减小,外电路总电阻减小,总电流增大,路端电压减小,则L 2变亮.电路中并联部分电压减小,则L 3变暗.总电流增大,而L 3的电流减小,则L 1的电流增大,则L 1变亮,故A 、B 均错误.由上分析可知,电压表V 1的示数减小,电压表V 2的示数增大,由于路端电压减小,所以ΔU 1>ΔU 2,故C 错误,D 正确.5.如图4所示的电路中.电源电动势为E ,内阻为R ,L 1和L 2为相同的灯泡,每个灯泡(阻值恒定不变)的电阻和定值电阻相同,阻值均为R ,电压表为理想电表,K 为单刀双掷开关,当开关由1位置打到2位置时,下列说法中正确的是( )图4A .L 1亮度不变,L 2将变暗B .L 1将变亮,L 2将变暗C .电源内阻的发热功率将变小D .电压表读数将变小答案 D解析 开关掷到位置1时,灯泡L 1和L 2并联,并联电阻R 并=R ·R R +R =R 2,电路总电阻R 总=R +R +R 2=5R 2,干路电流I =E R 总=2E 5R,根据并联电路电流与电阻成反比可得流过灯泡L 1和L 2的电流相等,即I 1=I 2=E 5R,开关掷到2位置时,灯泡L 1与定值电阻串联,然后与灯泡L 2并联,并联电阻为R 并′=(R +R )R R +R +R =2R 3,电路总电阻R 总′=R +2R 3=5R 3,干路电流I ′=E R 总′=3E 5R ,根据并联电路电流与电阻成反比可得流过灯泡L 1的电流I 1′=I ′×13=E 5R,流过灯泡L 2的电流I 2′=I ′×23=2E 5R.据此判断,开关由1位置打到2位置时,流过灯泡L 1的电流大小不变,灯泡亮度不变,流过灯泡L 2的电流变大,灯泡变亮,所以选项A 、B 错误.总电流变大,电源内阻的发热功率P =I 2R 变大,选项C 错误.总电流变大,内电压变大,路端电压变小,电压表示数变小,选项D 正确.二、多项选择题6.电动汽车是以车载电源为动力,开启了“绿色出行”的新模式.某电动汽车电源电动势为400V ,内阻为0.5Ω,充满电时储存的可用电能为64kW·h ,汽车运行时电源的放电电流为100A ,熄火后电源的放电电流为100mA.下列说法正确的是( )A .汽车运行时,电源持续放电的时间可超过1hB .汽车熄火后,电源持续放电的时间可超过60天C .汽车运行时电源的输出功率为35kWD .汽车运行时电源的效率为95%答案 ABC解析 充满电储存电能W E =64kW·h ,汽车运行时,电源的放电电流为I 1=100A ,放电功率P 1=EI 1=400×100W =40kW ,电源持续放电的时间t 1=W E P 1=1.6h ,超过1h ,选项A 正确;汽车熄火后,电源的放电电流为I 2=100mA ,放电功率P 2=EI 2=400×0.1W =0.04kW ,电源持续放电的时间t 2=W E P 2=1600h ,约66.7天,可超过60天,选项B 正确;汽车运行时电源输出功率P 出=P 1-I 21r =40kW -5kW =35kW ,选项C 正确;汽车运行时电源效率η=P 出P 1×100%=87.5%,选项D 错误.7.A 、B 两块正对的金属板竖直放置,在金属板A 的内侧表面系一绝缘细线,细线下端系一个带电小球(可视为点电荷).两块金属板接在如图5所示的电路中,电路中的R 1为光敏电阻(其阻值随所受光照强度的增大而减小),R 2为滑动变阻器,R 3为定值电阻.当R 2的滑片P 在中间时闭合开关S ,此时电流表和电压表的示数分别为I 和U ,带电小球静止时绝缘细线与金属板A 的夹角为θ,电源电动势E 和内阻r 一定,电表均为理想电表.下列说法中正确的是( )图5A .无论将R 2的滑动触头P 向a 端移动还是向b 端移动,θ均不会变化B .若将R 2的滑动触头P 向b 端移动,则I 减小,U 减小C .保持滑动触头P 不动,用较强的光照射R 1,则小球重新达到稳定后θ变小D .保持滑动触头P 不动,用较强的光照射R 1,则U 变化量的绝对值与I 变化量的绝对值的比值不变答案 ACD8.如图6所示,在同一坐标纸上画出了灯泡L 1和灯泡L 2的U -I 图象,现将这两个灯泡并联,然后接在电动势E =10V 、内电阻r =2Ω的电源上,则下列结论正确的是( )图6A .此时灯泡L 1的电阻较大B .此时灯泡L 2的电阻较大C .此时灯泡L 1的功率约为4WD .此时灯泡两端的电压约为6V答案 AC解析 两个灯泡并联后接在电动势E =10V 、内电阻r =2Ω的电源上,由闭合电路欧姆定律,可得E =U +(I 1+I 2)r ,在题给的灯泡L 1和L 2的U -I 图象上,作出两灯泡并联的U -I 图象和电源的U -(I 1+I 2)图象,如图所示.由两图象的交点可知此时灯两端电压约为4V ,灯泡L 1的电流约为1A ,灯泡L 2的电流约为2A .由欧姆定律R =U I可知,此时灯泡L 1的电阻较大,选项A 正确,B 、D 错误;由功率公式P =UI 可知,灯泡L 1的功率P 1=U 1I 1=4W ,选项C 正确.9.如图7所示,直流电源、滑动变阻器、平行板电容器与理想二极管(正向电阻为0,反向电阻为∞)连接,电源负极接地.开始时电容器不带电,闭合开关S ,稳定后,一带电油滴恰能静止在电容器中的P 点.在开关S 保持接通的状态下,下列说法正确的是( )图7A .当滑动变阻器的滑片向上滑动时,带电油滴会向上运动B .当电容器的上极板向上移动时,带电油滴会向下运动C .当电容器的下极板向下移动时,P 点的电势不变D .当电容器的下极板向左移动时,P 点的电势会升高答案 AD解析 带电油滴恰好静止,其合力为零,受到竖直向下的重力和竖直向上的电场力,即mg =qE .当滑动变阻器的滑片向上滑动时,其电阻值变大,电容器两端的电压U 变大,对电容器进行充电,两极板间电场强度E 变大,带电油滴受到的电场力大于重力,会向上运动,选项A 正确;当电容器的上极板向上移动时,极板间距d 变大,根据C =εr S 4πkd =Q U,电容器的电荷量Q 应减小,但由于二极管的单向导电性,电容器只能进行充电,不能进行放电,故此时,电容器的电荷量Q 不变,电场强度E =U d =4πkQ εr S不变,带电油滴仍静止不动,选项B 错误;同理,当电容器的下极板向下移动时,d 变大,电场强度E 不变,而P 点到下极板的距离变大且下极板的电势不变,故P 点电势升高,选项C 错误;当电容器的下极板向左移动时,S 变小,根据C =εr S 4πkd =Q U 和二极管的单向导电性,电容器的电荷量Q 不变,电场强度E =4πkQ εr S变大,而P 点到下极板的距离不变,故P 点电势升高,选项D 正确.10.如图8所示,图甲中M 为一电动机,当滑动变阻器R 的滑片从一端滑到另一端的过程中,两电压表和的读数随电流表读数的变化情况如图乙所示,已知电流表读数在0.2A 以下时,电动机没有发生转动.不考虑电表对电路的影响,以下判断正确的是( )图8A .电路中电源电动势为3.6VB .变阻器的最大阻值为30ΩC .此电路中,电动机的最大输入功率是0.9WD .若电流表示数小于0.2A ,随着变阻器滑片向右滑动,测量R 0两端电压表读数的变化量与电流表读数的变化量之比ΔU ΔI=6Ω 答案 ACD解析 由电路图甲知,电压表V 2测量路端电压,电流增大时,内电压增大,路端电压减小,所以最上面的图线表示V 2的电压与电流的关系,此图线的斜率大小等于电源的内阻,为r =ΔU ΔI =3.4-3.00.3-0.1Ω=2Ω,当电流I =0.1A 时,U =3.4V ,则电源的电动势E =U +Ir =(3.4+0.1×2) V =3.6V ,A 项正确;当I =0.3A 时,U =3V ,电动机输入功率最大,最大为P =UI =3×0.3W =0.9W ,C 项正确;若电流表A 示数小于0.2A ,由图知,电动机不转动,电动机的电阻r M =0.8-0.40.1Ω=4Ω,根据闭合电路欧姆定律得U =E -I (r +r M ),得|ΔU ||ΔI |=r +r M =6Ω,D 项正确;当I =0.1A 时,电路中电流最小,变阻器的电阻为最大值,所以R 与R 0并联电阻的最大值R 总=E I -r -r M =(3.60.1-2-4)Ω=30Ω,则变阻器的最大阻值大于30Ω,B 项错误. 三、非选择题11.实验小组利用变阻箱和一个电流表研究小灯泡工作时的电阻与电流间的关系,设计电路如图9a 所示.开关S 闭合前,滑动变阻器的滑片滑到a 端,变阻器R 的阻值调到最大位置.(1)①调节R P ,使得测量电路的电压由较低电压开始.先闭合S 1,断开S 2,记录电流I 1;再断开S 1,闭合S 2,调节____________,使电流表读数也为I 1,并记录R 的阻值R 1. ②逐次调节________,改变测量电路电压,重复①的测量,得I 1、I 2、I 3、I 4…,R 1、R 2、R 3、R 4….图9(2)利用测得的数据,在图b 所示坐标纸上画出R —I 图象;(3)根据图象判断,当通过的电流为零时,灯丝电阻约为__________,当流过的电流为0.40A 时,灯丝电阻约为________.答案(1)①变阻箱R的阻值②R P(2)见解析图(3)2.50Ω 5.40Ω(5.20~5.60Ω均可)解析(1)①调节R P,使得测量电路的电压由较低电压开始.先闭合S1,断开S2;再断开S1,闭合S2,调节电阻箱R的阻值,使电流表读数也为I1,并记录R的阻值R1.②逐次调节R P,改变测量电路电压,进行实验.(2)根据表中实验数据在坐标系内描出对应点,然后根据描出的点作出图象如图所示.(3)由图示可知,当通过的电流为零时,灯丝电阻约为2.50Ω,当流过的电流为0.40A时,灯丝电阻约为5.40Ω.12.有一个小灯泡,其玻璃罩上的数据看不清楚了,只知道该小灯泡的额定电压为12V,额定功率约为6W,某同学为了精确测量出该小灯泡正常发光时的电阻,设计了以下实验,实验室中只提供了下列器材:A.电流表A1(量程0~0.5A,内阻为0.5Ω);B.电流表A2(量程0~1A,内阻约为0.3Ω);C.电压表V(量程0~30V,内阻约为2kΩ);D.电阻箱R(0~999.9Ω);E.滑动变阻器R1(0~10Ω,允许通过的最大电流为5A);F.电源E(电动势15V,内阻不计);G.开关S一个,导线若干.为了保护小灯泡不被烧毁,又要达到最大量程的一半以上,请完成以下填空:(1)该同学设计了以下实验电路图,你认为最合理的是________.(2)若电流表A 1的读数用I 1表示,其内阻用r 1表示,电流表A 2的读数用I 2表示,电阻箱的阻值用R 表示,电压表V 的读数用U 表示,写出小灯泡的电阻的表达式为r =________.(用题中所给的字母表示)答案 (1)A (2)I 1(r 1+R )I 2-I 1解析 (1)电压表量程太大不能直接使用,选项C 、D 均错误;将已知内阻的电流表A 1与电阻箱串联改装成电压表,再采用伏安法测电阻,为了便于调节,滑动变阻器应采用分压接法,选项A 正确,B 错误.(2)小灯泡两端的电压为I 1(r 1+R ),通过小灯泡的电流为I 2-I 1,故小灯泡的电阻为r =I 1(r 1+R )I 2-I 1. 提醒:学生用书第九章 第170页(见下页)。