2015中考数学模拟考试试卷+答案
2015中考数学模拟试题含答案(精选5套)

2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2015届九年级中考模拟考试数学试题及答案

2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟. 2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答不给分. 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是A .3B .31C .3-D .31-2.下列运算正确的是 A . 523x x x =+ B .x x x =-23C .623x x x=⋅ D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是 A .①③ B .②④ C .③④ D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x 1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --=二、填空题(本大题共8小题,每小题3分,共24分)①正方体 ②圆锥体 ③球体7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分) 三、(本大题共4小题,每小题6分,共24分)15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值 ()xx x x x 224422+÷+++ ,其中 x = 2(第12题图) BA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四 边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l2交于点E, BD 与l4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2). 根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);FE A(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少? 六、(本大题共2小题,每小题10分,共20分)23. 已知抛物线22232y x mx m m =-++. (1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁7%21~30岁 39% 31~40岁 20% 16~20岁16%61~65岁3%41~50岁 15%图(1)24.已知:如图(1),△OAB 是边长为2的等边三角形,0A 在x 轴上,点B 在第一象限内;△OCA 是一个等腰三角形,OC =AC ,顶点C 在第四象限,∠C =120°.现有两动点P 、Q 分别从A 、O 两点同时出发,点Q 以每秒1个单位的速度沿OC 向点C 运动,点P 以每秒3个单位的速度沿A →O →B 运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ 的面积S 与运动的时间t 之间的函数关系,并写出自变量t 的取值范围; (2)在OA 上(点O 、A 除外)存在点D ,使得△OCD 为等腰三角形,请直接写出所有符合条件的点D 的坐标;(3)如图(2),现有∠MCN =60°,其两边分别与OB 、AB 交于点M 、N ,连接MN .将∠MCN 绕着C 点旋转(0°<旋转角<60°),使得M 、N 始终在边OB 和边AB 上.试判断在这一过程中,△BMN 的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b 10、25゜ 11、8 12、7413、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分)15、解:原式=1212222+⨯-+ …………………………………………………3分=222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1 ……………………………………………4分 将2=x 代入得: 221=x………………………………………………………6分17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上手背向上……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r.∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C=90° ∴OD ∥AC ∴△OBD ∽△ABC. …………………………2分∴OD AC = OBAB,即12128r r-=解得:524=r∴⊙O 的半径为524………………………4分(2)四边形OF DE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF=∠B. ∵∠DEF=12∠DOB ∴∠B=12∠DOB.∵∠ODB=90° ∴∠DOB+∠B=90° ∴∠DOB=60°∵DE ∥AB ,∴∠ODE=60°.∵OD=OE ,∴△ODE 是等边三角形∴OD=DE ∵OD=OF ∴DE=OF ∴四边形OFDE 是平行四边形 ………7分 ∵OE=OF ∴平行四边形OFDE 是菱形. …………………………………8分 20、(1) ∵l2∥l4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分A∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分 (2)(批改时注意若学生用计算器计算,中间答案会有 少许不同,但最终答案一样) 过A 作AG ⊥l4,交l2于H ∵α=25° ∴∠ABE=25°∴sin 0.42AHABE AB∠=≈解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜∴91.0cos ≈=∠AD AGDAG 解得:AD ≈43.96 ………………7分∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈ …………………………………8分∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分 根据题意,得⎩⎨⎧x+y=53(x+1)+2(2y-1)=19 解得⎩⎨⎧x=2y=3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分 n=(1-m)(50+10×m 0.2)+(5-3-m)(20+10×m0.2)F E GH即 n=-100m2+80m+90 =-100(m-0.4)2+106. ……………………………7分 ∴当m=0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分)23、解:∵()m m m x m m mx x y 222322222++-=++-= ∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分当m=0时,顶点坐标为(0,0)当m=32-时,顶点坐标为(32-,94-) ……………………………………3分∵第三象限的平分线所在的直线为y=x∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分(2)∵m>0时,m m222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m m n∴当21-=m 时,n 有最小值21-…………………………………10分24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒. ∵OC AC =,CD OA ⊥, ∴1OD DA ==.在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-;过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t∆=⋅=-⋅=-+. 即23142S t t=-+ .………………………………………2分 (图①) (2)当23t <≤时,(如图②)OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒.∴2113(32)222OPQ S OQ OP t t t t∆=⋅=⋅-=-. 即232S t t=-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t=-(2),0)或2(,0)3 …………………6分(3)BMN ∆的周长不发生变化.延长BA 至点F ,使AFOM =,连结CF .(如图③) ∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分 ∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。
2015年中考模拟考数学试卷附答案

2015年中考模拟考数学试卷(2015.5.25)(本卷共26小题,考试时间:120分钟,满分:150分)一、选择题(本题有10小题,每小题3分,共30分) 1. 关于m 的不等式-m >1的解为( )A .m >0B .m<0C .m<-1D .m >-1 2、下列电视台的台标,是中心对称图形的是( ) A ...3. 下列运算正确的是( )4、支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为( ) A 、104.7310⨯ B 、1047.310⨯ C 、94.7310⨯ D 、 947.310⨯ 5、如图,AB ∥CD ,BC ∥DE ,若∠B =40°,则∠D 的度数是( ) A .40°B .140°C .160°D .60°6、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数7. △ABC 中,a 、b 、c 分别是∠A ,∠B ,∠C 的对边,如果222a b c +=,那么下列结论正确的是( ) A 、cos b B c =B 、sin c A a =C 、tan a A b =D 、tan b B c =8. 如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么DEF ∆与ABC∆的周长比为( ) A .4︰1 B .3︰1C .2︰1D ︰1 9、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是( )A .34π B .38π C .32π D .316π10.二次函数y =ax 2+bx +c 的图象如图5所示,反比例函数y = ax与正比例函数CAB(第8题)EDF 9题图y =(b +c )x 在同一坐标系中的大致图象可能是( )图5 A B C D二,填空题(本题有10小题,每小题3分,共30分)11. 若代数式23-x 有意义,则x 的取值范围是 ▲ . 12、 若a -b =3,ab =2,则a 2b -ab 2= ▲ .13、从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是 ▲ . 14.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 ▲ .15. 将关于x 的一元二次方程02=++q px x 变形为q px x --=2,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”. 已知012=--x x ,可用“降次法”求得432014x x -+值是 ▲ .16.如图,把Rt △ABC 放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿 x 轴向右平移,当点 C 落在直线 y =2x -6上时, 线段BC 扫过的面积为 ▲ .三,解答题(本题有10小题,共96分)17.(本题满分7()011π2015()6tan302--+-︒; 18.(本题满分8分)先化简再求值:35222x x x x +⎛⎫÷+- ⎪--⎝⎭,其中x 是不等式组3(3)1,4253x x x x --≥⎧⎨-<-⎩的一个整数解.19(本题满分7分)、如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,A F ∠=∠,AB FD =。
2015中考数学模拟试卷及答案

2015中考数学模拟试卷一、选择题(本大题共8小题,每小题4分,满分32分) 1.在数轴上表示2-的点离开原点的距离等于( A )A .2B .2-C .2±D .42.已知2243a b x y x y x y -+=-,则a +b 的值为( C ). A. 1 B. 2 C. 3 D. 4 3.从某个方向观察一个正六棱柱,可看到如图所示的图形,其 中四边形ABCD 为矩形,E 、F 分别是AB 、DC 的中点.若 AD =8,AB =6,则这个正六棱柱的侧面积为( D ) A .48 3 B .96 C .144 D .96 34.如图,以点P 为圆心,以25为半径的圆弧与x 轴交于A ,B 两点,点A 的坐标为(2,0),点B 的坐标为(6,0),则圆心P 的坐标为( C )A.(4, 14) B .(4,2) C.(4,4) D.(2, 26)5.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是( B )A .121 B .61 C .41D .316.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( A ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠57.如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90º,点A 的坐标为(1,2).将△AOB 绕点A 逆时针旋转90º,点O 的对应点C 恰好落在双曲线y = kx (x >0)上,则k =( B )A .2B .3C .4D .68.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y轴的正半轴的交点在(02),的下方.下列结论: ①420a b c -+=;②ac <0;③4a+2b+c <0;④-2<2ba-<0.其中正确结论是( D ). A.①④ B. ②④ C.①③④ D.①②③④ 二.填空题(本大题共8个小题,每小题4分,共32分) 9.当的值为最小值时,a 的取值为﹣2 . 10.已知关于x 的分式方程2x +2 - ax +2=1的解为负数,那么字母a 的取值范围a>0. 11.如图AB 是⊙O 的直径,AB=4,AC 是弦,AC=23,∠AOC 的度数是120°.12.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=3 cm ,AB=8 cm ,则图中阴影部分面积为___30______cm2.OAB PxyABD CEF (第3题)13.如图,△ABC 是等腰直角三角形,∠ACB=90°,CB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是____4π____ (结果保留π). 14.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的点,AD BE =,AE 与CD 交于点F ,AG CD ⊥于点G , 则AGAF 的值为 23 . 15.如图,在平面直角坐标系中有一正方形AOBC,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(422-)的圆内切于△ABC ,则k 的值为__4______。
2015年中考模拟数学试题及答案

2015年初三模拟考试数 学 试 卷(本试卷共26道题 考试时间120分钟 试卷满分150分) 注意:所有试题必须在答题卡上作答,在本试卷上答题无效.1. -12的绝对值是A .-2B .-12 C.12D .22. 到2015年5月8日止,青藏铁路共运送旅客265.3万人次,用科学记数法表示265.3万正确的是 A. 2.653×105B. 2.653×106C. 2.653×107D. 2.653×1083. 下面的三视图所对应的物体是4. 把不等式组x 315x 6-⎧⎨⎩<--<的解集表示在数轴上,正确的是5.下列运算正确的是( ) A . 532a a a =⋅B .22()ab ab =C .329()a a =D .632a a a ÷=6. 已知甲、乙两组数据的平均数分别是80x =甲,90x =乙,方差分别是210S =甲,25S =乙,比较这两组数据,下列说法正确的是( ) A .甲组数据较好B .乙组数据较好C .甲组数据比较整齐D .乙组数据的波动较小A .B .C .D .7. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2(B )15πcm 2(C )18πcm 2(D )24πcm 2第7题图 第10题图8. 已知二次函数2y ax bx c =++(其中a >0,b >0,c <0), 关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧;④方程02=+bx ax 一定有两个不相等的实数根.以上说法正确的个数为A .1B .2C .3D .49. 解放军某部接到上级命令,乘车前往地震灾区抗震救灾.前进一段路程后,由于道路受阻,汽车无法通行,部队通过短暂休整后决定步行前往.若部队离开驻地的时间为t (小时),离开驻地的距离为S (千米),则能反映S 与t 之间函数关系的大致图象是10. 在四边形ABCD 中,AC 、BD 是对角线,△ABC 是等边三角形,∠ADC=30°,AD=3,BD=5,则CD 的长为A .33B .52C .4D .5BD11.使21-x 有意义的x 的取值范围是.12.一个口袋中装有4个红球,x 个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是31,则袋里有 个绿球 13.已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的中位数为 . 14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x 名,二等奖的学生有y 名,根据题意可列方程组为 . 15. 如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .第15题 第16题 第18题16.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .17.已知,AB 是⊙O 直径,半径OC ⊥AB ,点D 在⊙O 上,且点D 与点C 在直径AB 的两侧,连结CD ,BD ,若∠OCD=22°,则∠ABD 的度数是________.18.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2015次,点P 依次落在点P 1,P 2,P 3,……P 2015的位置,则点P 2015的横坐标为 . 三、解答题(19、20每小题9分,共18分)2y x =xyOP 1 P 2P 3 P 4 1234AD C BFG E19. 先化简,再求值:)b1a 1(b a b ab 2a 2222-÷-+-,其中12b ,12a -=+= 20.由于某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度。
2015届中考数学模拟试卷附 答案

2015届中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2 3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤45.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.36.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是__________.10.分解因式:a3﹣9a=__________.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为__________m.12.若在实数范围内有意义,则x的取值范围是__________.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为__________°.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为__________m.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是__________cm.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是__________.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为__________.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=__________.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为__________;(2)条形统计图中存在错误的是__________(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.26.某仓储系统有12条输入传送带,12条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3).(1)每条输入传送带每小时进库的货物流量为多少吨?每条输出传送带每小时出库的货物流量为多少吨?(2)在0时至5时内,仓库内货物存量y(吨)与时间x(小时)之间的函数关系式,并写出自变量x的取值范围;(3)在4时至5时有多少条输入传送带和输出传送带在工作?27.【情境阅读】在图1中,点A在边OB上,点D在边OC上,且AD∥BC﹒将这样的图形定义为“A型”﹒将△OAD绕着点O旋转α°(0<α<90)得到新的图形(如图2),将图2中的四边形A′B′C′D′称为“准梯形”,A′D′称为上底,B′C′称为下底﹒【新知学习】(1)若情境阅读中的△OBC是等腰直角三角形,OB=OC,∠BOC=90°,其余条件不变﹒①请说明图2中的△O′A′B′≌△O′D′C′﹒②在图1中,S四边形ABCD=S△OBC﹣S△OAD,请探索图2中的S四边形A′B′C′D′与图1中的S四边的大小关系﹒【变式探究】形ABCD(2)如图3,四边形ABCD是由有一个角是60°的“A型”通过旋转变换得到的“准梯形”,AD 是上底,BC是下底,且AB=5,BC=8,CD=5,DA=2﹒求这个“准梯形”的面积.【迁移拓展】(3)如图4是由具有公共直角顶点的“A型”绕着直角定点旋转α°(0<α<90)得到的“准梯形”,斜边AD为上底,斜边BC为下底,且AB=3,BC=4,CD=6,AD=3.求这个“准梯形”的面积.28.如图,在平面直角坐标系中,四边形ABCD为梯形,AD∥BC,∠C=90°,tan∠ABC=2,点D(﹣8,6),将△AOB沿直线AB翻折,点O落在点E处,直线AE交x轴于点F.(1)求点F的坐标;(2)矩形AOCD以每秒1个单位长度的速度沿x轴向右运动,当点C′与点F重合时停止运动,运动后的矩形A′O′C′D′与△AOF重合部分的面积为S,设运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在矩形A′O′C′D′运动过程中,直线A′O′与射线AB交于G,是否存在时间t,使点A关于直线FG的对称点恰好落在x轴上?若存在,求t的值;若不存在,请说明理由.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列四个数中,最大的数是( )A.3 B.﹣1 C.0 D.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1,所以最大的数是3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列运算正确的是( )A.a3•a2=a6B.a6÷a3=a3C.(a﹣b)2=a2﹣b2D.(﹣a2)3=(﹣a3)2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.专题:计算题.分析:分别根据同底数幂的乘法、同底数幂的除法、完全平方公式及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、a3•a2=a3+2=a5,故本选项错误;B、a6÷a3=a6﹣3=a3,故本选项正确;C、(a﹣b)2=a2+b2﹣2ab,故本选项错误;D、(﹣a2)3=﹣a6,而(﹣a3)2=a6,故本选项错误.故选B.点评:本题考查的是同底数幂的除法及乘法、幂的乘方与积的乘方法则及完全平方公式,熟知以上知识是解答此题的关键.3.下列四个几何体中,主视图与其它三个不同的是( )A.B.C.D.考点:简单组合体的三视图.分析:根据主视图是从正面看得到的图形,可得答案.解答:解:A、的主视图是第一层两个小正方形,第二层左边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左两个小正方形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图.4.不等式组的解集为( )A.x>3 B.x≤4 C.3<x<4 D.3<x≤4考点:解一元一次不等式组.专题:计算题.分析:本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.解答:解:依题意得:在数轴上表示为:∴原式的解集为3<x≤4.故选D.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.5.若一个多边形的内角和等于其外角和,则这个多边形的边数是( )A.6 B.5 C.4 D.3考点:多边形内角与外角.分析:任何多边形的外角和是360度,根据n边形的内角和是(n﹣2)•180°,可得方程(n ﹣2)•180=360,解方程就可以求出多边形的边数.解答:解:设多边形的边数为n,根据题意,得(n﹣2)•180=360,解得:n=4,故选C.点评:本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决.6.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查考点:全面调查与抽样调查;众数;方差;随机事件.分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断即可.解答:解:A、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.点评:本题考查了必然事件的定义,方差的性质,众数的定义及抽样调查的定义,知识点较多,但都是基础知识,需牢固掌握.7.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径是OA,点P是优弧上的一点,则tan∠APB的值是( )A.1 B.C.D.考点:圆周角定理;锐角三角函数的定义.专题:压轴题;网格型.分析:由题意可得:∠AOB=90°,然后由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠APB的度数,又由特殊角的三角函数值,求得答案.解答:解:由题意得:∠AOB=90°,∴∠APB=∠AOB=45°,∴tan∠APB=tan45°=1.故选A.点评:此题考查了圆周角定理与特殊角的三角函数值问题.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.8.如图,在平面直角坐标系xOy中,Rt△OAC,Rt△OA1C1,Rt△OA2C2,…的斜边都在坐标轴上,∠AOC=∠A1OC1=∠A2OC2=∠A3OC3=…=30°.若点A的坐标为(3,0),OA=OC1,OA1=OC2,OA2=OC3,…则依此规律,点A2015的纵坐标为( )A.0 B.C.D.考点:规律型:点的坐标.分析:根据题意确定出A1,A2,A3,A4…纵坐标,归纳总结得到点A2015的纵坐标与A3纵坐标相同,即可得到结果.解答:解:∵点A1的坐标为(3,0),OA1=OC2=3,在Rt△OA2C2中,∠A2OC2=30°,设A2C2=x,则有OA2=2x,根据勾股定理得:x2+9=4x2,解得:x=,即OA2=2,∴A2纵坐标为2,由OA2=OC3=2,在Rt△OA3C3中,∠A3OC3=30°,设A3C3=y,则有OA3=2y,根据勾股定理得:y2+12=4y2,解得:y=2,即OA3=4,∴A3纵坐标为0,∵2015÷4=503…3,∴点A2015的纵坐标与A3纵坐标相同,为0.故选:A.点评:此题考查了规律型:点的坐标,判断出点A2015的纵坐标与A3纵坐标相同是解本题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.4的算术平方根是2.考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:∵22=4,∴4算术平方根为2.故答案为:2.点评:此题主要考查了算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.10.分解因式:a3﹣9a=a(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.分析:本题应先提出公因式a,再运用平方差公式分解.解答:解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m,其最小直径用科学记数法表示约为8×10﹣8m.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000008m=8×10﹣8;故答案为:8×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,1﹣2x≥0,解得x≤.故答案为:x≤.点评:本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13.如图,过∠CDF的一边上DC的点E作直线AB∥DF,若∠AEC=110°,则∠CDF的度数为70°.考点:平行线的性质.专题:探究型.分析:先根据平角的定义求出∠CEB的度数,再由平行线的性质即可得出结论.解答:解:∵∠AEC=110°,∠AEC+∠CEB=180°,∴∠CEB=180°﹣110°=70°,∵AB∥DF,∴∠CDF=∠CEB=70°.故答案为:70.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.14.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为2m.考点:垂径定理的应用;勾股定理.分析:根据题意可得出AO=5cm,AC=4cm,由勾股定理得出CO的长,则CD=OD﹣OC=AO ﹣OC.解答:解:如图所示:∵输水管的半径为5m,水面宽AB为8m,水的最大深度为CD,∴DO⊥AB,∴AO=5m,AC=4m,∴CO==3(m),∴水的最大深度CD为:CD=OD﹣OC=AO﹣OC=2m.故答案是:2.点评:本题考查的是垂径定理的应用及勾股定理,根据题意构造出直角三角形是解答此题的关键.15.如图,将一个圆心角为120°,半径为6cm的扇形围成一圆锥侧面(OA、OB重合),则围成的圆锥底面半径是2cm.考点:圆锥的计算.专题:计算题.分析:把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=2cm.故答案为2.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.16.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是10.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.17.已知点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,则代数式m2+n2的值为7.考点:反比例函数与一次函数的交点问题.分析:先解两函数式组成的方程组,得出一个一元二次方程,根据根与系数的关系得出m+n=3,mn=1,再根据完全平方公式变形后代入求出即可.解答:解:方程组得:=﹣x+3,即x2﹣3x+1=0,∵点A(m,n)是一次函数y=﹣x+3和反比例函数的一个交点,∴m+n=3,mn=1,∴m2+n2=(m+n)2﹣2mn=32﹣2×1=7,故答案为:7.点评:本题考查了反比例函数和一次函数的交点问题,一元二次方程的根与系数的关系,完全平方公式的应用,主要考查学生的理解能力和计算能力.18.如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y 轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k=8.考点:反比例函数综合题.分析:先根据反比例函数比例系数k的几何意义得到S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,再根据相似三角形的面积比等于相似比的平方,得到用含k的代数式表示3个阴影部分的面积之和,然后根据三个阴影部分的面积之和为,列出方程,解方程即可求出k的值.解答:解:根据题意可知,S△OB1C1=S△OB2C2=S△OB3C3=|k|=k,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=k,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴s2=k,s3=k,∴k+k+k=,解得k=8.故答案为:8.点评:此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴与y轴引垂线形成的矩形面积等于反比例函数的比例系数|k|.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)19.计算:|2﹣1|+(﹣1)0﹣()﹣1﹣tan30°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=2﹣1+1﹣﹣=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(﹣a﹣2),其中a2+3a﹣1=0.考点:分式的化简求值.专题:计算题.分析:先把括号内通分,再把分子分母因式分解,接着把除法运算化为乘法运算,则约分后得到原式=﹣,然后把a2+3a﹣1=0变形得到a2+3a=1,再利用整体代入的方法计算.解答:解:原式=÷=•=﹣=﹣,∵a2+3a﹣1=0,∴a2+3a=1,∴原式=﹣=﹣.点评:分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为200;(2)条形统计图中存在错误的是C(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A、B的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A、B长方形是正确的;(2)根据(1)的计算判断出C的条形高度错误,用调查的学生人数乘以C所占的百分比计算即可得解;(3)求出D的人数,然后补全统计图即可;(4)用总人数乘以A、B所占的百分比计算即可得解.解答:解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBF E是平行四边形;(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?考点:三角形中位线定理;平行四边形的判定;菱形的判定.专题:几何图形问题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明;(2)根据邻边相等的平行四边形是菱形证明.解答:(1)证明:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;(2)解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)从中任取一球,求抽取的数字为正数的概率;(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.考点:列表法与树状图法;根的判别式;点的坐标;概率公式.专题:计算题.分析:(1)四个数字中正数有一个,求出所求概率即可;(2)表示出已知方程根的判别式,根据方程有实数根求出a的范围,即可求出所求概率;(3)列表得出所有等可能的情况数,找出点(x,y)落在第二象限内的情况数,即可求出所求的概率.解答:解:(1)根据题意得:抽取的数字为正数的情况有1个,则P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a≥0,且a≠0,解得:a<0,则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为;(3)列表如下:﹣3 ﹣1 0 2﹣3 ﹣﹣﹣(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1 (﹣3,﹣1)﹣﹣﹣(0,﹣1)(2,﹣1)0 (﹣3,0)(﹣1,0)﹣﹣﹣(2,0)2 (﹣3,2)(﹣1,2)(0,2)﹣﹣﹣所有等可能的情况有12种,其中点(x,y)落在第二象限内的情况有2种,则P==.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线;(2)若BC=3,CD=4,求平行四边形OABC的面积.考点:切线的判定与性质;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)连接OD,求出∠EOC=∠DOC,根据SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据全等三角形的性质求出CE=CD=4,根据平行四边形性质求出OA=3,根据平行四边形的面积公式求出即可.解答:(1)证明:连接OD,∵OD=OA,∴∠ODA=∠A,∵四边形OABC是平行四边形,。
2015年中考数学模拟试卷及答案(含答题纸)

9.反比例函数 y=
k (k≠0 )的图象经过两点 A(x1 ,y1 ), B(x2 ,y 2) ,当 x 1 <x 2 <0 x
时,y 1 > y2 。则一次函数 y=-2x+k 不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 G,点 F 是 CD 上一点,且满足
PQ 的值 AQ
(2)连接 CM,设动点 P 的横坐标为 t。当 t 为何值时,△APQ 与△CMN 相似? (三)图 2 中,点 E 在 Y 轴上满足∠OAE=30°。 (二)中的直线 PQ 交 AE 于点 F,将∠ OAE 沿直线 PQ 翻折,点 A 落在射线 AO 上的点 G 处。当△EFG 是直角三角形时,试确定 点 Q 的坐标。
图1
图2
参考简答 一.选择题 ABBCC DCDCC 二.填空题 11.x≤3 12.6 13.16π 15.76 16.(1)(2)(3) 三.解答题 17.3 18.化简得
14。100,50
2 x(x 1) 。X 只能取 2,原式= 3 x 1
19.(1)略 (5 分) (2)矩形 (5 分) 20.(1)50, 5 次, 图中 5 次有 16 人图略 (2)112 (3)
2015 年中考数学模拟试卷
广办武元中学 一、选择题(每小题 3 分,共 30 分) 1.-3 的相反数是( ) A. 3 B.-3 C.胡启
1 3
D.
1 3
)
2.不等式 3X-5<1 的解集在数轴上表示是( A B D ) . C.
C 3. 如图所示的几何体的俯视图是( A. B.
D.
第 3 题图
2015中考模拟考试试题数学科参考答案

2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。
(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省2015年高中阶段教育学校招生统一考试
数学模拟考试试题
1.2-的绝对值是(▲)
A.2
±B.2 C.
1
2
D.
1
2
-
2.北京市为了缓解交通拥堵问题,大力发展轨道交通.据调查,目前轨道交通日均运送乘客达到1320、
万人次.数据1320万用科学计数法表示正确的是(▲)
A.1
13210
⨯万B.2
13.210
⨯万C.3
1.3210
⨯万D.4
1.3210
⨯万
3.某几何体的三视图如图所示,这个几何体是(▲)
A.圆柱B.三棱柱
C.长方体D.圆锥
4.下列等式一定成立的是(▲)
A.22
a a a
⋅=B.2
2=
÷a
a C.224
23
a a a
+=D.()3
3a
a-
=
-
5.如图,点A、D在射线AE上,直线AB∥CD,∠CDE=140°,
那么∠A的度数为(▲)
A.140°B.60°
C.50°D.40°
6.一个多边形的每一个内角均为108°,那么这个多边形是(▲)
A.七边形B.六边形C.五边形D.四边形
7.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成
绩如下表所示:
那么20名学生决赛成绩的众数和中位数分别是(▲)
A.85,90 B.85, 87.5 C.90,85 D.95,90
8.物理某一实验的电路图如图所示,其中K1,K2,K3为电路开关,L1 ,L2为能正常发光的灯泡.任意
闭合开关K1,K2,K3中的两个,那么能让两盏灯泡同时
..发光的概率为(▲)
A.
3
1
B.
3
2
C.
2
1
D.
6
1
9.如图,AB是⊙O的直径,CD是弦,且CD⊥
AB,BC=6,AC=8,那么sin∠ABD的值是(▲)
A.
4
3
B.
3
4
C.
3
5
D.
4
5
10.如图,一个半径为r的圆形纸片在边长为a(a≥)的等边三角形内任意运动,则在该等
边三角形内,这个圆形纸片“不能接触到的部分”的面积是(▲)
A.2
3
r
π
B.2
3
r
π
C.2
)r
πD.2rπ
二、填空题(每题3分,共18分)
11.实数4的算术平方根是▲。
12.分解因式:2a2-4a+2=▲。
13.使得分式
3
21
x-
有意义的x的取值范围是▲。
14.不等式组
211
23
x
x
+-
⎧
⎨
+
⎩
>
≤
的整数解为▲。
15.抛物线y=ax
2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=▲。
16.如图,在△ABC中,AB=AC,D是AB上一点,点E在
AC上,且 BD=CE,
连接DE交BC于点F,过点D作DG⊥AE,垂足为G,连接FG,若
30
E
∠= ,则GE=▲。
三、解答题(本题共72分)
17.(1)(6()
1
2015
1
2tan601
2
-
⎛⎫
--︒--
⎪
⎝⎭
(2)(6分)先化简,再求值:
2
3
1
()
11
a a
a
a a a
-
-∙
-+
,其中2
a=.
18.(本小题满分6分)如图,一次函数y1=kx+b的图象与反比例
A
函数y 2=6
x
的图象交于
A (m ,3),
B (-3,n )两点. (1)求一次函数的表达式;
(2)观察函数图象,直接写出关于x 的不等式6
x >kx +b 的解集.
19.(本小题满分6分)如图,△ABC 三个定点坐标分别为 A (﹣1,3),B (﹣1,1),C (﹣3,2).
(1)请画出△ABC 关于y 轴对称的△A 1B 1C 1;
(2)以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出△A 2B 2C 2,并求出S △A 1B 1C 1:S △A 2B 2C 2的值. 20.(本小题满分8分)小明同学看到路边上有人设摊玩“有奖摸球”游戏,在一个不透明的纸箱里只装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏规则是:交1元钱可以玩一次摸球游戏,从纸箱里随机摸出2个球,若摸到的球颜色相同,则中奖,奖金3元.否则不中奖.小明拿不定主意究竟是玩还是不玩,请同学们帮帮忙! (1)求出中奖的概率;
(2)如果有180人,每人玩一次这种游戏,大约有 ▲ 人中奖,奖金共约是 ▲ 元;设摊者约获利 ▲ 元;
(3)通过以上“有奖”游戏,你从中可得到什么启示?
21.(本小题满分8分)为了把我市建设的更好,市政府对地下污水排放设施进行改造.某施工队承担铺设地下排污管道任务共2200米,为了减少施工对周边交通环境的影响,施工队进行技术革新,使实际平均每天铺设管道的长度比原计划多10%,结果提前两天完成任务.求原计划平均每天铺设排污管道的长度.
22.(本小题满分8分)如图:已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点D ,连接AD 并延长,与BC 相交于点E 。
(1)若BC =3,CD =1,求⊙O 的半径; (2)取BE 的中点F ,连结DF ,求证:DF 是⊙O 的切线。
23.(本小题满分10分)如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正
方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动. (1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 ▲ ;
(2)如图2,当11D D A 、、三点共线时,请直接写出
1
1
CD DD = ▲ ; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是 ▲ ,请
借助图3证明你的猜想.
24.(本小题满分14分)如图,二次函数2
122
y x =-
+与x 轴交于A 、B 两点,与y 轴交于C 点,点P 从A 点出发,以1个单位每秒的速度向点B 运动,点Q 同时从C 点出发,以相同的速度向y 轴正方向运动,运动时间为t 秒,点P 到达B 点时,点Q 同时停止运动.设PQ 交直线AC 于点G . (1)求直线AC 的函数解析式;
(2)设△PQC 的面积为S ,求S 关于t 的函数解析式;
(3)在y 轴上找一点M ,使△MAC 和△MBC 都是等腰三角形.直接写出所有满足条件的M 点的坐标;
(4)过点P 作PE ⊥AC ,垂足为E ,当P 点运动时,线段EG 的长度是否发生改变,请说明理由.
B
B
B
图1 图2 图3
F O
E D
C
B
A
B
数学中考模拟试卷答案
一、选择题:(每题3分,共30分)
1. B
2. C
3. C
4. D.
5. D.
6. C.
7. B.
8.A
9. D 10. C
二、填空题(每题3分,共18分)
11.2 12.2
2(1)a - 13.1
2
x ≠
14.0,1
15.0 16三、解答题(本题共72分)
17.(1)-1 (2)原式=2a+4,代入=8
18.(1)11y x =+ (2)
19.解:(1)△A 1B 1C 1如图所示;
(2)△A 2B 2C 2如图所示,
∵△A 1B 1C 1放大为原来的2倍得到△A 2B 2C 2, ∴△A 1B 1C 1∽△A 2B 2C 2,且相似比为, ∴S △A1B1C1:S △A2B2C2=()2
=.
20.
21.解:设原计划平均每天铺设排污管道x 米,依题意得
22002200
2(110%)x x
-=+ 解这个方程得:x=100,经检验,x=100是这个分式方程的解,故这个方程的解是x=100. 答:原计划平均每天铺设排污管道的长度是100米.
22.解:(1)⊙O 的半径为1, (2)连接OF ,证明略
23.解:(1)11
DCC D S 四边形=1(15)22⨯+⨯=6; (2)11CD DD =43
; (3)1CC ⊥1DD .
证明:连接11
,,,CO DO C O DO ,延长 1CC 交1DD 于M 点.如图所示: 由正方形的性质可知:
11
,CO DO C O DO == 1190COD C OD ∠=∠=
∴1111C O D C O D C O D
C O
D ∠-∠=∠-∠, 即:11COC DOD ∠=∠
∴△1COC ≌△1DOD 11ODD OCC ∴∠=∠
1190C CD OCC CDO ∠+∠+∠= 1190C CD ODD CDO ∴∠+∠+∠=
90CMD ∴∠= 即:1CC ⊥1DD .
24.。