水轮机调节技术的发展与展望
水轮机技术现状与发展趋势

水轮机技术现状与发展趋势摘要:水轮机能够将水能转化为机械能,并且依照这一功能原理可将水能机分为冲击式水轮机以及反击式水轮机。
其中,借助水流势能与动能可以实现能量转换的水轮机被称作反击式水轮机,而仅利用水流动能的水轮机则称为冲击式水轮机。
鉴于此,本文就水轮机技术现状与发展趋势展开探讨,以期为相关工作起到参考作用。
关键词:水轮机;混流式水轮机;轴流式水轮机1.水轮机的当前技术进展1.1混流式水轮机的当前技术进展混流式水轮机通常应用于30~700m的水头,由于其最高效率及满负荷工况下效率较高,空化系数较小,结构简易、运行可靠,因此在我国应用最为广泛,单机容量也最高。
我国目前已可设计并制造直径超过10m的水轮机转轮及成套设备,我国向家坝地区应用的水轮机单机容量也已超过800MW,1000MW级别水轮机正在研制过程中。
1.2轴流式水轮机的当前技术进展轴流式水轮机由轮毂与桨叶构成,叶片数通常为4~6,在水头较低时可采用3叶片,水头较高时可采用8叶片。
轴流式水轮机可分为转桨式与定桨式,转桨式轴流水轮机的桨叶相对于轮毂可进行转动,通常以转桨式代表轴流式水轮机。
轴流式水轮机通常可应用于3~80m水头。
由于轴流式水轮机叶片数较少,因此其过流能力通常大于混流式水轮机。
其桨叶相对轮毂可进行转动,可依据具体需求进行调整。
相比于混流式水轮机,其稳定性与工况适应性更为宽广。
但也由于其结构复杂,受到轮毂密封及强度等因素限制,再加上其较差的空化性能,限制了其使用水头的提高。
自2000年后,我国独立研制的乐滩电站轴流式水轮机,转轮直径达10.4m,单机出力可达150MW,是世界上五叶片转轮直径最大的轴流转桨式水轮机。
目前我国轴流式水轮机的最高效率已超过93%。
1.3冲击式水轮机的当前技术进展冲击式水轮机由转轮与喷嘴组成,依照结构可分为水斗式、斜击式与双击式等。
斜击式与双击式通常为小型水轮机。
水斗式为应用最广泛的冲击式水轮机,一般应用于300~1700m水头,水斗数为20个左右。
水轮机微机调速器发展及现状

水轮机调速器的发展及现状调查报告1.1 水轮机调速器的发展及现状水轮机调速器是由实现水轮机调节及相应控制的机构和指示仪表等组成的一个或几个装置的总称,它是水轮机控制系统的主体,它可以分为机械液压调速器、电气液压调速器和微机调速器。
最早的水轮机调速器都是机械液压调速器,它是随着水电建设发展而在20世纪初发展起来的。
它能满足带独立负荷和中小型电网中运行的水轮机发电机组调节的需要,有较好的静态特性和动态品质,可靠性较高。
但是,面临大机组、大电网提出的高灵敏度、高性能和便于实现水电站自动化等要求,机械液压调速器固有的采用机械液压方法进行测量、信号综合和稳定调节的功能就显露出明显的缺陷。
现在,新建的大型水轮发电机组已经不采用机械液压调速器,只有中小型机组特别是小型机组仍然有相当一部分采用机械液压调速器。
世界上第一台电气液压型调速器于1944年在瑞士问世。
20世纪50年代以后,电气液压调速器获得了较广泛的应用。
从采用的元件来看,它有经历了电子管、磁放大器、晶体管、集成电路等几个发展阶段。
调节规律有比例积分型(PT)发展到比例、积分、微分型(PID)。
随着计算机技术的发展,又逐步结合经典、现代及智能登控制理论。
20世纪80年代末期,随着水轮机危机调速器的广泛采用,现状以很少生产电气液压调速器。
第一台微机调速器诞生于20世纪70年代初,到20世纪80年代初世界各国都开始研制微机调速器,瑞士ASEA公司80年代推出的HPC61O/620调节器代表了当时国外微机调速器的发展水平,该调速器具有优良的性能和较高的可靠性。
在国内法中科技大学和天津水电控制设备厂合作,率先研制成功了适应式变参数微机调速器,与1984年11月在湖南欧阳海水电站进行了试验并投入使用,其后又与有关单位合作,开发生产了双微机单调节微机调速器和双微机双调节调速器。
进入90年代,在我国新建或更新改造的大、中型水电站中,已普遍采用微机调速器。
目前,国际歌国内的微机调速器都是采用PID和以PID为基础的适应式变参数调节规律。
我国水轮机调速器行业产品的发展及其当前的市场状况

我国水轮机调速器行业产品的发展及其当前的市场状况简介:本发言稿回顾并总结了我国水轮机调速器产品从建国初期到本世纪初的发展历程,同时扼要介绍了国内外一些公司的产品大体情况。
在此基础上,对我国水轮机调速器产品市场的现状进行了大致统计分析,限于篇幅,一些观点没有全面晶体管电液调速器,并在湖北陆水试验电站运行了相当长一段时间。
70年代至80年代初,新建的大中型水电站较多地采用了电子管、晶体管或小规模集成电路电液调速器,一些小型水电站也少量采用了电液调速器,此阶段可算是机械液压调速器与电气液压调速器并重。
但电气液压调速器由于所选用的主要电子元件/组件质量不过关,其长期使用的可靠性普遍较低。
我国水轮机调速器的快速发展是从80年代初开始的,由于改革开放和科技进步,国内有关科研单位、高等院校及制造部门为提高调速器的运行可靠性与调节品质,开始研制微机调速器。
华中科技大学、电力自动化研究院(能源部南京自动化所)、天津电气传动设计研究所、中国水利水电科学研究院、长江流域规划办公室等单位相继开展了以微处理器为核心的电液调速器的研制。
1984参数出以成功地在岩滩、宝珠寺等水电厂投入运行。
电力自动化研究院在继承ST-700系列微机调速器的双微机双通道系统结构基础上,研制了基于MC68322微机的水轮机调速器。
现在由于在水轮机调速器中广泛采用电子技术、液压技术和自控技术的最新技术成果,使现代水轮机调速器的面貌焕然一新。
其可靠性和主要技术指标大为提高,控制功能不断扩展和完善。
不仅适应了水电厂计算机监控的需要,而且为机组安全和经济运行奠定了基础。
然而,这来之不易的行业发展局面越来越多地受到近年来混乱的市场竞争冲击,如不采取措施及时建立健康规范的行业市场,将有可能葬送经几代人不懈努力换来的我国调速器产品技术进步与质量基础。
关于这一点,将在第4节作归纳说明。
"武汉事达电气有限公司生产的微机电调均以PLC为核心,用步进电机螺纹伺服缸取代电液转换器,构成新型电液随动系统。
水轮机微机调速器发展及现状

水轮机微机调速器发展及现状
一、水轮机微机调速器的发展
1、水轮机微机调速器的出现
水轮机微机调速器,是一种专门用于调节水轮机转速的设备,于20世纪80年代初投入使用,在此之前,采用机械调节器和电动调节器的水轮机调速设备,其调速性能较差,而水轮机微机调速器,采用了数字信号处理控制技术,可以实现较精确、较快的调节,令水轮机控制更加精确。
2、水轮机微机调速器的发展
随着电子技术和计算机技术的发展,水轮机微机调速器也得到了长足的发展。
近几年,出现了能够实现变频控制的水轮机微机调速器,而变频控制技术在水轮机调节中,可以更好的满足不同工况条件下的运行要求。
这些调速器也开始涉及到现代制造系统中,并能够实现自动控制。
此外,水轮机微机调速器还具有过程可控、外部扰动抑制等特点,使其在水轮机调节中应用更多更广。
二、水轮机微机调速器的现状
1、水轮机微机调速器主要应用于船舶
目前,水轮机微机调速器主要用于船舶动力控制系统,广泛应用于内燃机辅机、柴油机辅机、汽油机辅机、气差式柴油机辅机等系统,并可以与控制系统结合使用,实现高效节能。
水轮机技术的现状分析与发展趋势

水轮机技术的现状分析与发展趋势摘要:我国具有丰富的水力资源,为实现对其高效利用,即是通过水轮机进行开发,从而进一步提高资源利用效率。
而当前随着社会经济以及科学技术的发展,我国水电总装机容量已位列世界前茅,水轮机技术由此得到了较大的创新进步。
为在新时期下,有效、持续的推动水电行业健康发展,本文主要针对水轮机技术的现状进行分析,并展望未来发展趋势,以此提高水力资源的利用率,助力社会整体建设速度加快、合理运用水资源,实现可持续目标。
关键词:水轮机技术;现状;发展趋势前言水轮机的重要作用即是将水能顺利转化为机械能,在水资源开发领域内发挥了重要功能。
我国现阶段利用的水轮机大多以反击式为主,在科学技术持续创新进步的形式下,基于计算机与新数据统计方法的普及应用,促使水轮机的最高效率得到提升。
并且将流体动力学与计算机技术相结合,能够显著提升水轮机的可靠性和使用效率,在全面模拟计算和性能预估后,可最大限度的降低能量损失,为水资源开发提供良好的技术支撑。
1水轮机技术现状1.1 反击式水轮机我国目前对于水轮机技术的应用,以反击式水轮机为主。
一般可分为五种类型,分别是混流式、轴流式、贯流式等。
其中混流式水轮机通常是应用在水头30-700m的项目中,相比于其他类型混流式水轮机的运行效率与满负荷工况效率相对较高,而且空化系数较小、结构简单、运行可靠性强[1]。
由此混流式成为我国近几年应用范围最广泛、单机容量最高的水轮机。
比如当前我国已经设计并制造出直径超10m的大型混流式水轮机转轮及其配套设备,单机容量达800MW,并向1000MW容量方向开展研究。
轴流式水轮机是反击式水轮机的另一种类型,构成部分包括轮毂与桨叶,一般叶片数在4-6片,根据水头高低进行调整,最低使用3叶片,最多可使用8叶片。
在实际运用中轴流式水轮机也可分为两种形式,一是转桨式、二是定桨式,其中以前者应用居多,适用于3-80m水头。
现阶段轴流式水轮机技术的发展较为迅速,先有转轮直径达10.4m,单机出力达到150MW,推动轴流式水轮机的最高效率超过93%。
水轮机调速器的自动化及其发展前景

[收稿日期]!""#$"%$"&[作者简介]吴罗盛(’%()*),男,广西罗城人,广西大学电气工程学院在读工程硕士,控制工程专业。
机电技术水轮机调速器的自动化及其发展前景吴罗盛’,金向丹!(’+广西大学电气工程学院,南宁&,""!,;!+广西电力工业勘测设计研究院,南宁&,""!,)[摘要]综述了水轮机调节系统的组成、类型及工作原理,分析了调节系统中最为核心部分———调速器的自动化应用及发展前景,并结合实例论述了交流伺服控制型可编程水轮机调速器的特点及运行效果。
水轮机调速器工作性能的优劣直接关系到水电站和机组运行的安全以及所生产电能的质量。
[关键词]水轮机调节系统;调速器;直流伺服;交流伺服;-./[中图分类号]01(,"+2’[文献标识码]3[文章编号]’"",*’&’"(!""#)"2*""#,*",水轮机调节系统是一个复杂的自动调节控制系统,其外部干扰可分为微小变化和大幅变化两类。
微小变化是指水轮机调节系统受到微小的干扰时(负荷或指令信号扰动),系统中各参数的变化都较小,可认为是在所讨论工况点附近作微小变化,则可将调节系统各环节加以线性化,即用线性微分方程式来描述各环节及整个系统的动态特性;而大幅变化是指水轮机调节系统受到幅度较大的干扰(负荷变化),系统参数的变化剧烈,整个系统已超出了线性范围,因此不能作线性处理,即系统不能按线性系统对待。
微小变化主要影响的是水轮机调节系统工作的稳定性,即所生产的电能的质量;而大幅变化不仅影响所生产的电能的质量,而且在负荷突然变化(特别是甩负荷)时影响到水压、转速等各种参数的变化情况[’]。
因为水轮机调节系统工作性能的优劣直接关系到水电站和机组运行的安全以及所生产电能的质量。
水电机组控制技术的发展与展望

(三)调速器的模式结构
• 3. 电子调节器式调速器
采用电气反馈,调节规律准确,机构简单,死区小。
水电机组控制技术的发展与展望
(四)随动系统的典型模式
• 电液转换器/电液执行机构型
微机(PLC)调节器
放
P
大
机组 I +
及
频率
D 调
—
数 模
节
转
换
3-1
电液转换装置
机械液压系统
•
3)导叶手动令灯:当外部给出导叶手动令时,导叶手动令灯应点亮;
•
4)增加令灯:当外部给出增加令灯时,增加令灯应点亮;
•
5)减少令灯:当外部给出减少令灯时,减少令灯应点亮;
•
6)油开关令:当外部给出油开关闭合时,油开关令灯应点亮;
•
1.10 双机切换模件
•
A套主机灯:A套为主机时该灯点亮;
•
B套主机灯:B套为主机时该灯点亮;
网并列运行时,调速器有时作为电站调频装置的一部分起作用。
水电机组控制技术的发展与展望
(六)水轮机调节系统的基本任务及原理 1 水轮机调节的基本任务 有功功率调节
有功功率调节用于与电网并列运行工况,其任务是保持本机组的输出功
率,在频率变化时,将根据永态转差率适当调整输出功率。
水电机组控制技术的发展与展望
水电机组控制技术的发 展与展望
2020/11/22
水电机组控制技术的发展与展望
任务一 水轮机调速器的认知与仿真操作
调 速 器 液 压 系 统 及 机 械 柜
水电机组控制技术的发展与展望
调 速 器 机 械 柜
水电机组控制技术的发展与展望
水轮机数字式电液调速器基本概念和发展趋势展望

水轮机数字式电液调速器基本概念和发展趋势展望一、基本概念水轮机数字式电液调速器是水电站中常见的控制和调节装置之一,主要用于调节水流进入水轮机的流量,以达到控制水轮机转速和输出电能的目的。
具体来说,水轮机数字式电液调速器可以通过控制一定的信号输入,将转速的反馈信号与预设值进行比较,然后通过电液换向阀等关键元件将水流量的大小传递进入水轮机,从而实现精确控制水轮机的转速。
水轮机数字式电液调速器的基本组成包括传感器、调节电路、执行器和管理系统。
其中,传感器主要负责将转速的反馈信号传递给调节电路,调节电路通过特定的算法计算出新的开度信号,然后通过执行器的控制来实现水流量的调节。
二、发展趋势随着科技的不断发展,水轮机数字式电液调速器也在不断地变革和更新,未来将出现以下几个发展趋势:1. 智能化未来的水轮机数字式电液调速器将更多地应用智能化技术,如人工智能、云计算、物联网等,通过智能算法及先进计算技术实现对水轮机系统的自主控制,优化自身性能,提高能效指标。
2. 多功能化未来的水轮机数字式电液调速器将融合不同的功能模块,如自学习控制模块、故障预测诊断模块、安全保护模块等,通过不断添加新的功能,提高设备的智能化和自适应性,以应对更为复杂的控制环境。
3. 模块化未来的水轮机数字式电液调速器将更多地采用模块化的设计,通过标准化模块的组合与配置实现系统的自主拓展和升级,提高设备的灵活性和可维护性,降低部件失效率与厂家间的过多依赖。
4. 绿色化未来的水轮机数字式电液调速器将更加注重环保性能,采用更为环保的材料和工艺,减少能源消耗,降低污染排放,以适应绿色技术发展的趋势。
未来水轮机数字式电液调速器的发展将更为智能化、多功能化、模块化和绿色化,具有更高的自动化水平和智能化程度,以更好地适应快速发展的水电站业务需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水轮机调节技术的发展与展望武汉大学程远楚2007年6月一.水电机组控制的任务与种类水电机组控制设备主要完成水轮发电机组的操作、调节、控制和事故保护。
主要有:调节(控制)系统:水轮机调速系统发电机励磁系统操作(控制)与监视系统:计算机监控系统,同期装置事故保护:发电机继电保护,机组过速保护等辅机控制系统二.水电机组控制系统的特点水电机组控制系统是一个水-机-电过程相互影响、相互制约的复杂系统,它具有时变(被控对象的结构和参数均随时间和运行工况的改变而变化)、非线性、非最小相位等复杂特性,常规控制器难以满足其对控制性能指标和稳定性的要求。
另一方面,由于水电机组控制系统的性能指标与稳定性,直接关系到水电厂与整个电力系统的安全运行、供电品质及经济效益,水电机组的安全控制与优化控制一直是该领域研究的核心问题,也是长期存在的理论和技术难题。
随着控制技术的发展,水电机组控制系统的控制规律也在不断地发展和完善。
从定参数PI、PID到变参数PID[1],从常规控制到变结构控制、励磁系统附加稳定控制(PSS),水轮机调节系统和发电机励调节系统的性能得到了不断的提高。
但随着单机容量的增大,长距离输电线路的增加,水电厂无人值班、少人值守的实施,对水电机组控制系统的性能指标提出了更高的要求。
如在建的三峡水电站,其机组容量大,水头变幅大,运行范围变化宽(有功从0(空载)-700MW;初期水头61米-最高水头113米);再加上水电机组运行工况的变化及电网负荷的变动导致系统动态特性的变化均较难预测。
基于离线模型[1]的适应式PID变参数难以保证调节系统在不同的工况下均有较好的动态品质。
另一方面,互联电网容量的不断扩大,为提高电力系统的暂态稳定性,往往采用高顶值电压的快速励磁系统,由此可能使长输电线弱联系的大型电力系统阻尼严重削弱。
机械械模式阻尼的缺乏,会引发互联系统中出现每分钟只有几个周波至几十个周波的低频自激振荡。
这种振荡的加剧会破坏发电机组间的并列运行。
大容量机组的普遍采用,远距离、超高压、大功率输电系统的不断出现,不但使小干扰稳定问题和由于系统阻尼不足引起的低频振荡成为一个严重的问题,电力系统在大干扰下的稳定问题也成为一个突出的问题。
一旦电力系统的稳定遭到破坏,会导致电力系统的崩溃和瓦解,从而给国民经济和人民生活带来巨大的损失。
在这方面,我国过有多次惨痛的教训,美国、日本、欧洲等也曾发生过多起电力系统瓦解的事故[2]。
长期以来,就如何保证和提高电力系统的安全稳定性进行了大量的研究,提出了许多有效的控制措施和方法。
其中,改善控制系统的性能、提高控制系统的品质是最主要的方法。
因此,为提高大型互联系统的稳定性,为改善水电机组的控制性能,基于现代控制理论的自适应控制[3]、变结构时变参数自完善控制[4] [5]、模型参考多变量最优控制[6] [7]、鲁棒控制[8] [9]等的有关水轮机调节系统的控制模型和控制方法也被提出并进行了大量的理论研究。
然而,由于需要被控对象的精确数学模型,而水电机组的数学模型至今尚未完全建立,特别是水轮机特性,因具有严重的非线性,只能以图表或曲线的方式给出,参数估计和参数辨识较为困难,故未能得到很好的实际应用。
基于现代控制理论的励磁系统最优控制[10,11]、非线性控制[12,13]、自适应PSS[14,15]等进行了大量的试验研究,有些还在实际中得到了应用。
近年来,随着智能控制技术的出现,基于专家系统、模糊逻辑和神经网络及遗传算法的水电机组智能控制规律被提了出来[16-26],并引起了一股研究热潮。
智能控制作为一门新兴的理论和技术,其发展得益于许多学科,其中,包括人工智能、现代自适应控制、最优控制、生物控制、学习理论、模糊控制、神经网络及再励学习等[27]。
智能控制理论发展时间不长,理论体系尚不完整,但发展很快。
智能控制系统因其特有的自学习功能、自组织功能、良好的自适应性能,已在生物、农业、地质、军事、空间技术、环境科学等领域得到了应用。
研究者认为:智能控制的发展和完善必将引起控制领域的全面革命[28,29]。
目前,智能控制的研究已从单学科研究发展成为多学科理论交叉研究[27,29-32] 。
大量的研究表明,智能控制是提高水电机组控制系统的鲁棒性和适应性的有效方法和途径。
然而,由于智能控制理论尚不完善,智能控制在实际工程中应用的结果与理论研究的结果尚有不小的差距。
特别是对像水电机组控制系统这样一类性能指标要求较高、运行域变化较大、参数变化较为剧烈的时变且存在随机扰动而又相对快速的控制系统,智能控制的研究仅限于计算机仿真和实验室试验,智能控制的应用实例尚未见到报导。
三.水轮机调节系统的发展水轮机调节系统是以水轮机调速器作为控制器,水轮发电机组作为被控对象所构成的闭环控制系统。
水轮机调节系统的基本任务,是根据负荷的变化不断地调节水轮发电机组的有功功率,以维持机组转速(频率)在规定的范围内。
水轮发电机组在电网中经常担任调频和调峰任务,开停机频繁,其性能的好坏,自动化水平的高低,直接影响到机组的正常运行。
因此,水轮机调节系统的性能好坏,对电力系统的电能质量(频率、电压)及安全可靠运行具有重大的影响。
自水轮机问世之初起,便有了水轮机调速器。
随着电子技术的控制理论的进步,水轮机调速器得到了快速地发展。
在近一个世纪的发展中,水轮机调速器先后经历了机械液压型调速器、电气液压型调速器和微机调速器三个发展阶段。
机械液压型调速器以其原理简单、便于掌握等特点,在相当一段时间内得到了广泛的应用,在上世纪50年代达到了全盛时期,但由于其静、动态特性较差,而且存在机件磨损问题,因此其应用受到限制。
上世纪40年代未,随着电子管式电气液压调速器的问世,因其具有响应快、精度高的优点,逐步在电力系统中得到了应用。
随着晶体管式电液调速器的问世,特别是上世纪70年代大规模集成电路技术发展迅速,集成电路运算放大器应用于水轮机调速器,其控制性能进一步提高,模拟式电气液压型调速器迅速取代了机械液压式调速器,得到了广泛的应用。
计算机技术的飞速发展,促进了水轮机调速器的又一次飞跃。
1982年ASEA公司引入微计算机技术,研制出了出第一台微机调速器。
此后,法国的NEYRPIC、比利时的BCEC、日本的HITACHI、瑞士的SULZER、美国的WOODWARD等大公司相继研制生产出各种类型的微机调速器。
在我国,华中科技大学与天津水电控制设备厂共同研制开发了我国第一台微机调速器,于1984年在湖南欧阳海电站投入运行。
应该说,微机调速器的出现是水轮机调速器发展的重大变革。
与模拟式电气液压调速器不同,微机调速器在实现方法上带来了一次彻底的革命,模拟式调速器是完全由硬件电路实现的,因此任何控制策略上的变化都会导致部分甚至全部电气装置的改变,这既提高了成本,也给调速器的更新、改造以及更高级、复杂控制规律的实现带来了困难。
而微机调速器在实现方法上由硬件和软件两部分构成,其控制功能的实现由软件完成,因而带来了很大的灵活性。
同时,微计算机强大的运算处理能力和逻辑功能为实现复杂控制功能提供了基础。
自微机调速器问世以来,它以其高性能/价格比、高精度和高可靠性及易于与水电站其它计算机控制设备接口得到了迅速的推广应用。
由于微机调速器在实现方法上与传统的水轮机调速器不同,其硬件结构、软件配置、容错策略和可靠性措施是确保其高可靠性和良好的动静态性能的保证。
为此,在微机调速器的结构模式、功能设置、软件设计和容错措施方面进行了大量的研究[92-98],取得了丰硕的成果。
调速器的模式结构主要有三类:(1)缓冲式调速器由暂态与永态反馈元件及放大元件、主接力器等形成调节规律,这些元件的静动态特性和非线性因素对调节规律有影响,且转速死区较大。
图1 缓冲式调速器(2)中间接力器式调速器由暂态与永态反馈元件及放大元件、中间接力器等形成调节规律,由主配压阀和主接力器组成液压随动系统进行功率放大并驱动导水机构,其优点是控制规律形成与导叶动分开,调整方便,死区较小,但随动系统存在机械反馈,对转速死区与动态性能有影响图2 中间接力器式调速器(3)电子调节器式调速器调节规律准确,机构简单,死区小。
图3 电子调节器式调速器当前微机调速器的实用模式是:微机控制器+伺服系统,水轮机调速器的另一个发展是液压随动系统的进步。
近年来,在液压伺服系统方面进行了大量的研究[99-101]。
这些研究成果主要体现在以下几个方面。
(1)实现手段。
国内先后开发出基于单板机,单片机、STD总线、可编程控制器(PLC),工业个人控制计算机(IPC),可编程计算机(PCC)等的微机调速器。
(2)结构模式。
在发展过程中,不少科研单位对水轮机调速器的结构模式进行了很多尝试,大致有:单微机模式,双微机模式,双通道系统,混合型双微机并联模式,完全双通道混合型并联模式,三微机冗余模式等。
(3)液压伺服系统。
总体看,一是提高调速系统油压等级,与其它工业领域中的液压技术靠势在必行,以实现集成化,标准化,小型化。
二是在伺服系统在发展过程中方式上进行变革,以提高抗油污能力和可靠性,实现数学化控制。
目前主要的液压伺服系统结构模式有:电液伺服阀系统,比例阀伺服系统,步进电机伺服系统,直流电机或交流电机伺服系统,数学阀伺服系统等。
当前采用较多的微机调速器的结构模式:a. 电液转换器/电液执行机构型b. 交流伺服/电液执行机构型c.交流伺服(直流伺服)中间接力器/机械液压随动系统d.步进电机/机械液压随动系统e. 三态阀数字式液压随动系统调速器是水电站重要的自动化设备,其性能的好坏直接影响到电能质量和电站的安全经济运行。
近十多年来,由于设计的改进、高可靠性电液伺服阀的研制、电液随动系统的简单化与革新、工作油压的提高、微机技术的普遍采用、加工和制造工艺的提高,使得现代水轮机调速器的性能大为改观,对水电站的自动化水平的提高作出了巨大贡献。
四.水轮机调速器控制策略研究随着超高压远距离输电的大规模互联电力系统的日益发展,高水头大容量水轮机组和大容量抽水蓄能机组的出现,用电部门对电能质量要求不断提高,对水轮机调节系统的频率调节品质、调节稳定边界、水轮机发电效率、水机电联合最佳控制都提出了更高的要求。
原有的简单控制方式已经难以适应,它势必要被更为复杂、高级的现代控制理论所替代。
而控制理论的发展,微机调速器的大量使用使得新型控制规律在水轮机调节中的应用成为可能。
在机械液压型调速器时期,由于机械系统的局限性,一直采用的是PI型控制规律。
直到电气型调速器出现后才实现了PID控制规律。
在这一时期,为解决水轮机调速器的参数整定问题,文献[102-105]研究了控制参数对调节性能的影响,文献[106]以Roth-Hurwitz 稳定性准则导出了稳定参数区域,文献[107,108]则给出PID控制参数的整定方法。