硫酰氟气体传感器
硫酰氟F2O2S检测仪,氟氧化硫气体检测仪,硫酰氟气体报警器,硫酰氟气体探测器,硫酰氟气体传感器

SGA-500B-F2O2S硫酰氟(氟氧化硫)检测仪在线式|固定式|泵吸式|扩散式|管道式一、产品简介SGA-500B-F2O2S硫酰氟(氟氧化硫)气体检测仪又叫硫酰氟气体探测器、氟氧化硫气体变送器;是一款可24小时在线监测空气中硫酰氟(氟氧化硫)气体浓度的气体检测装置;4-20mA信号输出,可与所有厂家的报警控制主机、PLC及DCS系统配套使用;工作指示灯(绿)、报警指示灯(红)、故障指示灯(黄)、一目了然;大屏幕液晶显示屏,实时显示检测的气体名称、气体单位、现场浓度值等信息;国外原装进口硫酰氟(氟氧化硫)气体传感器,灵敏度高、稳定性强、误差率低、寿命长达5年以上(红外技术原理);全量程温湿度补偿及智能运算,确保监测数据准确无误;监测气体达到预设报警点时,会自动发出85dB 以上本地声光报警、提醒人员安全撤离;还可选配开关量信号,与风机、切断阀等设备进行联动、自动处置险情;红外远程遥控,无需开盖,即可对现场气体报警器进行归零、报警点、目标点设置等工作、方便后续维护;深国安独有三防设计、安全系数可与国外气体检测仪相媲美:防高浓度过载(带自我保护功能)、防止人员误操作(内置按键+可还原出厂设置)、防雷击(三级标准)。
本质安全型电路设计,配备铝合金防爆外壳,再恶劣环境,也能安全使用。
(防爆证号:CNEx14.1674)SGA-500B- F2O2S硫酰氟(氟氧化硫)气体检测仪的采样方式默认气体扩散式,并可免费选配升级为泵吸式、管道式等专用气杯。
基本检测原理为当目标气体进入气体探头部分后,内部的传感器会第一时间发出感应。
传感器根据气体浓度的高低会产生一定电量信号。
该信号经过电路放大处理后,由CPU经过AD采样、温度补偿、智能计算后,输出精准的4-20mA 电流信号、RS485通讯信号、0-5V电压信号、ZIGBEE、NRF、WIFI、GPRS无线信号等。
客户可通过采集这些信号,与深国安公司的SGA-800A、SGA-800B、SGA-800C气体报警控制主机、PLC、DCS、上位机等系统配套使用,进行报警、数据再处理。
tgs2619工作原理

tgs2619工作原理TGS2619是一种基于化学传感原理的气体传感器,主要用于检测和测量室内空气中的有害气体浓度。
该传感器的工作原理基于气体分子与传感器中的化学物质之间的相互作用。
本文将详细介绍TGS2619的工作原理,并且给出一些实际应用的例子。
TGS2619气体传感器采用的是化学阻抗式传感技术。
传感器的核心部分是一层薄膜,通常由含有化学物质的高分子聚合物组成。
当目标气体进入传感器的检测区域,气体分子与化学物质发生相互作用。
这些相互作用将改变传感器的电学特性,从而反映气体浓度的变化。
具体来说,TGS2619传感器中的化学物质通常是一种氧化剂。
当目标气体进入传感器后,气体分子与氧化剂发生化学反应。
这些化学反应将引起传感器中的电子转移,产生电流或电压的变化。
传感器的电极测量这些变化,并将其转化为与目标气体浓度相对应的电信号。
TGS2619传感器的灵敏度可以通过调整化学物质的组合比例来实现。
一般来说,传感器的灵敏度与化学物质的浓度成正比。
浓度越高,传感器的灵敏度就越高。
因此,在实际应用中,可以根据需要选择不同的化学物质组合,以获得所需的灵敏度。
此外,TGS2619传感器还具有一些其他的特性。
首先,传感器对不同气体的灵敏度不同。
这是由于不同的气体与化学物质之间的化学反应不同。
其次,传感器的响应时间相对较长,通常需要几十秒甚至几分钟来达到稳定状态。
因此,在实际应用中,需要进行适当的响应时间调整和校准。
TGS2619传感器可以应用于广泛的领域。
例如,它可以用于监测室内空气中的有害气体浓度,如一氧化碳、二氧化碳、甲醛等。
这对于提高室内空气质量、保护人们的健康非常重要。
此外,传感器还可以在工业和农业领域中用于检测和控制生产过程中的气体浓度,如检测和控制温室中二氧化碳的浓度。
总之,TGS2619传感器是一种基于化学传感原理的气体传感器。
通过与化学物质之间的相互作用,传感器可以检测和测量室内空气中的有害气体浓度。
最最最新MIC-800说明书

MIC系列有毒有害智能气体检测仪产品说明书深圳市逸云天电子有限公司深圳市逸云天电子有限公司产品说明书1.概述MIC-800系列便携式智能气体检测仪,采用了最先进的大规模集成电路技术、国际标准智能化技术水准设计技术及专有数字模拟混合通讯技术而设计的完全智能化的气体检测仪。
MIC-800系列气体检测仪技术先进、性能卓越、稳定性高、可检测的气体种类繁多,具有恢复出厂默认设置和自诊断功能,使用和维护方便,极大的满足了工业现场安全监测对设备高可靠性的要求,广泛应用于石油、化工、环保、冶金、炼化、燃气输配、生化医药、农业等行业。
2.技术特点●高精度、高分辨率●宽量程,最大量程可达0~50000ppm或0~100%Vol●即插即用国际标准智能化传感器,现场维护非常方便●独特的LCD带背光设计技术,现场设备的观察、维护不再受光线变化的困扰●全量程范围的数字温度补偿●通过3个按键可实现查看、设定、校准等功能●本安电路设计,外壳防雨、防腐蚀,耐磨损●大容量的可充电锂电池及充电保护电路●一键恢复功能,让您操作时无后顾之忧1产品说明书深圳市逸云天电子有限公司3.技术参数壳体材料:ABS外型尺寸:125×52×30mm(L×W×H)防爆等级:Exia II CT6防护等级:IP65整机重量:200g精度:±3%F.S.检测方式:扩散式或泵吸式浓度单位:ppm、%VOL、%LEL、mg/m3报警方式:声光、振动工作温度:-40~70℃工作湿度:0 ~ 95% RH 非凝露工作电压:3.6VDC报警电流:150mA工作电流:扩散式10mA,泵吸式60mA电池容量:1800mA,带充电保护电路充电器规格:4.2VDC, 1A2深圳市逸云天电子有限公司产品说明书4.外型图片外形尺寸:125×52×30mm (L×W×H)3产品说明书 深圳市逸云天电子有限公司45. 操作说明5.1 按键定义:本机共设三个按键,⊙键、↑ 键、↓ 键 (从左到右顺序) ⊙键为电源开关并起确认功能,↑ 键为移位键,↓ 键起翻页及数字加减的作用。
霍尼伟尔气体侦测器中文说明书

HoneywellAnalytics©2004 Honeywell Analytics Issue 1 12/2004 MIDAS-A-001目录1 目录 22 概述 53 产品概述 5 3.1 主机架 6 3.1.1 显示器模块 63.1.2 泵模块 7 3.1.3 传感器暗盒腔 73.2 安装托架底座 73.2.1 安装托架 73.2.2 终端模块 73.3 传感器盒 83.3.1 偏致传感器盒 83.4 机壳 84 默认配置 95 安装95.1 探测器的安装和定位 105.2 机械安装 115.3 样品和排气管道计算 125.4 在线过滤器 135.5 本地化探测器选购件 145.6 电气安装 155.7 电连接 17 5.8 改装主机架 185.9 安装传感器盒 196 探测器启动程序 197 总体操作 21 7.1 正常操作模式 217.1.1 重置报警、故障和维护故障 227.2 浏览模式 227.2.1 浏览模式菜单概述 237.3 设置、校准和测试模式概述 247.3.1 设置菜单概述 247.3.2 校准菜单概述‘CAL’ 267.3.3 测试菜单概述‘ tESt’ 278浏览、设置、校准和测试模式子菜单的导向的详细程序 288.1 浏览模式 288.1.1 复查软件‘SW’ 288.1.2 复查报警‘ ALm’ 298.1.3 复查故障‘ FLt’ 298.1.4 复查校准 ‘ CAL’ 298.1.5 复查日期和时间‘timE’ 298.1.6 复查探测器地址‘ nEt’ 308.1.7 复查事件标识‘ Hi St’ 308.2 设置、校准和测试模式 308.2.1 设置菜单‘ SEt’ 318.2.2 设置报警‘ ALm’ 318.2.3 设置故障‘ FLt’ 348.2.4 设置校准间距 ‘ CAL’ 348.2.5 设置日期和时间 ‘timE’ 558.2.6 设置地址‘ nEt’ 358.2.7 设置密码 ‘ PWd’ 368.3 校准菜单‘CAL’ 368.3.1 零点校准 ‘ 0CAL’ 368.3.2 间距校准‘ SPAn’ 378.3.3 流量校准‘ FLoW’ 388.3.4 mA 校准 ‘mA 4-20’ 388.4 测试菜单‘ tESt’ 398.4.1 颠簸测试 ‘ bUmP’ 398.4.2 报警/故障测试‘ Si m’ 398.4.3 禁止状态‘ I nH’ 409 常规维护 41 9.1 传感器盒的更换 419.1.1 传感器盒的安装/更换 419.2 泵的更换 43 9.3 重新组装探测器 469.4 过滤器的更换 4610 热解器模块选项 4710.1 安装热解器模块 4810.2 重新组装MIDAS® 探测器 4911 模拟输出模块 51 11.1 安装模拟模块 5111.2 重新组装MIDAS® 探测器 5212 找出故障并诊断 5313 REFLEX®ٛ5414 内置的网络服务器 5414.1 物理的网络组件 5414.2 网络设置 5414.3 运行网络浏览器 5415 典型安装拓扑 5615.1 常规安装 57 15.2 Modbus/TCP 安装 5715.3 通过以太网供电(POE) 的安装 5716 订购信息 58 16.1 MIDAS® 发送器 5816.2 MIDAS®热解器 5816.2 MIDAS® 热解器 5816.3 MIDAS® 模拟输出模块5816.4 MIDAS®插入式传感器盒(标准保修期) 5916.5 MIDAS®插入式传感器盒(延长保修期)6016.6 完整的MIDAS®气体探测器套件 6116.7 附件及备件 6117 一般规格 6218 校准及颠簸测试 6319 保证声明6720 软件菜单叙述图表 6920.1 高级6920.2 浏览模式7020.3 复查软件的信息、报警、故障及气体校准7120.4 复查日期/时间和网络7220.5 复查事件日志7320.6 设置模式7420.7 设置报警、故障及气体校准 7520.8 设置日期/时间和网络7620.9 设置密码7720.10 校准模式7820.11 校准气体零点及间距7920.12 校准——流量校准 8020.13 校准——4-20 mA 8120.14 测试模式8220.15 测试颠簸、报警/故障模拟 8320.16 测试禁止8421 联系详情 852 概述作为一个提取式气体取样系统,MIDAS气体探测器能在本地或从一个远程点提取一个样品到位于探测器机架内的传感器盒。
ndir原理sf6

ndir原理sf6
SF6气体是一种无色、无味、无毒的气体,具有优异的绝缘性能和热稳定性。
在电力行业中,SF6气体被广泛用作高压开关设备和变电站设备中的绝缘介质。
NDIR(非分散红外)是一种常用于检测SF6气体浓度的技术原理。
NDIR传感器利用了分子吸收红外辐射的原理来测量气体浓度。
其工作原理如下:
1. 光源发射,NDIR传感器中有一个红外光源,通常是红外发光二极管(LED),它会发射特定波长的红外光线。
2. 光路设计,发射的红外光线经过特定的光路设计,进入气体测量室。
3. 气体吸收,在气体测量室内,待测气体(比如SF6)会吸收特定波长的红外光线,吸收量与气体浓度成正比。
4. 探测器接收,经过气体吸收后的红外光线被传感器中的红外探测器接收。
5. 信号处理,探测器接收到的光信号会被转换成电信号,并经
过信号处理电路进行放大和滤波处理。
6. 浓度计算,最终,根据探测到的光信号强度,NDIR传感器
会计算出待测气体的浓度,并输出相应的浓度数值。
总的来说,NDIR技术利用气体对特定波长的红外光的吸收特性
来测量气体浓度,其优点是测量精度高、响应速度快、稳定性好等。
在SF6气体检测领域,NDIR技术被广泛应用于高压开关设备和变电
站设备中,用于监测和控制SF6气体的浓度,确保设备运行安全可靠。
sf6传感器原理

sf6传感器原理
SF6传感器主要采用NDIR原理进行检测,通过红外光源,具有反应迅速、灵敏度高、抗干扰能力强、寿命长、高精度、高重复性和高稳定性的特点。
SF6传感器是专为监测SF6而设计的传感器,可以有效监测SF6的浓度,并在超过限值时及时报警,提醒人们免受伤害。
基于监测原理的不同,SF6传感器分为多种类型,如高频电离法、激光光声法、激光光谱法等。
高频电离法采用高频电离法监测时,SF6气体分子可以吸附电子转为大质量电子,其在电磁场中的速度远比电子慢,因而气体会表现出不同的电特性。
该方法的优点是检测下限较低,小于100ppb的SF6浓度也可以被检测出来,且不会造成中毒现象。
激光光声法则是使用波长等于SF6气体吸收峰的激光照射被测气体,当被测气体中含有SF6时,会吸收激光能量并发热膨胀,产生声波。
通过测量声波强度即可获得被测气体中SF6的含量。
激光光谱法则是利用SF6对微米激光的强吸收,测得吸收池中气体的SF6浓度。
另外,SF6纯度传感器主要用于测量SF6与空气、SF6与N2混合气体的SF6气体纯度(百分含量),采用双波长双光束技术可以避免因为光源的老化、采样池和检测器表面污染而引起的漂移。
参比通道的被调制的特定波长的单色光不会对被测量气体产生吸收,产生一个稳定的信号,此信号只受外部影响而变化,不受被测量气体影响。
如需更多有关SF6传感器的原理,建议咨询专业人士获取帮助。
tcs208f气体传感器原理

tcs208f气体传感器原理TCS208F气体传感器原理引言:TCS208F气体传感器是一种基于光学原理的传感器,用于检测环境中的气体浓度。
它采用了先进的技术和设计,能够快速、准确地检测多种气体,具有广泛的应用领域。
本文将介绍TCS208F气体传感器的工作原理及其应用。
一、工作原理TCS208F气体传感器的工作原理基于光学吸收法。
该传感器包含一个光源和一个接收器,光源一般使用红外光或紫外光,而接收器则用于测量光的强度。
当气体进入传感器的检测区域时,气体分子会与光相互作用,使得光的强度发生变化。
传感器通过测量光的强度变化来间接地检测气体浓度。
具体来说,当没有气体进入传感器时,光源发出的光能够直接到达接收器,此时接收器接收到的光强度最大。
而当有气体进入传感器时,部分光会被气体分子吸收或散射,使得接收器接收到的光强度减小。
通过比较光源发出的光强度和接收器接收到的光强度的差异,传感器可以计算出气体的浓度。
二、特点与优势1. 高灵敏度:TCS208F气体传感器具有很高的灵敏度,可以检测到非常低浓度的气体。
这使得它在环境监测、工业安全等领域有着广泛的应用。
2. 快速响应:该传感器具有快速的响应时间,可以在短时间内检测到气体浓度的变化。
这对于需要及时采取措施的应用场景尤为重要。
3. 高精度:TCS208F气体传感器的测量结果具有很高的精度,能够提供准确的气体浓度数据。
这对于科学研究、环境监测等领域非常关键。
4. 宽检测范围:该传感器可以检测多种气体,如二氧化碳、甲醛、苯等。
这使得它在不同领域的应用具有灵活性和多样性。
三、应用领域1. 室内空气质量监测:TCS208F气体传感器可以用于监测室内空气中的有害气体浓度,如甲醛、二氧化碳等。
这对于保障室内空气质量、提高人们的生活质量非常重要。
2. 工业安全监测:在工业生产过程中,一些有害气体可能会泄漏,对工人的健康造成威胁。
TCS208F气体传感器可以快速检测到有害气体的浓度,提醒工人及时采取安全措施。
Sensirion SGP30 多像素气体传感器数据手册说明书

Preliminary Datasheet SGP30Important Note:▪All specifications are preliminary and are subject to change without prior notice.▪Characterization and qualification of this product is ongoing.SGP30Sensirion Gas Platform Preliminary Datasheet▪ MEMS metal-oxide gas sensor for measuring volatile organic compounds (VOCs) ▪ Outstanding long-term stability▪ I 2C interface with TVOC and CO 2eq output signals ▪ Very small 6-pin DFN package: 2.45 x 2.45 x 0.9 mm 3 ▪ Low power consumption: 48 mA at 1.8V ▪ Tape and reel packaged, reflow solderableBlock DiagramFigure 1 Functional block diagram of the SGP30.Product SummaryThe SGP30 is a digital multipixel gas sensor designed for easy integration into air purifier, demand-controlled ventilation, and IoT applications. Sensirion’s CMOSens ® technology offers a complete sensor system on a single chip featuring a digital I 2C interface, a temperature controlled micro hotplate, and two preprocessed indoor air quality signals. As the first metal-oxide gas sensor featuring multiple sensing elements on one chip, the SGP30 provides more detailed information about the air quality.The sensing element features an unmatched robustness against contaminating gases present in real-world applications enabling a unique long-term stability and low drift. The very small 2.45 x 2.45 x 0.9 mm 3 DFN package enables applications in limited spaces. Sensirion’s state-of-the-art production process guarantees high reproducibility and reliability. Tape and reel packaging, together with suitability for standard SMD assembly processes make the SGP30 predestined for high-volume applications.1Sensor Performance 1.1Gas Sensing PerformanceAccuracy Ethanol signalFigure 2 Typical and maximum accuracy tolerance in % of measured value at 25°C, 50% RH and typical VDD. The sensors have been operated for at least 24h before all characterizations. Accuracy H2 signalFigure 3 Typical and maximum accuracy tolerance in % of measured value at 25°C, 50% RH and typical VDD. The sensors have been operated for at least 24h before all characterizations.1 ppm: parts per million. 1 ppm = 1000 ppb (parts per billion)2 The long-term drift is stated as change of accuracy per year of operation.3 Test conditions: operation in 250 ppm Decamethylcyclopentasiloxane (D5) for 200h simulating 10 years of operation in an indoor environment.Long-term drift Ethanol signal Long-term drift H2 signalFigure 5 Typical and maximum long-term drift in % of measuredvalue at 25°C, 50% RH and typical VDD. The sensors have beenoperated for at least 24h before all characterizations.Figure 6 Simplified version of the functional block diagram (compare Figure 1 Functional block diagram of the SGP30.) showing the signal paths of the SGP30.1.3Recommended Operating ConditionsThe sensor shows best performance when operated within recommended normal temperature and humidity range of5 – 55 °C and 25 –75 %RH, respectively. Long-term exposure to conditions outside normal range, especially at high humidity, may temporarily affect the sensor performance. Prolonged exposure to extreme conditions may accelerate aging. To ensure stable operation of the gas sensor, the conditions described in the document SGP Handling and Assembly Instructionsregarding exposure to exceptionally high concentrations of some organic or inorganic compounds have to be met, particularly during operation. Please also refer to the Design-in Guide for optimal integration of the SGP30.2Electrical SpecificationsFigure 7 Typical application circuit (for better clarity in the image, the positioning of the pins does not reflect the positions on the real sensor).The electrical specifications of the SGP30 are shown in Table 3. The power supply pins must be decoupled with a 100 nF capacitor that shall be placed as close as possible to pin VDD – see Figure 7. The required decoupling depends on the power supply network connected to the sensor. We also recommend VDD and VDDH pins to be shorted.SCL is used to synchronize the communication between the microcontroller and the sensor. The SDA pin is used to transfer data to and from the sensor. For safe communication, the timing specifications defined in the I2C manual4 must be met. Both SCL and SDA lines are open-drain I/Os with diodes to VDD and VSS. They should be connected to external pull-up resistors. To avoid signal contention, the microcontroller must only drive SDA and SCL low. The external pull-up resistors (e.g. R p = 10 kΩ) are required to pull the signal high. For dimensioning resistor sizes please take bus capacity and communication frequency into account (see for example Section 7.1 of NXPs I2C Manual for more details4). It should be noted that pull-up5.2Communication TimingsDefault conditions of 25 °C and 1.8 V supply voltage apply to values in the table below, unless otherwise stated.4Parameter Symbol Conditions Min. Typ. Max. Units Comments SCL clock frequencyf SCL-- 400 kHz - Hold time (repeated) START conditiont HD;STA After this period, the first clock pulse is generated 0.6 --µs-LOW period of the SCL clock t LOW - 1.3 - - µs - HIGH period of the SCL clockt HIGH- 0.6 - - µs - Set-up time for a repeated START condition t SU;STA - 0.6 - - µs - SDA hold time t HD;DAT - 0 - - ns - SDA set-up time t SU;DAT - 100 - - ns - SCL/SDA rise time t R - - - 300 ns - SCL/SDA fall time t F - - - 300 ns - SDA valid timet VD;DAT - - - 0.9 µs - Set-up time for STOP condition t SU;STO - 0.6 - - µs - Capacitive load on bus lineC B-400pF-Table 7 Communication timing specifications. Specifications are at 25°C and typical VDD.Figure 8 Timing diagram for digital input/output pads. SDA directions are seen from the sensor. Bold SDA lines are controlled by the sensor; plain SDA lines are controlled by the micro-controller. Note that SDA valid read time is triggered by falling edge of preceding toggle.6 Operation and CommunicationThe SGP30 supports I 2C fast mode. For detailed information on the I 2C protocol, refer to NXP I 2C-bus specification 4. All SGP30 commands and data are mapped to a 16-bit address space. Additionally, data and commands are protected with a CRC checksum to increase the communication reliability. The 16-bit commands that are sent to the sensor already include a 3-bit CRC checksum. Data sent from and received by the sensor is always succeeded by an 8-bit CRC.In write direction it is mandatory to transmit the checksum, since the SGP30 only accepts data if it is followed by the correct checksum. In read direction it is up to the master to decide if it wants to read and process the checksum.SGP30 Hex. Code I 2C address0x58Table 8 I 2C device address.The typical communication sequence between the I 2C master (e.g., a microcontroller in a host device) and the sensor is described as follows:SCL70% 30%t LOW1/f SCL t HIGHt Rt FSDA70% 30%t SU;DATt HD;DATDATA INt RSDA70% 30% DATA OUTt VD;DATt F1.The sensor is powered up, communication is initialized2.The I2C master periodically requests measurement and reads data, in the following sequence:a.I2C master sends a measurement commandb.I2C master waits until the measurement is finished, either by waiting for the maximum execution time or bywaiting for the expected duration and then poll data until the read header is acknowledged by the sensor(expected durations are listed in Table 9)c.I2C master reads out the measurement result6.1Power-Up and Communication StartThe sensor starts powering-up after reaching the power-up threshold voltage V POR specified in Table 6. After reaching this threshold voltage, the sensor needs the time t PU to enter the idle state. Once the idle state is entered it is ready to receive commands from the master.Each transmission sequence begins with a START condition (S) and ends with a STOP condition (P) as described in the I2C-bus specification.6.2Measurement Communication SequenceA measurement communication sequence consists of a START condition, the I2C write header (7-bit I2C device address plus 0 as the write bit) and a 16-bit measurement command. The proper reception of each byte is indicated by the sensor. It pulls the SDA pin low (ACK bit) after the falling edge of the 8th SCL clock to indicate the reception. With the acknowledgement of the measurement command, the SGP30 starts measuring.When the measurement is in progress, no communication with the sensor is possible and the sensor aborts the communication with a NACK condition.After the sensor has completed the measurement, the master can read the measurement results by sending a START condition followed by an I2C read header. The sensor will acknowledge the reception of the read header and responds with data. The response data length is listed in Table 9 and is structured in data words, where one word consists of two bytes of data followed by one byte CRC checksum. Each byte must be acknowledged by the microcontroller with an ACK condition for the sensor to continue sending data. If the sensor does not receive an ACK from the master after any byte of data, it will not continue sending data.After receiving the checksum for the last word of data, an NACK and STOP condition have to be sent (see Figure 9).The I2C master can abort the read transfer with a NACK followed by a STOP condition after any data byte if it is not interested in subsequent data, e.g. the CRC byte or following data bytes, in order to save time. Note that the data cannot be read more than once, and access to data beyond the specified amount will return a pattern of 1s.6.3Measurement CommandsThe available measurement commands of the SGP30 are listed in Table 9.Feature SetThe SGP30 features a versioning system for the available set of measurement commands and on-chip algorithms. This so called feature set version number can be read out by sending a “Get_feature_set_version” command. The sensor responds with 2 data bytes (MSB first) and 1 CRC byte. This feature set version number is used to refer to a corresponding set of available measurement commands as listed in Table 9.Air Quality SignalsThe SGP30 uses a dynamic baseline correction algorithm and on-chip calibration parameters to provide two complementary air quality signals. Based on the sensor signals a total VOC signal (TVOC) and a CO2equivalent signal (CO2eq) are calculated. Sending an “Init_air_quality” command starts the air quality measurement. After the “Init_air_quality” command, a “Measure_air_quality” command has to be sent in regular intervals of 1s to ensure proper operation of the dynamic baseline correction algorithms. The sensor responds with 2 data bytes (MSB first) and 1 CRC byte for each of the two preprocessed air quality signals in the order CO2eq (ppm) and TVOC (ppb).The SGP30 also provides the possibility to read and write the baseline values of the baseline correction algorithm. This feature is used to save the baseline in regular intervals on an external non-volatile memory and restore it after a new power-up or soft reset of the sensor. The command “Get_baseline” returns the baseline values for the two air quality signals. T he sensorresponds with 2 data bytes (MSB first) and 1 CRC byte for each of the two values in the order CO 2eq and TVOC. These two values should be stored on an external memory. After a power-up or soft reset, the baseline of the baseline correction algorit hm can be restored by using the “Set_baseline” command with the two baseline values as parameters in the order as (TVOC, CO 2eq). An example implementation of a generic driver for the baseline algorithm can be found in the document SGP30_driver_integration_guide .A new “Init_air_quality” command has to be sent after every power -up or soft reset.Sensor SignalsThe command “Measure_signals” is intended for part verification and testing purposes. It returns the sensor signals which are used as inputs for the on-chip calibration and baseline correction algorithms as shown in Figure 6. The command performs a measurement to which the sensor responds with 2 data bytes (MSB first) and 1 CRC byte (see Figure 9) for 2 sensor signals in the order H2_signal (s out_H2) and Ethanol_signal (s out_EthOH ) Both signals can be used to calculate gas concentrations c relative to a reference concentration c ref byln (c c ref ⁄)=s ref −s outawith a = 512 (9-bit shift), s ref the H2_signal or Ethanol_signal output at the reference concentration, and s out = s out_H2 or s out = s out_EthOH .Measure TestThe command “Measure_test ” which is included for integration and production line testing runs an on-chip self-test. In case of a successful self-test the sensor returns the fixed data pattern 0xD400 (with correct CRC).Table 9 Measurement commands.6.4 Soft ResetA sensor reset can be generated using the “General Call” mode according to I 2C-bus specification. It is important to understand that a reset generated in this way is not device specific. All devices on the same I 2C bus that support the General Call mode will perform a reset. The appropriate command consists of two bytes and is shown in Table 10.Table 10 Reset through the General Call address (Clear blocks are controlled by the microcontroller, grey blocks by the sensor.).6.5Get Serial IDThe readout of the serial ID register can be used to identify the chip and verify the presence of the sensor. The appropriate command structure is shown in Table 11. After issuing the measurement command and sending the ACK Bit the sensor needs the time t IDLE = 0.5ms to respond to the I2C read header with an ACK Bit. Hence, it is recommended to wait t IDLE =0.5ms before issuing the read header.The get serial ID command returns 3 words, and every word is followed by an 8-bit CRC checksum. Together the 3 words constitute a unique serial ID with a length of 48 bits.The ID returned with this command are represented in the big endian (or MSB first) format.Table 11 Get serial ID command.6.6Checksum CalculationThe 8-bit CRC checksum transmitted after each data word is generated by a CRC algorithm. Its properties are displayed in Table 12. The CRC covers the contents of the two previously transmitted data bytes. To calculate the checksum only these two previously transmitted data bytes are used.Table 12 I2C CRC properties.6.7Communication Data SequencesFigure 9 Communication sequence for starting a measurement and reading measurement results.7Quality7.1Environmental StabilityThe qualification of the SGP30 will be performed based on the JEDEC JESD47 qualification test method.7.2Material ContentsThe device is fully RoHS and WEEE compliant, e.g., free of Pb, Cd, and Hg.8Device PackageSGP30 sensors are provided in a DFN (dual flat no leads) package with an outline of 2.45 × 2.45 × 0.9 mm3and a terminal pitch of 0.8 mm. The circular sensor opening of maximally 1.6 mm diameter is centered on the top side of the package. The sensor chip is assembled on a Ni/Pd/Au plated copper lead frame. Sensor chip and lead frame are over-molded by a black, epoxy-based mold compound. Please note that the side walls of the package are diced and therefore the lead frame sidewall surfaces are not plated. SGP308.1TraceabilityAll SGP30 sensors are laser marked for simple identification and traceability. The marking on the sensor consists of the product name and a 4-digit, alphanumeric tracking code. This code is used by Sensirion for batch-level tracking throughout production, calibration, and testing. Detailed tracking data can be provided upon justified request. The pin-1 location is indicated by the keyhole pattern in the light-colored central area. See Figure 10 for illustration.Figure 10 Laser marking on SGP30. The pin-1 location is indicated by the keyhole pattern in the light-colored central area. The bottom line contains a 4-digit alphanumeric tracking code8.2 Package OutlineFigure 11 Package outlines drawing of the SGP30 with nominal values. Dimensions are given in millimeters. The die pad shows a small recess in the bottom left part. * These dimensions are not well defined and given as a reference only.8.3 Landing PatternFigure 12 shows the PCB landing pattern. The landing pattern is understood to be the metal layer on the PCB, onto which the DFN pads are soldered. The solder mask is understood to be the insulating layer on top of the PCB covering the copper traces. It is recommended to design the solder mask as a Non-Solder Mask Defined (NSMD) type. For solder paste printing it is recommended to use a laser-cut, stainless steel stencil with electro-polished trapezoidal walls and with 0.125 to 0.150 mm stencil thickness. The length of the stencil apertures for the I/O pads should be the same as the PCB pads. However, the position of the stencil apertures should have an offset of 0.1 mm away from the package center, as indicated in Figure 12. The die pad aperture should cover 70 – 90 % of the die pad area, resulting in a size of about 1.05 mm x 1.5 mm.For information on the soldering process and further recommendation on the assembly process please contact Sensirion.Figure 12 Recommended landing pattern.o9 Ordering InformationSamples are available upon request. Please contact Sensirion.10 Tape & Reel PackageFigure 13 Technical drawing of the packaging tape with sensor orientation in tape. Header tape is to the right and trailer tape to the left on this drawing. Dimensions are given in millimeters.NOTES:AS TRUE POSITION OF POCKET, NOT POCKET HOLE3. A0 AND B0 ARE CALCULATED ON A PLANE AT A DISTANCE "R" ABOVE THE BOTTOM OF THE POCKETSECTION A - A11Important Notices11.1Warning, Personal InjuryDo not use this product as safety or emergency stop devices or in any other application where failure of the product could result in personal injury. Do not use this product for applications other than its intended and authorized use. Before installing, handling, using or servicing this product, please consult the data sheet and application notes. Failure to comply with these instructions could result in death or serious injury. If the Buyer shall purchase or use SENSIRION products for any unintended or unauthorized application, Buyer shall defend, indemnify and hold harmless SENSIRION and its officers, employees, subsidiaries, affiliates and distributors against all claims, costs, damages and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if SENSIRION shall be allegedly negligent with respect to the design or the manufacture of the product.11.2ESD PrecautionsThe inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation, take customary and statutory ESD precautions when handling this product.See ap plication note “ESD, Latchup and EMC” for more information.11.3WarrantySENSIRION warrants solely to the original purchaser of this product for a period of 12 months (one year) from the date of delivery that this product shall be of the quality, material and workmanship defined in SENSIRION’s published specifications of the pr oduct. Within such period, if proven to be defective, SENSIRION shall repair and/or replace this product, in SENSIRION’s discretion, free of charge to the Buyer, provided that:∙notice in writing describing the defects shall be given to SENSIRION within fourteen (14) days after their appearance;∙such defects shall be found, to SENSIRION’s reasonable satisfaction, to have arisen from SENSIRION’s faulty design, material, or workmanship;∙the defective product shall be returned to SENSIRION’s factory at the Buyer’s expense; and∙the warranty period for any repaired or replaced product shall be limited to the unexpired portion of the original period.This warranty does not apply to any equipment which has not been installed and used within the specifications recommended by SENSIRION for the intended and proper use of the equipment. EXCEPT FOR THE WARRANTIES EXPRESSLY SET FORTH HEREIN, SENSIRION MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE PRODUCT. ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSLY EXCLUDED AND DECLINED. SENSIRION is only liable for defects of this product arising under the conditions of operation provided for in the data sheet and proper use of the goods. SENSIRION explicitly disclaims all warranties, express or implied, for any period during which the goods are operated or stored not in accordance with the technical specifications.SENSIRION does not assume any liability arising out of any application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. All operating parameters, including without limitation recommended parameters, must be validated f or each customer’s applications by customer’s technical experts. Recommended parameters can and do vary in different applicat ions. SENSIRION reserves the right, without further notice, (i) to change the product specifications and/or the information in this document and (ii) to improve reliability, functions and design of this product.Copyright© 2017 by SENSIRION.CMOSens® is a trademark of Sensirion.All rights reserved.12Headquarters and SubsidiariesSensirion AG Laubisruetistr. 50CH-8712 Staefa ZH Switzerlandphone: +41 44 306 40 00 fax: +41 44 306 40 30 ****************** Sensirion Inc., USAphone: +1 312 690 5858*********************Sensirion Korea Co. Ltd.phone: +82 31 337 7700~3*********************www.sensirion.co.kr Sensirion Japan Co. Ltd.phone: +81 3 3444 4940*********************www.sensirion.co.jpSensirion China Co. Ltd.phone: +86 755 8252 1501*********************Sensirion Taiwan Co. Ltdphone: +886 3 5506701****************** To find your local representative, please visit /distributors。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硫酰氟气体传感器
硫酰氟气体传感器产品适用于各种环境和特殊环境中的硫酰氟气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。
硫酰氟气体变送器产品特性:
①进口电化学传感器具有良好的抗干扰性能,适用寿命8年。
②采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。
③检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。
4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。
5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。
6全量程范围温度数字自动跟踪补偿,保证测量准确性。
硫酰氟气体变送器技术参数:
检测气体:空气中的硫酰氟气体
检测范围:0~100ppm,0~200ppm,0~1000ppm,0~1000ppm,0~5000ppm,100%LEL可选。
分别率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(0~10000ppm以上);0.1LEL.
工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。
检测误差:≦1%(F.S)
响应时间:≦10S
输出信号:电流信号输出4-20MA
报警方式:2路无源节点信号输出,报警点可设置。
工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃)
相对湿度:≦90%RH
工作电压:DC12~30V
传感器寿命:3年
防爆形式:探头变送器及传感器均为隔爆型。
防爆等级:Exd II CT6
连接电缆:三芯电缆(单根线径≧1.5mm);建议选用屏蔽电缆。
连接距离:≦1000m.
防护等级:IP65.
外形尺寸:183X143X107mm.
重量:1.5Kg.
检测气体:空气中的硫酰氟气体
检测范围:0-100ppm、500ppm、1000ppm、5000ppm、0-100%LEL
分辨率:0.1ppm、0.1%LEL
显示方式:液晶显示
温湿度:选配件,温度检测范围:-40~120℃,湿度检测范围:0-100%RH
检测方式:扩散式、流通式、泵吸式可选安装方式:壁挂式、管道式检测精度:≤±3%线性误差:≤±1%
响应时间:≤20秒(T90)零点漂移:≤±1%(F.S/年)恢复时间:≤20秒重复性:≤±1%
信号输出:①4-20mA信号:标准的16位精度4-20mA输出芯片,传输距离1Km
②RS485信号:采用标准MODBUS RTU协议,传输距离2Km
③电压信号:0-5V、0-10V输出,可自行设置
④脉冲信号:又称频率信号,频率范围可调(选配)
⑤开关量信号:标配2组继电器,可选第三组继电器,继电器无源触点,容量220VAC3A/24VDC3A
传输方式:①电缆传输:3芯、4芯电缆线,远距离传输(1-2公里)
②GPRS传输:可内置GPRS模块,实时远程传输数据,不受距离限制(选配)
接收设备:用户电脑、控制报警器、PLC、DCS、等
报警方式:现场声光报警、外置报警器、远程控制器报警、电脑数据采集软件报警等
报警设置:标准配置两级报警,可选三级报警;可设置报警方式:常规高低报警、区间控制报警
电器接口:3/4″NPT内螺纹、1/2″NPT内螺纹,同时支持2种电器连接方式
防爆标志:ExdII CT6(隔爆型)壳体材料:压铸铝+喷砂氧化/氟碳漆,防爆防腐蚀
防护等级:IP66工作温度:-30~60℃
工作电源:24VDC(12~30VDC)工作湿度:≤95%RH,无冷凝
尺寸重量:183×143×107mm(L×W×H)1.5Kg(仪
器净重)
工作压力:0~100Kpa
标准配件:说明书、合格证质保期:一年
硫酰氟气体变送器的简单介绍:
硫酰氟气体报警器●自动温度补偿,零点,满量程漂移补偿●防高浓度气体冲击的自动保护功能●全软件校准功能,用户也可自行校准,用3个按键实现,操作简单●二线制4-20mA输出
硫酰氟气体变送器的应用场所
医药科研、制药生产车间、烟草公司、环境监测、学校科研、楼宇建设、消防报警、污水处理、工业气体过程控制石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、、锅炉房、垃圾处理厂、隧道施工、输油管道、加气站、地下燃气管道检修、室内空气质量检测、危险场所安全防护、航空航天、军用设备监测等。