汽油蒸汽控制系统控制原理

合集下载

汽油机电控燃油喷射系统组成和工作原理

汽油机电控燃油喷射系统组成和工作原理

蒸气吸入发动机中。
1—支架; 2—栅格; 3、6—滤芯; 4—活性炭; 5—壳体; 7—炭罐真空;
8—清洁空气; 9—蒸气自燃油箱;
10—进气歧管真空度; 11—燃油蒸气通风阀
汽油机电控燃油喷射系统组成和工作原理
图1-27 (a)热线式空气流量计 (b)热线式空气流量计电路 (c)热膜式空气流量计 (d (e)膜盒式进气管压力传感器 (f 1—整流网; 2—涡源体; 3—超声波发 生器; 4—旋涡; 5—超声波接收器; 6—硅片; 7—二氧化硅膜; 8—真空室; 9—硼硅酸玻璃片; 10—传感电阻; 11—金属块
图1-20 氧传感器
汽油机电控燃油喷射系统组成和工作原理
图1-21 闭环控制系统
汽油机电控燃油喷射系统组成和工作原理
(2)温度传感器。温度传 感器都采用半导体热敏元件。
①水温传感器(见图1-22)。 通常安装在发动机出水口处,敏 感元件由铜套封住。
图1-22 水温传感器
汽油机电控燃油喷射系统组成和工作原理
D型电控燃油喷射系统如 图1-17(b)所示。
空气阀只是在发动机温度 低时用来调节进气量,控制发 动机的怠速转速。
图1-17 (a)L型电控燃油喷射系统 (b)D型电控燃油喷射系统
汽油机电控燃油喷射系统组成和工作原理
(二)燃油供给系统
(1)作用。向气缸提供燃烧所 需要的燃油。
(2)组成。燃油供给系统通常 由电动汽油泵、汽油滤清器、压力调 节器、喷油器和冷起动喷油器组成。 (3)工作原理框图。
汽油机电控燃油喷射系统组成和工作原理
(5)负荷传感器(见图1-27)。 ①空气流量传感器。用来将吸入的空气量转换成电信号 送给ECU,作为决定喷油量的基本信号之一。 ②进气歧管绝对压力传感器。它依据发动机负荷状况, 测出进气歧管中绝对压力的变化,并将其转换成电压信号, 与转速信号一起送到ECU,作为确定基本喷油量的依据。

汽车发动机汽油机的点火控制原理与检修

汽车发动机汽油机的点火控制原理与检修

• 三、电子控制点火系统的控制过程
• 点火提前角控制过程和点火导通角控制过程。桑塔纳2000GSi为 例。设发动机判缸信号在第1缸上止点前BTDC88°时产生、曲 轴转速 2000r/min时最佳点火提前角为上止点前BTDC30 °曲轴 转角。
• 1.点火提前角的控制
• 由CMP和CKP结构原理可知,CMP产生的判缸信 号下降沿输入ECU时,表明第1缸活塞处于压缩上 止点前BTDC88°位置。当ECU接收到判缸信号下 降沿后,将对CKP输入的转速与转角信号进行计数。 计数开始时的信号称为基准信号,由ECU内部电路 控制,曲轴每旋转180°产生一个基准信号。因为 CMP第一个凸齿信号在判缸信号下降沿后约7°时 产生,所以基准信号对应于第1缸活塞压缩上止点 前BTDC81°位置。 • 点火提前角的大小直接影响点火性能,提前角过大 会导致发动机产生爆震,提前角过小又会导致发动 机过热,所以必须精确控制,一般精确到1°。桑 2000GSi型轿车CKP凸齿和小齿缺信号均占3°曲 轴转角,因此需要将CKP信号转换为 1°信号。
• 二、电子控制点火系统点火提前角的确定
• 汽油发动机的可燃混合气在气缸内燃烧不是瞬时完成的,需要先经诱 导期,然后才能进入猛烈的明显燃烧期。因此,要使发动机发出最大 的功率,混合气不应在压缩冲程上止点处点火而应适当地提早一些。
• 通常把发动机发出功率最大和油耗最少的点火提前角称为 最佳点火提前角。
有些发动机是共用1个具有多个功率管的点火器其中的每个功率管分别控制一个点火线圈有的发动机各缸的点火线圈分组共用若干个点火器如奥迪4气门5缸发动机5个点火线圈分别接到两个点火器上其中一个点火器控制3个缸的点火另一个点火器则控制2个缸的点火汽车实训教研室编点火系统采用单独点火方式时每一个气缸都配有一个点火线圈并安装在火花塞上方

电控汽油喷射系统的控制原理

电控汽油喷射系统的控制原理

电控汽油喷射系统的控制原理电控汽油喷射系统是现代汽车发动机的一种关键技术,它通过控制喷油量和喷油时机,实现对发动机燃油供给的精确控制,从而提高燃油的利用率和发动机的性能。

其控制原理主要包括传感器检测、控制单元计算和执行器执行三个环节。

电控汽油喷射系统通过多个传感器对发动机的工作状态进行实时监测和检测。

其中最关键的是氧气传感器,它可以测量发动机排气中的氧气含量,从而判断燃烧的贫油或富油状态。

此外,还包括进气温度传感器、节气门位置传感器、曲轴位置传感器等,这些传感器可以提供给控制单元关于发动机工作状态的准确数据。

控制单元是电控汽油喷射系统的核心部件,它根据传感器提供的数据进行计算和判断,并控制喷油量和喷油时机。

控制单元内部包含一个微处理器和一个存储器,存储着各种工况下发动机的燃油供给策略。

当传感器检测到发动机工作状态发生变化时,控制单元会根据预设的燃油供给策略进行计算,并输出控制信号给喷油器。

执行器是控制单元输出信号的接收端,它会根据控制信号的要求,精确地控制喷油器的工作。

喷油器是将燃油喷射到气缸内的关键部件,它的工作原理是通过控制喷油嘴的喷孔大小和喷油压力,实现燃油的雾化和分散。

当控制单元输出的控制信号到达喷油器时,喷油器会根据信号的要求,以适当的喷油量和喷油时机,将燃油喷射到气缸内,从而完成燃烧过程。

总结起来,电控汽油喷射系统的控制原理主要包括传感器检测、控制单元计算和执行器执行三个环节。

通过多个传感器对发动机的工作状态进行实时监测和检测,控制单元根据传感器提供的数据进行计算和判断,输出控制信号给喷油器,喷油器根据控制信号的要求,精确地控制喷油量和喷油时机。

这种精确控制燃油供给的方法,不仅提高了燃油的利用率,减少了尾气排放,还可以提高发动机的功率和响应性能,从而提升整个汽车的性能和驾驶体验。

汽油发动机管理系统原理概述

汽油发动机管理系统原理概述

汽油发动机管理系统原理概述摘要本文主要对汽油发动机的管理系统设计进行阐述,主要介绍了发动机管理系统的各个组成部分包括:进气系统、供油系统及電子控制系统。

关键词汽油发动机;管理系统;控制策略发动机管理系统简称EMS(Engine Management System),传统也称作电喷系统,其类型繁多但其基本原理大致相同:以电子控制单元为控制核心,以空气流量(或进气压力)和发动机曲轴转速为控制基础,以喷油器和点火器为控制对象,确保获得与发动机各种运行工况相匹配的最佳混合成分、最佳喷油时刻和最佳点火提前角,发动机管理系统一般均由进气系统、供油系统和电子控制系统三部分构成,下面主要介绍非缸内直喷发动机管理系统的基本结构、工作原理及发展动向。

1 进气系统进气系统为发动机可燃混合气提供必需的空气,空气经过空气滤清器、空气流量计、节气门和进气歧管进入发动机气缸内。

一般工作时,空气的流量由通道中的节气门来控制,节气门开度越大进入的空气量就越多,当节气门关闭时空气由旁通通道通过,怠速转速的控制是由怠速调整螺钉和怠速空气调节器调整经过怠速旁通阀的空气量来实现的。

怠速空气调节器由电脑ECU控制,在气温低时启动发动机,怠速空气调节器的通路打开,将暖机必需的空气量送进进气歧管,此时,发动机转速校正怠速较高,随着发动机温度的升高,怠速空气调节器使旁通阀开度逐渐减小,旁通空气量逐渐减小,使发动机转速逐渐低至正常怠速。

进气通道中的空气流量是由空气流量计或绝对压力传感器来采集的,将采集的信号转换成为相应大小的电压脉冲信号输入到ECU(电子控制单元),由ECU 来计算出所需要的喷油量。

一般的节流阀体上均装有进气温度传感器,以测定进气温度,进气温度不同,空气密度不同,从而导致空燃比发生变化,ECU可以根据进气温度采集的信号适时修正喷油量,以达到更精确的空燃比[1]。

2 供油系统供油系统为发动机提供燃烧所必需的燃油,燃油系统由燃油箱、油管、燃油滤芯、燃油泵、喷油器及压力调节器组成,不同厂家的结构有所差别,比如有些厂家的燃油泵、喷油器与压力调节器集成在一个部件中,但其基本结构基本一致。

第三节-电控燃油喷射系统的组成与基本原理

第三节-电控燃油喷射系统的组成与基本原理

第三节电控燃油喷射系统的组成与基本原理组成:按其部件功用来看,主要有进气系统(气路)、燃油控制系统(油路)和电子控制系统(电路)三部分。

一、进气系统a)b)图1进气系统原理图作用:为发动机提供必要的空气。

组成:一般由空气滤清器、节气门体、节气门、空气阀、进气总管、进气歧管等部分组成。

另外,为了随时调节进气量,进气系统中还设置了进气量的检测装置。

如图所示:在L型EFI系统中,采用装在空气滤清器后的空气流量计(空气流量传感器)直接测量发动机发动机吸入的进气量。

其测量的准确度高于D型EFI系统,可以精确的控制空燃比。

“L”是德文“空气”的第一个字母。

D型EFI系统是根据进气歧管压力传感器进行检测。

由于进气管内的空气压力在波动,所以控制的测量精度稍微差些。

“D”是德文“压力”的第一个字母。

空气阀只是在发动机温度低时用来调节进气量,控制发动机的怠速转速。

节气门总成包括控制进气量的节气门通道和怠速运行的空气旁通道。

节气门位置传感器与节气门轴相连接,用来检测节气门的开度。

二、燃油供给系统图2燃油供给系统工作流程图作用:向气缸提供燃烧所需要的燃油。

组成:如图所示,燃油供给系统通常由电动汽油泵、汽油滤清器、压力调节器、脉动阻尼器、喷油器和冷起动喷油器组成。

工作原理:如图所示,在电控汽油喷射系统中,汽油由电动汽油泵从油箱中泵出,经汽油滤清器等输送到电磁喷油器和冷起动喷油器调节器与喷油器并联,保证供给电磁喷油器内的汽油压力与喷射环境的压力之差(喷油压差)保持不变。

燃油泵按其安装位置可以分为外装泵和内装泵两种。

外装泵将泵装载油箱之外的输油管路中,内装泵则是将泵安装在燃油箱内。

与外装泵相比,内装泵不易产生气阻和燃油泄露,而且嘈声小。

目前多数EFI采用内装泵。

脉动阻尼器可以消除喷油时油压产生的微小波动,进一步稳定油压。

电磁喷油器按照发动机控制的喷油脉冲信号把汽油喷入进气道。

当冷却水温度低时,冷起动喷油器将汽油喷入进气总管,以改善发动机低温时的起动性能。

燃油喷射控制系统

燃油喷射控制系统

(2)小负荷工况 要求供给较浓混合气α =0.7~0.9量少,因为,小负荷时, 节气门开度较小,进入气缸内的可燃混合气量较少,而上 一循环残留在气缸中的废气在气缸内气体中气占的比例相 对较多,不利于燃烧,因此必须供给较浓的可燃混合气。 (3)中负荷工况 要求经济性为主,混合气成分α =0.9~1.1,量多。 发动 机大部分工作时间处于中负荷工况,所以经济性要求为主。 中负荷时,节气门开度中等,故应供给接近于相应耗油率 最小的α 值的混合气,主要是α >1的稀混合气,这样,功 率损失不多,节油效果却很显著。
(6)加速工况 发动机的加速是指负荷突然迅速增加的过程。 要求:混合气量要突增,并保证浓度不下降。 当驾驶员猛踩踏板时,节气门开度突然加大,以期发动机 功率迅速增大。在这种情况下,空气流量大。 但由于汽油的惯性大于空气的惯性,汽油来不及足够地从 喷口喷出,所以瞬时汽油流量的增加比空气的增加要小得 多,致使混合气过稀。 另外,在节气门急开时,进气管内压力骤然升高,同时由 于冷空气来不及预热,使进气管内温度降低。不利于汽油 的蒸发,致使汽油的蒸发量减少,造成混合气过稀。 为了改善这种情况,就应该采取强制方法。在化油器节气 门突然开大时,强制多供油,额外增加供油量,及时使混 合气加浓到足够的程度。
燃油喷射控制系统
一、发动机基本知识
可燃混合气成分 可燃混合气是指空气与燃料的混合物,汽油机的可燃 混合气“汽油+空气”在汽缸内形成,其成分对发动机 的动力性与经济性有很大的影响。 可燃混合气的成分用过量空气系数α 表示
通过试验证明,发动机的功率 和耗油率 都是随着过量空气系数α 变化而变化的。 因为α >1时混合气中,有适量较多的空 气,正好满足完全燃烧的条件,此混合 气称为经济混合气。 对于不同的汽油机经济混合气成分不同, 一般在α =1.05~1.15范围内。当α 大于 或小于1.05~1.15时,ge↑,经济性变 坏。

(完整版)汽油蒸气排放(EVAP)控制系统

(完整版)汽油蒸气排放(EVAP)控制系统

• 强制式曲轴箱通风系统又称PCV 系统。在发动机工作时,会有部 分可燃混合气和燃烧产物经活塞 环由气缸窜入曲轴箱内。当发动 机在低温下运行时,还可能有液 态燃油漏入曲轴箱。这些物质如 不及时清除,将加速机油变质并 使机件受到腐蚀或锈蚀。
• 又因为窜入曲轴箱内的气体 中含有HC及其他污染物,所 以不允许把这种气体排放到 大气中。现代汽车发动机所 采用的强制式曲轴箱通风系 统就是防止曲轴箱气体排放 到大气中的净化装置。
空燃比(A/F)反馈控制系统
•氧传感器
• 类型:可分为氧化锆式和氧化 钛式两种类型。
• 1、氧化锆式氧传感器
• 在氧化锆管的内外表面覆盖着一薄
层铂作为电极,传感器内侧通大气, 外侧直接与排气管中的废气接触。
• 在 400 ℃ 以上的高温时,若氧化锆内、外 表面处的气体中的氧的浓度有很大差别, 在两个铂电极之间将会产生电动势。将此 电动势输送给 ECU ,即可作为判断实际空 然比的依据。当混合气稀时,排出的废气 中氧的含量高,传感器内、外侧氧的浓度 差小,氧化锆元件内外侧两极之间产生的 电压很低(接近 0V ),反之,混合气过浓 时,排出的废气中氧的含量低,传感器内、 外侧氧的浓度差大,两电极间产生的电压 高(约为 1V )。在理论空燃比附近,氧传 感器输出电压信号值有一个突变。
• 工作原理:
• 发动机工作时, ECU 根据发动机 转速、温度、空气流量等信号,控 制碳罐电磁阀的开闭来控制排放控 制阀上部的真空度,从而控制排放 控制阀的开度。当排放控制阀打开 时,燃油蒸气通过排放控制阀被吸 入进气歧管。
废气再循环控制系统(EGR)
• 1.EGR 控制系统功能
• 功能:将适当的废气重新引入气 缸参加燃烧,从而降低气缸的最高温 度,以减少 NOx 的排放量。

燃油蒸汽排放(EVAP)控制系统

燃油蒸汽排放(EVAP)控制系统

系统功能
类型、工作原理
检测方法
EVAP系统燃油蒸汽泄漏检测图 解
蒸汽压力传感器安装在燃油箱上,当燃 油箱内的蒸汽压力高于或低于大气压力 时,ECU得知燃油系统没有泄漏,一旦 蒸汽压力与大气压力相当时,则说明有 蒸汽泄漏。
汽车行驶5-20分钟后,ECU开启净化阀 VSV,之后再开启旁通阀VSV,关闭活性 炭罐关闭阀CCV,这将降低EVAP系统内 的燃油蒸汽压力。
系统功能
类型、工作原理
检测方法
新鲜空气也可直接经燃油箱盖进入燃油箱
⑶燃油蒸汽净化控制。在燃油蒸汽净化过程 中,蒸汽经净化电磁阀VSV、节气门体上的 净化口吸入到进气歧管。同时新鲜空气经活 性炭罐底部被吸入与燃油蒸汽进行混合,避 免过浓。
系统功能
类型、工作原理
检测方法
⑷燃油加注过满保护。燃油加注过满会将燃 料蒸发排放阀ORVR开启,活性炭罐充满燃油 及蒸汽,过多的气体经空气阀总成内的排气 阀逸到大气中。
系统功能
类型、工作原理
检测方法
⑴活性炭罐内蒸汽储存。当燃油箱内的蒸汽 压力升高到足以开启罐阀总成内的压力阀, 燃油蒸汽进入活性炭罐内。
⑵防燃油箱真空。当燃油箱内出现真空时, 新鲜的空气通过活性炭罐空气阀总成内的进 气阀,再经活性炭罐、罐阀总成内的真空单 向阀和油箱单向阀进入燃油箱,防止油箱皱 瘪。
系统功能
类型、工作原理
检测方法
ECU依据蒸汽压力传感器的信号判断该EVAP系统有 没有泄漏,所有关于EVAP系统的故障码要经过两 个发动机驱动循环才能置出。 随车诊断系统可采用几种不同的方法来监测加强 型EVAP系统的工作状态,如通电真空测试、真空 过大测试、活性炭罐负载测试、低真空测试、小 泄漏测试和净化电磁阀泄漏测试。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽油蒸汽控制系统控制原理
汽油蒸汽控制系统是一种用于汽车发动机控制的重要系统,其主要作用是控制汽油的喷射和燃烧过程,从而保证发动机的正常运行。

该系统的控制原理主要包括如下几个方面:
1. 汽油喷射控制原理:汽油蒸汽控制系统通过控制喷油嘴的开闭时间和喷油量来控制汽油的喷射量,从而实现对发动机燃烧过程的控制。

喷油量的控制主要依靠燃油喷射器和ECU(发动机控制单元)的协作完成。

2. 空燃比控制原理:空燃比是指进入发动机燃烧室的空气与汽油的混合比例,控制空燃比是汽油蒸汽控制系统的重要任务之一。

通过测量进气量和喷油量,ECU可以计算出空燃比,并通过控制喷油量来调整空燃比的大小。

3. 火花塞点火控制原理:点火是发动机燃烧的关键环节,汽油蒸汽控制系统通过控制火花塞的点火时间和点火能量来实现点火控制。

点火时间和点火能量的大小会直接影响发动机的燃烧效率和性能表现。

4. 故障诊断控制原理:现代汽车发动机控制系统具备自我诊断和故障排查功能,汽油蒸汽控制系统也不例外。

系统会对各个传感器和执行器进行监测,并在出现故障时自动进入故障诊断模式,通过诊断码等手段提示驾驶员进行维修。

总之,汽油蒸汽控制系统控制原理是一个复杂的系统工程,需要多个传感器、执行器、计算机等组成一个完整的控制系统,以实现对
发动机燃烧过程的全面控制和优化。

相关文档
最新文档