BP神经网络数学原理及推导过程

合集下载

BP神经网络详解-最好的版本课件(1)

BP神经网络详解-最好的版本课件(1)

月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导

。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2

BP神经网络算法步骤

BP神经网络算法步骤

BP神经网络算法步骤
<br>一、概述
BP神经网络(Back Propagation Neural Network,BPNN)是一种经
典的人工神经网络,其发展始于上世纪80年代。

BP神经网络的原理是按
照误差反向传播算法,以及前馈神经网络的模型,利用反向传播方法来调
整网络各层的权值。

由于其具有自动学习和非线性特性,BP神经网络被
广泛应用在很多和人工智能、计算智能紧密相关的诸如计算机视觉、自然
语言处理、语音识别等领域。

<br>二、BP神经网络的结构
BP神经网络经常使用的是一种多层前馈结构,它可以由输入层,若
干隐藏层,以及输出层三部分组成。

其中,输入层是输入信号的正向传输
路径,将输入信号正向传送至隐藏层,在隐藏层中神经元以其中一种复杂
模式对输入信号进行处理,并将其正向传送至输出层,在输出层中将获得
的输出信号和设定的模式进行比较,以获得预期的输出结果。

<br>三、BP神经网络的学习过程
BP神经网络的学习过程包括正向传播和反向传播两个阶段。

其中,
正向传播是指从输入层到隐藏层和输出层,利用现有的训练数据,根据神
经网络结构,计算出网络每一层上各结点的的激活值,从而得到输出结果。

正向传播的过程是完全可以确定的。

BP神经网络算法

BP神经网络算法

BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。

每个连接都有一个权重,表示信息传递的强度或权重。

算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。

2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。

重复该过程,直到达到输出层。

3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。

4.反向传播:根据误差反向传播,调整网络参数。

通过链式求导法则,计算每层的误差并更新对应的权重和阈值。

5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。

优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。

(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。

(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。

(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。

2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。

(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。

(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。

三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。

2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。

3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。

4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。

BP算法推导过程与讨论

BP算法推导过程与讨论

BP算法推导过程与讨论BP(Backpropagation)算法是一种用于训练神经网络的优化算法。

它通过将网络得到的输出与期望的输出进行比较,计算网络的误差,并通过误差反向传播来更新网络的权重,以达到优化网络性能的目的。

下面是BP算法的推导过程与讨论。

首先,假设我们有一个三层的前馈神经网络,包括输入层、隐藏层和输出层。

网络的输入向量为x,对应的权重矩阵为W,输出向量为y,对应的权重矩阵为V。

我们的目标是通过调整权重矩阵W和V,使得网络的输出y与期望的输出y^尽可能接近。

为了衡量网络输出的误差,一种常用的方法是均方误差(MSE),即误差函数定义为E=1/2*(y-y^)²。

BP算法的核心思想是通过梯度下降法来最小化误差函数。

梯度下降法的基本思路是沿着误差函数的负梯度方向更新权重,以减小误差函数的值。

为了推导BP算法的更新规则,我们需要计算误差函数对权重矩阵W和V的偏导数,即∂E/∂W和∂E/∂V。

然后根据链式法则,我们可以得到误差函数对输入向量x的偏导数∂E/∂x。

首先,计算误差函数对输出向量y的偏导数∂E/∂y。

根据链式法则,我们有∂E/∂y = ∂E/∂o ∙∂o/∂y,其中o表示输出函数,可以是线性函数或非线性函数,关键在于选择合适的激活函数。

对于线性函数,∂o/∂y = 1;对于Sigmoid函数,则有∂o/∂y = o ∙ (1 - o)。

然后,计算误差函数对权重矩阵V的偏导数∂E/∂V。

根据链式法则,我们有∂E/∂V=∂E/∂y∙∂y/∂V。

再次应用链式法则,可以得到∂E/∂y=∂E/∂o∙∂o/∂y=∂E/∂o∙∂o/∂y∙∂y/∂V。

根据定义,∂E/∂o=(y-y^),∂y/∂V=h,其中h表示隐藏层的输出向量。

接下来,我们来计算误差函数对权重矩阵W的偏导数∂E/∂W。

同样地,根据链式法则,我们有∂E/∂W=∂E/∂y∙∂y/∂W。

再次应用链式法则,可以得到∂E/∂y=∂E/∂o∙∂o/∂y=∂E/∂o∙∂o/∂y∙∂y/∂h∙∂h/∂W。

bp神经网络的原理

bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。

它可以用于分类、回归和其他许多任务。

BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。

BP神经网络的基本结构包括输入层、隐藏层和输出层。

每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。

神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。

通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。

BP神经网络的训练包括两个关键步骤:前向传播和反向传播。

前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。

反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。

在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。

误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。

利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。

通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。

然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。

为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。

总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。

通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

bp算法原理

bp算法原理

bp算法原理BP算法原理BP算法是神经网络中应用最广泛的一种学习算法,它的全称是“反向传播算法”,用于训练多层前馈神经网络。

BP算法基于误差反向传播原理,即先通过前向传播计算网络输出值,再通过反向传播来调整各个神经元的权重,使误差函数最小化。

BP算法的步骤如下:1. 初始化:随机初始化网络每个神经元的权重,包括输入层、隐藏层和输出层的神经元的权重。

2. 前向传播:将训练样本输送到输入层,通过乘积和运算得到每个隐藏层神经元的输出,再通过激活函数得到隐藏层神经元的实际输出值。

然后,将隐藏层的输出值输送到输出层,按照同样的方法计算输出层神经元的输出值。

3. 反向传播:通过误差函数计算输出层神经元的误差值,然后反向传播计算隐藏层神经元的误差值。

4. 权值调整:按照梯度下降法,计算误差对每个神经元的权重的偏导数,根据偏导数的大小来调整各个神经元的权重,使误差逐渐减小。

5. 重复步骤2~4,直到误差小到一定程度或者训练次数达到预定值。

其中,误差函数可以选择MSE(Mean Squared Error)函数,也可以选择交叉熵函数等其他函数,不同的函数对应不同的优化目标。

BP算法原理的理解需要理解以下几个方面:1. 神经元的输入和输出:神经元的输入是由上一层神经元的输出和它们之间的权重乘积的和,加上神经元的偏置值(常数)。

神经元的输出是通过激活函数把输入值转化为输出值。

2. 前向传播和反向传播:前向传播是按照输入层到输出层的顺序计算神经元的输出值。

反向传播是一种误差反向传播的过程,它把误差从输出层往回传递,计算出每个神经元的误差,然后调整各个神经元的权重来使误差逐渐减小。

3. 梯度下降法:梯度下降法是一种优化算法,根据误差函数的梯度方向来寻找误差最小的点。

BP算法就是基于梯度下降法来优化误差函数的值,使神经网络的输出结果逼近实际值。

综上所述,BP算法是一种常用的神经网络学习算法,它利用前向传播和反向传播的过程来调整神经元的权重,不断优化误差函数的值,从而使神经网络的输出结果更加准确。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络数学原理及推导过程
BP神经网络(Backpropagation Neural Network),也称为反向传
播神经网络,是一种常见的人工神经网络模型,主要用于解决回归和分类
问题。

它在数学上涉及到多元微积分、线性代数和概率论等方面的知识。

本文将从数学原理和推导过程两个方面进行阐述。

一、数学原理:
1. 激活函数(Activation Function):激活函数是神经网络中非线
性变换的数学函数,用于引入非线性因素,增加神经网络的表达能力。


见的激活函数有Sigmoid函数、ReLU函数等。

2. 前向传播(Forward Propagation):神经网络的前向传播是指将
输入数据从输入层依次传递到输出层的过程。

在前向传播中,每个神经元
接收上一层神经元传递过来的激活值和权重,计算出当前神经元的输出值,并将输出值传递给下一层神经元。

3. 反向传播(Backward Propagation):神经网络的反向传播是指
根据损失函数的值,从输出层开始,沿着网络的反方向不断调整神经元的
权重,以达到最小化损失函数的目的。

在反向传播中,通过链式法则计算
每个神经元对损失函数的导数,进而利用梯度下降算法更新权重。

4. 误差函数(Error Function):误差函数用于衡量神经网络输出
结果和真实值之间的差异,常见的误差函数有均方差(Mean Squared Error)函数和交叉熵(Cross Entropy)函数。

5.权重更新规则:反向传播算法中的核心部分就是权重的更新。

权重
更新通常采用梯度下降算法,通过计算损失函数对权重的偏导数,按照负
梯度方向更新权重值,使得损失函数逐渐减小。

二、推导过程:
下面将以一个简单的多层感知机为例,推导BP神经网络的权重更新
规则。

假设我们有一个三层的神经网络,第一层为输入层,第二层为隐藏层,第三层为输出层,隐藏层和输出层都使用Sigmoid激活函数。

1.前向传播:
首先,我们根据输入层的输入值X和权重W1,计算隐藏层的输入值
H1:
H1=X*W1
然后,将隐藏层的输入值H1带入到Sigmoid函数中,得到隐藏层的
输出值A1:
A1=σ(H1)
接下来,根据隐藏层的输出值A1和权重W2,计算输出层的输入值H2:H2=A1*W2
最后,将输出层的输入值H2带入到Sigmoid函数中,得到输出层的
输出值A2:
A2=σ(H2)
2.反向传播:
设输出层的输出值为Y,隐藏层的输出值为A1,损失函数为L。

首先,计算输出层的偏导数dL/dH2:
dL/dH2=dL/dA2*dA2/dH2
其中,dL/dA2可以根据具体的损失函数来计算,以均方差误差函数为例:
dL/dA2=2(Y-A2)
dA2/dH2=σ'(H2)
然后,根据链式法则,计算输出层的偏导数dL/dW2:
dL/dW2=dL/dH2*dH2/dW2
dH2/dW2=A1
接着,计算隐藏层和输入层之间的偏导数dL/dH1:
dL/dH1=dL/dA2*dA2/dH2*dH2/dA1*dA1/dH1
dA1/dH1=σ'(H1)
dH2/dA1=W2
最后,计算隐藏层的偏导数dL/dW1:
dL/dW1=dL/dH1*dH1/dW1
dH1/dW1=X
3.权重更新:
根据权重更新的规则,将损失函数对权重的偏导数带入,可以得到权重的更新公式:
W1=W1-α*dL/dW1
W2=W2-α*dL/dW2
其中,α为学习率,用于控制每次迭代时的权重更新步幅。

综上所述,我们完成了一次BP神经网络的前向传播和反向传播过程,得到了权重的更新规则。

通过重复上述过程,并不断调整权重,我们可以
得到一个较优的神经网络模型,用于解决具体的问题。

总结起来,BP神经网络的理论基础主要涉及激活函数、前向传播、
反向传播、误差函数和权重更新等数学原理。

推导过程中,通过梯度下降
算法和链式法则,计算了权重对损失函数的偏导数,进而得到了权重的更
新规则。

这些数学原理和推导过程为BP神经网络的应用提供了基础。

相关文档
最新文档