BP神经网络详解和实例-BP算法-神经网络-机器学习-马尔科夫链

合集下载

(完整版)BP神经网络matlab实例(简单而经典).doc

(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据y=anew';1、 BP 网络构建(1)生成 BP 网络net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。

[ S1 S2...SNl] :各层的神经元个数。

{TF 1 TF 2...TFNl } :各层的神经元传递函数。

BTF :训练用函数的名称。

(2)网络训练[ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV )(3)网络仿真[Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ){'tansig','purelin'},'trainrp'BP 网络的训练函数训练方法梯度下降法有动量的梯度下降法自适应 lr 梯度下降法自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrpFletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgpPowell-Beale 共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlmBP 网络训练参数训练参数net.trainParam.epochsnet.trainParam.goal net.trainParam.lrnet.trainParam.max_fail net.trainParam.min_grad net.trainParam.show net.trainParam.timenet.trainParam.mc net.trainParam.lr_inc 参数介绍最大训练次数(缺省为10)训练要求精度(缺省为0)学习率(缺省为0.01 )最大失败次数(缺省为5)最小梯度要求(缺省为1e-10)显示训练迭代过程( NaN 表示不显示,缺省为 25)最大训练时间(缺省为inf )动量因子(缺省0.9)学习率lr增长比(缺省为1.05)训练函数traingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingdm 、 traingdx traingda 、traingdxnet.trainParam.lr_dec 学习率 lr 下降比(缺省为 0.7) traingda 、 traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省traingda 、 traingdx为 1.04)net.trainParam.delt_inc 权值变化增加量(缺省为trainrp1.2)net.trainParam.delt_dec 权值变化减小量(缺省为trainrp0.5)net.trainParam.delt0 初始权值变化(缺省为 0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为trainrp50.0)net.trainParam.searchFcn 一维线性搜索方法(缺省为traincgf 、traincgp 、traincgb 、srchcha)trainbfg 、 trainossnet.trainParam.sigma 因为二次求导对权值调整的trainscg影响参数(缺省值 5.0e-5)mbda Hessian 矩阵不确定性调节trainscg参数(缺省为 5.0e-7)net.trainParam.men_reduc 控制计算机内存/ 速度的参trainlm量,内存较大设为1,否则设为 2(缺省为 1)net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc 的增长率(缺省为10)trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)trainlm2、 BP 网络举例举例 1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用 minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

BP神经网络算法原理

BP神经网络算法原理

B P神经网络算法原理(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一个2×3×1的神经网络即输入层有两个节点,隐层含三个节点,输出层有一个节点,神经网络如图示。

图1 神经网络结构图图中ij w )5,4,3;2,1(==j i 为输入层与隐层的权值,jk w )6;5,4,3(==k j 为隐层与输出层的权值,1x 、2x 是神经网络的输入值,y 是网络的输出值,p y 为教师信号,e 为神经网络的实际输出与期望输出的误差。

在这个神经网络中,节点1,2是输入层,节点3,4,5是隐层,节点6是输出层;输入层和隐层之间的权值依次为252423151413,,,,,w w w w w w ,隐层和输出层间的权值为564636,,w w w ,下角标为节点的编号;隐层和输出层节点的阈值依次为3θ,4θ,5θ,6θ。

①前馈计算设隐层的第j 个节点的输入和输出分别为:∑=⋅=Ni i ij j O w I 1)(j j I f O = 其中)(j I f 为激励函数 j I j e I f -+=11)(由于隐层的输出就是输出层的输入,则输出层第k 个节点的总输入和输出分别为:∑=⋅=Hj j jk k O w I 1)(k k k I f O y == 若网络输出与实际输出存在误差,则将误差信号反向传播,并不断地修正权值,直至误差达到要求为止。

②权值调整设误差函数定义为: ∑=-=M k k k p y d E 12)(21 为了简便,以下计算都是针对每个节点而言,误差函数p E 记作E 。

输出层权值的调整权值修正公式为: jkjk w Ew ∂∂-=∆ηjk kk w I I E ∂∂∂∂-=η 定义反传误差信号k δ为:kkk k k I O O E I E ∂∂∂∂-=∂∂-=δ式中)(k k kO d O E--=∂∂ )()(k kk k kI f I I f I O '=∂∂=∂∂ )1()](1)[()(k k k k k O O I f I f I f -=-=' 所以 )(k k k O d -=δ)1(k k O O -又 j Hj j jk jk jk k O O w w w I =∂∂=∂∂∑=)(1由此可得输出层的任意神经元权值的修正公式: j k jk O w ηδ=∆ 或 j k k k k jk O O d O O w ))(1(--=∆η ( 隐层权值的调整ijij w Ew ∂∂-=∆ηijjj w I I E ∂∂∂∂-=ηi jO I E∂∂-=η式中 i Ni i ij ij ij O O w w w E =⋅∂∂=∂∂∑=)(1 由于误差函数E 与隐层输入j I 不存在直接的函数关系,因此不能直接求得,所以 jj j j I O O E I E ∂∂∂∂-=∂∂- j j M k jk k I I f O I I E ∂∂⋅∂∂∂∂-=∑=)()(1 )()()(11j Hj j jk j Mk k I f O w O I E '⋅⋅∂∂∂∂-=∑∑== )()(1j M k jk k I f w '⋅=∑=δ隐层的反传误差信号为∑=⋅'=Mk jk k j i w I f 1)(δδ由此可得,隐层权值的修正公式为; i Mk jk k j ij O w I f w ⋅⋅'=∆∑=)()(1δη或 i Mk jk k j j ij O w O O w ⋅⋅-=∆∑=)()1(1δη。

bp人工神经网络的原理及其应用

bp人工神经网络的原理及其应用

廷塑签凰.B P人工神经网络的原理及其应用焦志钦(华南理工大学,广东广州510000)f}商鞫人工神经网络是计算智能和机器学习研究中最活跃的分交之一。

本文对神经网络中的BP算法的原理做了详尽的阐述,并用M a da b 程序对其进行了应用。

表明它具有强大的拟合功能。

房;建闭B P算法;M adab1人工神经网络的发展人工神经网络是一个由多个简单神经元相互关联构成的能够实现某种特定功能的并行分布式处理器。

单个神经元由杈值、偏置值、净输^和传输函数组成。

多输入单神经元模型如图1—1所示。

岛见:●仇图1—1多输入单神经元模型其中P为输入值,w.为连接权值,b为偏置值,f似o√为传输函数。

神经元值n=w p+b,输出值为a=f M。

人工神经网络的第一个应用是感知机网络和联想学习规则。

不幸的是,后来研究表明基本的感知机网络只能解决有限的几类问题。

单层感知机只能解决线性分类问题。

不能解决异或问题,也不能解决非线性问题,因此就有单层感知机发展为多层感知机。

多层神经网络中—个重要的方法是B P算法。

BP网络属于多层前向网络,如图1—2所示:卫咒鼍旬k图卜2卵网络模型2B P算法B P网络计算方法如式(2—1)所示,为简化,将神经元的阈值8视为连接权值来处理,并令xo=go=ho=一1,故式(5-1)可以改写为式(2—2)。

92‘i互%蕾一8少j=I,2,…,,17也=,f∑峭一日.J j卢7,22,…,n2(2,1)^=,f2郴一日。

Jj卢7,,…,(2—1)心y,--f凭峭叫i j=1,2,…,n29=7i互w刚∥j=1,2,..’,几7^-f嚷郴一日小』=7,2,…,n2(2—2)M=f f三峭一日,Jj j=l,2,…,n2,=,B P算法是一种有导师的学习算法,这种算法通常是应用最速下降法。

图2—1描述了B P网络的一部分,其中包括工作信号(实线)和误差信号(虚线)两部分。

2002。

10。

1。

0。

’。

年。

(完整版)BP神经网络原理及应用

(完整版)BP神经网络原理及应用

(完整版)BP神经网络原理及应用BP神经网络原理及应用1 人工神经网络简介1.1生物神经元模型神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。

据神经生物学家研究的结果表明,人的大脑一般有1011个神经元。

每个神经元都由一个细胞体,一个连接其他神经元的轴突1010和一些向外伸出的其它较短分支——树突组成。

轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。

其末端的许多神经末梢使得兴奋可以同时送给多个神经元。

树突的功能是接受来自其它神经元的兴奋。

神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。

神经元的树突与另外的神经元的神经末梢相连的部分称为突触。

1.2人工神经元模型神经网络是由许多相互连接的处理单元组成。

这些处理单元通常线性排列成组,称为层。

每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。

处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。

目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。

)()(1∑=-=ni j i ji j x w f t Y θ (1.1)式(1.1)中,j 为神经元单元的偏置(阈值),ji w 为连接权系数(对于激发状态,ji w 取正值,对于抑制状态,ji w 取负值),n 为输入信号数目,j Y 为神经元输出,t 为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数。

1.3人工神经网络的基本特性人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。

每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例

BP人工神经网络的基本原理模型与实例BP(Back Propagation)人工神经网络是一种常见的人工神经网络模型,其基本原理是模拟人脑神经元之间的连接和信息传递过程,通过学习和调整权重,来实现输入和输出之间的映射关系。

BP神经网络模型基本上由三层神经元组成:输入层、隐藏层和输出层。

每个神经元都与下一层的所有神经元连接,并通过带有权重的连接传递信息。

BP神经网络的训练基于误差的反向传播,即首先通过前向传播计算输出值,然后通过计算输出误差来更新连接权重,最后通过反向传播调整隐藏层和输入层的权重。

具体来说,BP神经网络的训练过程包括以下步骤:1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入向量喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到输出值。

3.计算输出误差:将期望输出值与实际输出值进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

5.更新权重:根据反向传播得到的误差梯度,使用梯度下降法或其他优化算法更新连接权重。

6.重复步骤2-5直到达到停止条件,如达到最大迭代次数或误差小于一些阈值。

BP神经网络的训练过程是一个迭代的过程,通过不断调整连接权重,逐渐减小输出误差,使网络能够更好地拟合输入与输出之间的映射关系。

下面以一个简单的实例来说明BP神经网络的应用:假设我们要建立一个三层BP神经网络来预测房价,输入为房屋面积和房间数,输出为价格。

我们训练集中包含一些房屋信息和对应的价格。

1.初始化连接权重:随机初始化输入层与隐藏层、隐藏层与输出层之间的连接权重。

2.前向传播:将输入的房屋面积和房间数喂给输入层,通过带有权重的连接传递到隐藏层和输出层,计算得到价格的预测值。

3.计算输出误差:将预测的价格与实际价格进行比较,计算得到输出误差。

4.反向传播:从输出层开始,将输出误差逆向传播到隐藏层和输入层,根据误差的贡献程度,调整连接权重。

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。

BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。

关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。

人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。

人工神经网络最有吸引力的特点就是它的学习能力。

因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。

最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。

人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。

现在分别介绍人工神经元模型及人工神经网络模型。

1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。

人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。

神经网络中BP算法的原理与Python实现源码解析

神经网络中BP算法的原理与Python实现源码解析

神经⽹络中BP算法的原理与Python实现源码解析最近这段时间系统性的学习了 BP 算法后写下了这篇学习笔记,因为能⼒有限,若有明显错误,还请指正。

什么是梯度下降和链式求导法则假设我们有⼀个函数 J(w),如下图所⽰。

梯度下降⽰意图现在,我们要求当 w 等于什么的时候,J(w) 能够取到最⼩值。

从图中我们知道最⼩值在初始位置的左边,也就意味着如果想要使 J(w) 最⼩,w的值需要减⼩。

⽽初始位置的切线的斜率a > 0(也即该位置对应的导数⼤于0),w = w – a 就能够让 w 的值减⼩,循环求导更新w直到 J(w) 取得最⼩值。

如果函数J(w)包含多个变量,那么就要分别对不同变量求偏导来更新不同变量的值。

所谓的链式求导法则,就是求复合函数的导数:链式求导法则放个例题,会更加明⽩⼀点:链式求导的例⼦神经⽹络的结构神经⽹络由三部分组成,分别是最左边的输⼊层,隐藏层(实际应⽤中远远不⽌⼀层)和最右边的输出层。

层与层之间⽤线连接在⼀起,每条连接线都有⼀个对应的权重值 w,除了输⼊层,⼀般来说每个神经元还有对应的偏置 b。

神经⽹络的结构图除了输⼊层的神经元,每个神经元都会有加权求和得到的输⼊值 z 和将 z 通过 Sigmoid 函数(也即是激活函数)⾮线性转化后的输出值 a,他们之间的计算公式如下神经元输出值 a 的计算公式其中,公式⾥⾯的变量l和j表⽰的是第 l 层的第 j 个神经元,ij 则表⽰从第 i 个神经元到第 j 个神经元之间的连线,w 表⽰的是权重,b 表⽰的是偏置,后⾯这些符号的含义⼤体上与这⾥描述的相似,所以不会再说明。

下⾯的 Gif 动图可以更加清楚每个神经元输⼊输出值的计算⽅式(注意,这⾥的动图并没有加上偏置,但使⽤中都会加上)动图显⽰计算神经元输出值使⽤激活函数的原因是因为线性模型(⽆法处理线性不可分的情况)的表达能⼒不够,所以这⾥通常需要加⼊ Sigmoid 函数来加⼊⾮线性因素得到神经元的输出值。

BP神经网络算法原理doc资料

BP神经网络算法原理doc资料

B P神经网络算法原理BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。

此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。

一 BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。

(1)节点输出模型隐节点输出模型:O j=f(∑W ij×X i-q j) (1)输出节点输出模型:Y k=f(∑T jk×O j-q k) (2)f-非线形作用函数;q -神经单元阈值。

(2)作用函数模型作用函数是反映下层输入对上层节点刺激脉冲强度的函数又称刺激函数,一般取为(0,1)内连续取值Sigmoid函数: f(x)=1/(1+e-x) (3)(3)误差计算模型误差计算模型是反映神经网络期望输出与计算输出之间误差大小的函数: E p =1/2×∑(t pi -O pi )2 (4)t pi - i 节点的期望输出值;O pi -i 节点计算输出值。

(4)自学习模型神经网络的学习过程,即连接下层节点和上层节点之间的权重拒阵W ij 的设定和误差修正过程。

BP 网络有师学习方式-需要设定期望值和无师学习方式-只需输入模式之分。

自学习模型为△W ij (n+1)= h×Фi ×O j +a×△W ij (n) (5)h -学习因子;Фi -输出节点i 的计算误差;O j -输出节点j 的计算输出;a-动量因子。

二 BP 网络模型的缺陷分析及优化策略(1)学习因子h 的优化采用变步长法根据输出误差大小自动调整学习因子,来减少迭代次数和加快收敛速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档