神经网络的BP算法实验报告

合集下载

7基于神经网络的模式识别实验要求

7基于神经网络的模式识别实验要求

实验七基于神经网络的模式识别实验一、实验目的理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。

通过构建BP网络和离散Hopfield 网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。

二、实验原理BP学习算法是通过反向学习过程使误差最小,其算法过程从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正。

BP 网络不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点。

输入信号先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。

离散Hopfield神经网络的联想记忆过程分为学习和联想两个阶段。

在给定样本的条件下,按照Hebb学习规则调整连接权值,使得存储的样本成为网络的稳定状态,这就是学习阶段。

联想是指在连接权值不变的情况下,输入部分不全或者受了干扰的信息,最终网络输出某个稳定状态。

三、实验条件Matlab 7.X 的神经网络工具箱:在Matlab 7.X 的命令窗口输入nntool,然后在键盘上输入Enter键,即可打开神经网络工具箱。

四、实验内容1.针对教材P243例8.1,设计一个BP网络结构模型(63-6-9),并以教材图8.5 为训练样本数据,图8.6为测试数据。

(1)运行train_data.m和test_data.m文件,然后从Matlab工作空间导入(Import)训练样本数据(inputdata10,outputdata10)和测试数据(testinputdata,testoutputdata),其次新建一个神经网络(New Network),选择参数如下表1,给出BP神经网络结构图。

表1 BP网络结构模型的各项参数设置Network Name(神经网络名称)nn10_1Network Type(神经网络类型)Feed-forward backprop(前馈反向传播)Input ranges(输入信息范围)来自训练样本的输入数据(inputdata10)Training function(训练函数)TRAINGD(梯度下降BP算法)Performance function(性能函数)MSE(均方误差)Number of layers(神经网络层数)2Layer1(第1层)的Number ofneurons (神经元个数)6Layer1(第1层)的TransferFunction (传递函数)LOGSIG(S型函数)Layer2(第2层)的Number ofneurons (神经元个数)9Layer2(第2层)的TransferFunction (传递函数)LOGSIG(S型函数)(2)输入训练样本数据(inputdata10,outputdata10),随机初始化连接权(Initialize Weights),然后进行训练(Train),训练参数设置如表2所示,并观察训练目标值变化曲线图,最后把BP神经网络训练成功后(即误差不再变化后)的误差值填入表3。

BP神经网络的优化算法比较研究

BP神经网络的优化算法比较研究

BP神经网络的优化算法比较研究优化算法是神经网络中的关键技术之一,它可以帮助神经网络快速收敛,有效地优化模型参数。

目前,常用的优化算法包括梯度下降法、动量法、Adagrad、Adam等。

本文将比较这些优化算法的优缺点。

1. 梯度下降法(Gradient Descent)梯度下降法是最基本的优化算法。

它通过计算损失函数对参数的梯度,不断地朝着梯度的相反方向更新参数。

优点是实现简单,容易理解。

缺点是容易陷入局部最优,并且收敛速度较慢。

2. 动量法(Momentum)动量法在梯度下降法的基础上增加了动量项。

它通过累积之前的梯度信息,使得参数更新时具有一定的惯性,可以加快收敛速度。

优点是减少了陷入局部最优的可能性,并且对于存在波动的梯度能够平滑更新。

缺点是在平坦区域容易产生过大的动量,导致无法快速收敛。

3. AdagradAdagrad算法基于学习率的自适应调整。

它通过累积梯度平方的倒数来调整学习率,使得对于稀疏梯度的参数每次更新较大,对于频繁出现的梯度每次更新较小。

优点是适应性强,能够自动调整学习率。

缺点是由于学习率的不断减小,当训练时间较长时容易陷入局部最优。

4. AdamAdam算法结合了动量法和Adagrad算法的优点。

它维护了一种动态的学习率,通过计算梯度的一阶矩估计和二阶矩估计来自适应地调整学习率。

优点是适应性强,并且能够自适应学习率的大小和方向。

缺点是对于不同的问题,参数的敏感性差异较大。

在一些问题上可能不适用。

综上所述,每个优化算法都有自己的优点和缺点。

梯度下降法是最基本的算法,容易理解,但是收敛速度较慢。

动量法通过增加动量项加快了收敛速度,但是容易陷入局部最优。

Adagrad和Adam算法具有自适应性,能够自动调整学习率,但是在一些问题上可能效果不佳。

因此,在实际应用中应根据具体问题选择适合的优化算法或采取集成的方式来提高模型的性能。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

实训神经网络实验报告

实训神经网络实验报告

一、实验背景随着人工智能技术的飞速发展,神经网络作为一种强大的机器学习模型,在各个领域得到了广泛应用。

为了更好地理解神经网络的原理和应用,我们进行了一系列的实训实验。

本报告将详细记录实验过程、结果和分析。

二、实验目的1. 理解神经网络的原理和结构。

2. 掌握神经网络的训练和测试方法。

3. 分析不同神经网络模型在特定任务上的性能差异。

三、实验内容1. 实验一:BP神经网络(1)实验目的:掌握BP神经网络的原理和实现方法,并在手写数字识别任务上应用。

(2)实验内容:- 使用Python编程实现BP神经网络。

- 使用MNIST数据集进行手写数字识别。

- 分析不同学习率、隐层神经元个数对网络性能的影响。

(3)实验结果:- 在MNIST数据集上,网络在训练集上的准确率达到98%以上。

- 通过调整学习率和隐层神经元个数,可以进一步提高网络性能。

2. 实验二:卷积神经网络(CNN)(1)实验目的:掌握CNN的原理和实现方法,并在图像分类任务上应用。

(2)实验内容:- 使用Python编程实现CNN。

- 使用CIFAR-10数据集进行图像分类。

- 分析不同卷积核大小、池化层大小对网络性能的影响。

(3)实验结果:- 在CIFAR-10数据集上,网络在训练集上的准确率达到80%以上。

- 通过调整卷积核大小和池化层大小,可以进一步提高网络性能。

3. 实验三:循环神经网络(RNN)(1)实验目的:掌握RNN的原理和实现方法,并在时间序列预测任务上应用。

(2)实验内容:- 使用Python编程实现RNN。

- 使用Stock数据集进行时间序列预测。

- 分析不同隐层神经元个数、学习率对网络性能的影响。

(3)实验结果:- 在Stock数据集上,网络在训练集上的预测准确率达到80%以上。

- 通过调整隐层神经元个数和学习率,可以进一步提高网络性能。

四、实验分析1. BP神经网络:BP神经网络是一种前向传播和反向传播相结合的神经网络,适用于回归和分类问题。

神经网络的BP算法实验报告

神经网络的BP算法实验报告

计算智能基础实验报告实验名称:BP神经网络算法实验班级名称:341521班专业:探测制导与控制技术姓名:***学号:********一、 实验目的1)编程实现BP 神经网络算法;2)探究BP 算法中学习因子算法收敛趋势、收敛速度之间的关系;3)修改训练后BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、 实验要求按照下面的要求操作,然后分析不同操作后网络输出结果。

1)可修改学习因子2)可任意指定隐单元层数3)可任意指定输入层、隐含层、输出层的单元数4)可指定最大允许误差ε5)可输入学习样本(增加样本)6)可存储训练后的网络各神经元之间的连接权值矩阵;7)修改训练后的BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果 。

三、 实验原理1BP 神经网络算法的基本思想误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法。

由于BP 算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为“反向传播”。

BP 神经网络是有教师指导训练方式的多层前馈网络,其基本思想是:从网络输入节点输入的样本信号向前传播,经隐含层节点和输出层节点处的非线性函数作用后,从输出节点获得输出。

若在输出节点得不到样本的期望输出,则建立样本的网络输出与其期望输出的误差信号,并将此误差信号沿原连接路径逆向传播,去逐层修改网络的权值和节点处阈值,这种信号正向传播与误差信号逆向传播修改权值和阈值的过程反复进行,直训练样本集的网络输出误差满足一定精度要求为止。

2 BP 神经网络算法步骤和流程BP 神经网络步骤和流程如下:1) 初始化,给各连接权{},{}ij jt W V 及阈值{},{}j t θγ赋予(-1,1)间的随机值;2) 随机选取一学习模式对1212(,),(,,)k k k k k k k n k n A a a a Y y y y ==提供给网络;3) 计算隐含层各单元的输入、输出;1n j ij i j i s w a θ==⋅-∑,()1,2,,j j b f s j p ==4) 计算输出层各单元的输入、输出;1t t jt j t j l V b γ==⋅-∑,()1,2,,t t c f l t q ==5) 计算输出层各单元的一般化误差;()(1)1,2,,k k t t tt t t d y c c c t q =-⋅-=6) 计算中间层各单元的一般化误差;1[](1)1,2,,q kk jt jt j j t e d V b b j p ==⋅⋅-=∑7) 修正中间层至输出层连接权值和输出层各单元阈值;(1)()k jt jt t j V iter V iter d b α+=+⋅⋅(1)()k t t t iter iter d γγα+=+⋅8) 修正输入层至中间层连接权值和中间层各单元阈值;(1)()kk ij ij j i W iter W iter e a β+=+⋅⋅(1)()kj j j iter iter e θθβ+=+⋅9) 随机选取下一个学习模式对提供给网络,返回步骤3),直至全部m 个模式训练完毕;10) 重新从m 个学习模式对中随机选取一个模式对,返回步骤3),直至网络全局误差函数E 小于预先设定的一个极小值,即网络收敛;或者,当训练次数大于预先设定值,强制网络停止学习(网络可能无法收敛)。

基于BP算法的人工神经网络建模研究

基于BP算法的人工神经网络建模研究

因素对热流值 等测试结果的影响 。根据项 目要 求拟 采用基 于人工神经 网络 B P算法的管线表面温度值和热流值的标 准
化转换模 型。 人 工神经 网络是一种模仿 大脑神 经网络行 为特征 , 进行 分布式并行信息 处理 的算 法数 学模 型。 这种 网络依
靠 系统的复杂程度 , 通过调 整 内部大量节点之 间相互连接 的关 系, 从 而达 到处理信 息的 目的。 关键词 : B P算 法; 网络拟合 ; 误 差曲线
之间相互连接的关系 , 从而达到处理信息的 目的。本 映射能力。 理论上对于一个三层和三层以上的 B P网
项 目的研 究 的 核 心 问题 是 建 立管 线 表 面 温度 值 和 热 络 , 只要 隐层 神 经 元数 目足 够 多 , 该 网络 就能 以任 意 流 值 的标 准 化 转 换模 型 系 统 。该 系统模 型 主要 用 来 精 度 逼近 一个 非 线性 函数 。
收 稿 日期 : 2 0 1 3 — 1 0 — 0 2 作者简 介 : 王 玲( 1 9 8 2 一) , 女, 天津 人 , 讲师, 工程硕士学位 , 主要研究方 向 : 自动化 。
l 6 2
《 装备制造技术 ̄ 2 0 1 4 年第 1 期 过改变 隐层神经元数 目能够增加神经 网络的拟合程 度。再观察网络预测误差 曲线 , 误差输 出区间在( 一 3
函数输 出具 有 预测 能力 。经过 训 练后 , 系统模 型 基本 热流值进行标 准化转换和预测 。以下研究基于人工 上 拟合 了原 始 数 据 , 只是 曲线 拟 合 有所 欠 缺 , 就这 一 神 经 网络 B P算 法 的管 线 表 面 温 度 值 和 热 流 值 的标 问题 接下 来进 行 改进 。 准 化转 换模 型 。 2 . 1 网络层 数 的 改变

基于神经网络融合技术的BP算法研究

基于神经网络融合技术的BP算法研究

不 良的学 生 得 以克 服 困 难 和 发挥 潜 能 ” 即基 本 任 务是 对 有 需 求 社会工作理念和方法 : 。 一是要适当吸纳社会工作专业 的毕 业生 , 积 极 引 进 有 学 校 社 会 工 作 经 历 的 人 员 . 实 队 伍 。 高 其 专 业 充 提 因而 , 学校社会 工作的项 目主要是服务项 目. 大体有 4项 : 以 ① 化 水 平 : 是 通 过 加 强 学 术 交 流 和 进 行 专 业 培 训 等 途 径 . 现 二 对
整 算 法 。B P算 法 是 一 种 有导 师学 习算 法 , 法 的基 本 思 想 是 . 算 由 正 向的 计 算 传 播 与误 差 的 反 向 传 播 构 成 了学 习过 程 中信 息 传 递
B P神 经 网 络 是 一 种 多层 前 馈 型 神 经 网络 。因 其 梯 度 的 调 整 的 过 程 , 通 过 不 断 调整 权 重 使 输 出 值 逐渐 接 近 于 期 望 值 。 正 向 并 方 法 采 用 的是 反 向 传 播 ( akPo aai ) 因此 称 为 B B c rpg tn , o P神 经 网 传 播 过 程 中 , 本 信 息 由输 入 层 传 人 , 过 各 隐 含 层 的逐 层 处 理 样 经 络 。R me a 等 学 者 18 u l r ht E 9 6年 提 出 了误 差 反 向传 播 ( P 权 重 调 后 , 终 传 向输 出层 。 果 输 出 层 的实 际输 出值 与 期望 值 不 相 符 . B) 最 如 则 计算 输 出值 与 期 望 值 之 间 的误 差 , 后转 入 误 差 的 反 向传 播 阶 然
方式 比较
化 建 设 的进 程 中 、在 构 建 和 谐 社 会 的进 程 中 发 挥 个 人 的 最 优 化

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档