BP神经网络算法解读

合集下载

大数据挖掘与应用 第9章 BP神经网络分类算法

大数据挖掘与应用 第9章  BP神经网络分类算法
经元 i 到神经元 j 的连接权值; f
为激活函数或挤压函数。由于神经元采用了不同的激活
函数,使得神经元具有不同的信息处理特性,而神经元的信息处理特性是决定神经网络整体性
能的主要因素之一,因此激活函数具有重要的意义。
(1)阈值型函数,即 f x 为阶跃函数。
1, x 0
f x
9.1.2人工神经元模型
人们通过研究发现,大脑之所以能够处理极其复杂的
分析、推理工作,一方面是因为其神经元个数的庞大,
另一方面还在于神经元能够对输入信号进行非线性
处理。人工神经元模型就是用人工方法模拟生物神
经元而形成的模型,是对生物神经元的抽象、模拟与
简化,它是一个多输入、单输出的非线性元件,单
个神经元是前向型的。将人工神经元的基本模型和
1
f x
或 f x Leabharlann x1 e1 e x
(9-4)
其中 又称为 Sigmoid 函数的增益,其值决定了函数非饱和段的斜率, 越大, 曲线越陡。
(4)高斯函数。高斯函数(也称钟型函数)也是极为重要的一类激活函数,常用于径向基
神经网络(RBF 网络),其表达式为:
(1)按神经网络的拓扑结构可以分为反馈神经网络
模型和前馈神经网络模型;
(2)按神经网络模型的性能可分为连续型与离散型
神经网络模型,确定型与随机型神经网络模型;
(3)按学习方式可以分为有导师学习和无导师学习
神经网络模型;
(4)按连接突触性质可分为一阶线性关联和高阶非
线性关联神经网络模型。
1.误差后向传播神经网络
值时,细胞体的膜会发生单发性的尖峰电位,这一尖
峰电位将会沿着轴突传播到四周与其相联系的神经

BP神经网络PPT全文

BP神经网络PPT全文
常要求激活函数是连续可微的
输出层与隐含层的激活函数可以不同,并且输出层
各单元的激活函数可有所区别
2024/8/16
26
2 多层网络的表达能力
按照Kolmogorov定理,任何一个判决均可用 前式所示的三层神经网络实现。
即: 只要给定足够数量的隐含层单元、适 当的非线性函数、以及权值, 任何由输入向输 出的连续映射函数均可用一个三层前馈神经网络 实现。
神经网络的计算通过网络结构实现;
不同网络结构可以体现各种不同的功能;
网络结构的参数是通过学习逐渐修正的。
2024/8/16
7
(1)基本的人工神经元模型
McCulloch-Pitts神经元模型
输入信号;链接强度与权向量;
信号累积
2024/8/16
激活与抑制
8
人工神经元模型的三要素 :
一组连接 一个加法器 一个激励函数
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2024/8/16
5
(2)生物神经元的基本特征
5 假定:第l层为当前处理层;
其前一层l 1、当前层l、后一层l 1的计算单元序号为i, j,k;
位于当前层第j个计算单元的输出为Olj,j 1,..., nl
前层第i个单元到本层第j个单元的连接权值为ilj , i 1,..., nl1
本层第j个单元到后层第k个单元的连接权值为
l 1 jk
,
连接权值,突触连接强度

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。

BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。

关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。

人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。

人工神经网络最有吸引力的特点就是它的学习能力。

因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。

最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。

人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。

现在分别介绍人工神经元模型及人工神经网络模型。

1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。

人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。

BP神经网络详解与实例

BP神经网络详解与实例

模型,它是一个互联的非线性动力学网络.他解决问题
的方法是一种反复运算的动态过程,这是符号逻辑处理 方法所不具备的性质. 1987年首届国际ANN大会在圣地 亚哥召开,国际ANN联合会成立,创办了多种ANN国际
人工神经网络研究的局限性
(1)ANN研究受到脑科学研究成果的限制。 (2)ANN缺少一个完整、成熟的理论体系。
图6 简单网络
假设有P个训练样本,即有P个输入输出对 (Ip, Tp),p=1,…,P, 其中

输入向量为 :
I p (i p1 ,...,i pm )
pn
T
目标输出向量为(实际上的):
Tp
(t p1 ,...,t
)
T
网络输出向量为 (理论上的)
Op (o p1 ,...,o pn )T
y f ( wi xi )
i 1
• θ 为阈值,f(X)是激发函数;它可以是线性 函数,也可以是非线性函数.
m
例如,若记
z
w x
i 1 i
m
i

取激发函数为符号函数
1, sgn( x) 0,

1, y f ( z) 0,
x 0, x 0.
ANN研究的目的和意义
(1)通过揭示物理平面与认知平面之间的映射,了 解它们相互联系和相互作用的机理,从而揭示思 维的本质,探索智能的本源。 (2)争取构造出尽可能与人脑具有相似功能的计算
机,即ANN计算机。
(3)研究仿照脑神经系统的人工神经网络,将在模
式识别、组合优化和决策判断等方面取得传统计
算机所难以达到的效果。
人工神经网络 (Artificial Neural Netwroks -----ANN) -----HZAU 数模基地

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤

基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。

下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。

一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。

在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。

二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。

2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。

3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。

4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。

5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。

6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。

7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。

8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。

9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。

10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。

三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。

2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。

3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。

神经网络的BP算法实验报告

神经网络的BP算法实验报告

计算智能基础实验报告实验名称:BP神经网络算法实验班级名称:341521班专业:探测制导与控制技术姓名:***学号:********一、 实验目的1)编程实现BP 神经网络算法;2)探究BP 算法中学习因子算法收敛趋势、收敛速度之间的关系;3)修改训练后BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、 实验要求按照下面的要求操作,然后分析不同操作后网络输出结果。

1)可修改学习因子2)可任意指定隐单元层数3)可任意指定输入层、隐含层、输出层的单元数4)可指定最大允许误差ε5)可输入学习样本(增加样本)6)可存储训练后的网络各神经元之间的连接权值矩阵;7)修改训练后的BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果 。

三、 实验原理1BP 神经网络算法的基本思想误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法。

由于BP 算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为“反向传播”。

BP 神经网络是有教师指导训练方式的多层前馈网络,其基本思想是:从网络输入节点输入的样本信号向前传播,经隐含层节点和输出层节点处的非线性函数作用后,从输出节点获得输出。

若在输出节点得不到样本的期望输出,则建立样本的网络输出与其期望输出的误差信号,并将此误差信号沿原连接路径逆向传播,去逐层修改网络的权值和节点处阈值,这种信号正向传播与误差信号逆向传播修改权值和阈值的过程反复进行,直训练样本集的网络输出误差满足一定精度要求为止。

2 BP 神经网络算法步骤和流程BP 神经网络步骤和流程如下:1) 初始化,给各连接权{},{}ij jt W V 及阈值{},{}j t θγ赋予(-1,1)间的随机值;2) 随机选取一学习模式对1212(,),(,,)k k k k k k k n k n A a a a Y y y y ==提供给网络;3) 计算隐含层各单元的输入、输出;1n j ij i j i s w a θ==⋅-∑,()1,2,,j j b f s j p ==4) 计算输出层各单元的输入、输出;1t t jt j t j l V b γ==⋅-∑,()1,2,,t t c f l t q ==5) 计算输出层各单元的一般化误差;()(1)1,2,,k k t t tt t t d y c c c t q =-⋅-=6) 计算中间层各单元的一般化误差;1[](1)1,2,,q kk jt jt j j t e d V b b j p ==⋅⋅-=∑7) 修正中间层至输出层连接权值和输出层各单元阈值;(1)()k jt jt t j V iter V iter d b α+=+⋅⋅(1)()k t t t iter iter d γγα+=+⋅8) 修正输入层至中间层连接权值和中间层各单元阈值;(1)()kk ij ij j i W iter W iter e a β+=+⋅⋅(1)()kj j j iter iter e θθβ+=+⋅9) 随机选取下一个学习模式对提供给网络,返回步骤3),直至全部m 个模式训练完毕;10) 重新从m 个学习模式对中随机选取一个模式对,返回步骤3),直至网络全局误差函数E 小于预先设定的一个极小值,即网络收敛;或者,当训练次数大于预先设定值,强制网络停止学习(网络可能无法收敛)。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

BP神经网络算法

BP神经网络算法
BP神经网络算法
1


一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方

= 1 ෍
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:

j = 2 ෍ ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络的一个实际应用
• 验证神经网络的准确性
如果误差在允许的范围之内就可以进行预测了
总结
BP神经网络的学习过程:
正向传播:
输入层 隐藏层 输出层
误差的反向传播:
隐藏层 输出层
BP算法是一种有监督式的学习算法,其主要思想是:输入学习 样本,使用反向传播算法对网络的权值和偏差进行反复的调整训 练,使输出的向量与期望向量尽可能地接近,当网络输出层的误 差平方和小于指定的误差时训练完成,保存网络的权值和偏差。
计算输出值: 实际值:
O5 x5 T5 0
BP神经网络的一个实际应用
• 首先计算输出节点的数据误差。
输出值:O5 x5 0.577 实际值: T5
0
Errj O j (1 Oj )(Tj Oj )
输出层节点j的误差:
Err5 0.1408
BP神经网络的一个实际应用
• 将输入层数据导入隐藏层第二个神经节点内进行运算:
I j wij xi j
x j f (I j )
1 1 e
I j
I 4 0.208
i
x4 0.552
wij是权重,0.1 θj是偏倚,0.2 f(x)是激活函数 x1=0 x2=0.08
BP神经网络的一个实际应用
Err w
k k
jk
Err3 Err4 0.0035
BP神经网络的一个实际应用
• 调整各节点的权重:
权重更新公式: l为学习率,取 值0.4
wij (l ) Errj Oi
wij wij wij
w35 w45 0.031 w13 w14 0 w23 w24 0.000112
David Rumelhart
J. McClelland
BP神经网络的结构
BP神经网络结构
神经节点
BP神经网络的一个实际应用
BP神经网络的一个实际应用
红色数据为 学习数据
蓝色数据为 验证数据
BP神经网络的一个实际应用
• 设计神经网络模型:
其中蓝色节点为神经节点
BP神经网络的一个实际应用
• 将第一年的数据进行归一化处理:
Err5 0.1408
3 0.1986
BP神经网络的一个实际应用
• 将参数更新之后就可以继续处理第二年的数据, 直到八年的数据全部输入运算完毕,这就是神 经网络的一个训练周期。
BP神经网络的一个实际应用
• 循环的终止
在每个训练周期之间我们要对输出数据和真 实数据之间的误差进行分析,如果误差值在我们 允许的范围之内,那么神经网络的训练就可以停 止了。 另外一种让训练停下来的办法就是预设一个 值,如果当前训练的周期数超过这个值,那么训 练就必须停止。
O1 0 O2 0.08
O3 O4 0.552
Err3 Err4 0.0035
Err5 0.1408
BP神经网络的一个实际应用
• 这样就得到了调整后的权重:
w35 w45 0.069 w13 w14 0.1
w23 w24 0.999888
BP神经网络的一个实际应用
• 将输入层数据导入隐藏层第一个神经节点内进行运算:
I j wij xi j
x j f (I j )
1 1 e
I j
I 3 0.208
i
x3 0.552
wij是权重,0.1 θj是偏倚,0.2 f(x)是激活函数 x1=0 x2=0.08
BP神经网络的一个实际应用
BP神经网络算法
脑神经网络
脑神经元
思维活动
脑神经网络的一个功能
去哪吃饭?
经验→决策
人工神经网络的功能
历史数据
预测
分类
BP神经网络
1985年,Rumelhart和McClelland提出了误差后向 传播(Back Propagation)学习算法,BP神经网络 是目前应用最广泛的神经网络模型之一。
x xmin y xmax xmin
x是处理前的值 y是处理后的值 xmin是样本最小值 xmax是样本最大值
BP神经网络的一个实际应用
•初始化BP神经网络参数: 1.权重值w均为0.1 2.偏倚值θ均为0.2 3.学习率l为0.4 初始化的参数一般为[-1,1]之间随机产生的小 数。
BP神经网络的一个实际应用
谢谢
• 接下来计算隐藏节点的数据误差。
输出层节点5的误差: Err5
0.1408
隐藏层节点3的输出: O3 隐藏层节点4的输出: O4
权重均为0.1
x3 0.552
x4 0.552
其中,wjk是 该节点到下层 节点的权重, Errk是节点k 的误差。
隐藏层节点j的误差: Errj O j (1 O j )
• 将隐藏层数据导入输出层神经节点内进行运算:
I j wij xi j
x j f (I j )
1 1 e
I j
I 5 0.3104
i
x5 0.577
wij是权重,0.1 θj是偏倚,0.2 f(x)是激活函数 x3=x4=0.552
BP神经网络的一个实际应用
• 由于计算输出值与真实值之间存在误差,所以需要对 神经网络的参数进行调整。
• 调整各节点的偏倚:
偏倚更新公式:
j (l )Errj
j j j
3 4 5 0.2
Err3 Err4 0.0035
5 0.0281
3 0.0014
4 0.0014
5 0.1719
4 0.1986
相关文档
最新文档