1922一次函数的图像与性质精品PPT课件
合集下载
一次函数图象与性质课件

一次函数在金融实务中的应用场景有 哪些?
1 期权 delta 值与股价变化
一次函数可以描述股票价格变化与隐含波动率间的关系
2 国债收益率
投资者可以基于对市场预期的不同,构建出一个关于利率的一次函数。研究这个函数不 仅可以分析国债发行的吸引力,还可以判断政府是否刻意干预市场
如何求出一次函数的最大值和最小值?
如何画一次函数的图象?
1
确定截距 b
画出 y 轴与函数图象的交点
2
确定斜率 k
计算斜率并在图象上标出另一个点
3
画出函数图象
用直尺连接两个点画出一次函数的图象
如何求一次函数的斜率和截距?
斜率 k
通过两个点的坐标公式求斜率 k = (y2 y1)/(x2 - x1)
截距 b
在坐标系上通过 y 轴与一次函数图象的交点 可得函数的截距 b
二次函数呈现为抛物线形状, 直观上与一次函数图象完全不 同
指数函数
指数函数的图象呈现出指数增 长的特性
如何应用一次函数图象解决实际问题?
1
计算成本
一次函数图象在成本计算中十分常见,构建成本模型可以帮助企业削减成本
2
预测趋势
通过画出一次函数图象,可以预测诸如销售额、订阅量等未来趋势
3
量化风险
投资人可以在价格变化及其它趋势的基础上建立一次函数来量化风险,并根据结果决策 何时买进或卖出股票
一次函数图象的特点有哪些?
• 斜率 k 决定了函数图象的倾斜程度,正的 k 表示函数上升,负的 k 表 示函数下降
• 截距 b 决定了函数图象与 y 轴的交点位置 • 零点为函数图象与 x 轴的交点坐标,方程的解为 x = -b/k
一次函数图象与线性函数的图象有什么 不同?
一次函数的图像和性质说课ppt

斜率与函数增减性的关系
斜率决定了函数的增减性。斜率为正表示函数为增函数,斜率为负表示函数为 减函数。
一次函数的增减性
单调性
一次函数的单调性由其斜率决定。在区间(-∞, +∞)上,当k>0时,函数为增函数; 当k<0时,函数为减函数。
增减性的判断方法
通过求导数或利用区间内任取两点连线的斜率来判断。在定义域内任取两点x1, x2 (x1<x2),如果y1<y2,则函数在此区间内为增函数;如果y1>y2,则函数在此 区间内为减函数。
03 一次函数的性质
一次函数的定义域和值域
定义域
对于一次函数y=kx+b(k≠0), 其定义域为全体实数R,即x可以取 任意实数值。
值域
由于一次函数的图像是一条直线, 其值域也为全体实数R,即y可以取 任意实数值。
一次函数的斜率
斜率
一次函数的斜率是函数图像在平面坐标系中的倾斜度,由参数k决定。当k>0 时,函数图像为增函数;当k<0时,函数图像为减函数。
课程目标
理解一次函数的概念 和图像。
能够应用一次函数解 决实际问题。
掌握一次函数的性质, 如斜率和截距。
02 一次函数图像的绘制
函数图像的基本概念
01
02
03
函数图像
表示函数关系的一种图形 表示,通过坐标系中的点 来表示函数中自变量和因 变量的对应关系。
坐标系
用于表示平面内点的位置, 通常由x轴和y轴组成,每 个轴上的单位长度表示一 定的数值。
教师自我反思
教师需要自我反思,思考课程中存在的问题和不足,以及如何改进。
调整教学方法和内容
根据学生的表现和反馈,调整教学方法和内容,以提高教学效果。
斜率决定了函数的增减性。斜率为正表示函数为增函数,斜率为负表示函数为 减函数。
一次函数的增减性
单调性
一次函数的单调性由其斜率决定。在区间(-∞, +∞)上,当k>0时,函数为增函数; 当k<0时,函数为减函数。
增减性的判断方法
通过求导数或利用区间内任取两点连线的斜率来判断。在定义域内任取两点x1, x2 (x1<x2),如果y1<y2,则函数在此区间内为增函数;如果y1>y2,则函数在此 区间内为减函数。
03 一次函数的性质
一次函数的定义域和值域
定义域
对于一次函数y=kx+b(k≠0), 其定义域为全体实数R,即x可以取 任意实数值。
值域
由于一次函数的图像是一条直线, 其值域也为全体实数R,即y可以取 任意实数值。
一次函数的斜率
斜率
一次函数的斜率是函数图像在平面坐标系中的倾斜度,由参数k决定。当k>0 时,函数图像为增函数;当k<0时,函数图像为减函数。
课程目标
理解一次函数的概念 和图像。
能够应用一次函数解 决实际问题。
掌握一次函数的性质, 如斜率和截距。
02 一次函数图像的绘制
函数图像的基本概念
01
02
03
函数图像
表示函数关系的一种图形 表示,通过坐标系中的点 来表示函数中自变量和因 变量的对应关系。
坐标系
用于表示平面内点的位置, 通常由x轴和y轴组成,每 个轴上的单位长度表示一 定的数值。
教师自我反思
教师需要自我反思,思考课程中存在的问题和不足,以及如何改进。
调整教学方法和内容
根据学生的表现和反馈,调整教学方法和内容,以提高教学效果。
一次函数的性质和图像(一)课件

在物理中,许多现象可以用一次函数来描述,如速度与时间的关系、电阻与电流 的关系等。通过这些实例,可以深入理解一次函数在实际问题中的应用。
经济问题中的应用
在经济学中,许多经济指标之间的关系可以用一次函数来描述,如价格与需求的 关系、成本与产量的关系等。通过这些实例,可以了解一次函数在经济分析中的 应用。
像会向右平移。
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济现象之间的关系,例如成本与产量的 关系、价格与需求量的关系等。
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在工程领域的应用
02
一次函数的图像
一次函数图像的绘制
步骤二
在坐标系上选择一个点,例如 原点$(0,0)$。
步骤四
在坐标系上标出该点,即 $(0,1)$。
步骤一
确定函数表达式。例如,$y = 2x + 1$。
步骤三
使用一次函数的表达式,计算 出该点沿x轴和y轴的坐标值。 例如,$y = 2(0) + 1 = 1$。
一次函数的图像是一条直线,其斜率 为$a$,截距为$b$。
一次函数的图像可以通过平移得到, 向上平移$k$个单位得到$y = ax + b + k$,向下平移$k$个单位得到$y = ax + b - k$。
一次函数的单调性由斜率$a$决定, 当$a > 0$时,函数为增函数;当$a < 0$时,函数为减函数。
一次函数在概率统计问题中的应用
03
在概率统计问题中,一次函数可以用来描述概率分布、平均数
经济问题中的应用
在经济学中,许多经济指标之间的关系可以用一次函数来描述,如价格与需求的 关系、成本与产量的关系等。通过这些实例,可以了解一次函数在经济分析中的 应用。
像会向右平移。
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济现象之间的关系,例如成本与产量的 关系、价格与需求量的关系等。
一次函数在物理学中的应用
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在工程领域的应用
02
一次函数的图像
一次函数图像的绘制
步骤二
在坐标系上选择一个点,例如 原点$(0,0)$。
步骤四
在坐标系上标出该点,即 $(0,1)$。
步骤一
确定函数表达式。例如,$y = 2x + 1$。
步骤三
使用一次函数的表达式,计算 出该点沿x轴和y轴的坐标值。 例如,$y = 2(0) + 1 = 1$。
一次函数的图像是一条直线,其斜率 为$a$,截距为$b$。
一次函数的图像可以通过平移得到, 向上平移$k$个单位得到$y = ax + b + k$,向下平移$k$个单位得到$y = ax + b - k$。
一次函数的单调性由斜率$a$决定, 当$a > 0$时,函数为增函数;当$a < 0$时,函数为减函数。
一次函数在概率统计问题中的应用
03
在概率统计问题中,一次函数可以用来描述概率分布、平均数
《一次函数的图像和性质》一次函数PPT优秀课件

2020/8/19
例2:在同一坐标系作出下列函数的图象
(1)y = 2x+1 (2)y = -2x+1
根据图象回答,当自变量x逐渐增大时,函数
y的值怎样变化?
y
解: x 0 -1/2
4
y =2x+1 1 0
3
y =2x+1
x
0 1/2
2
y=-2x+1 1 0
1 (0,1)
(-1/2,0)
(1/2,0)
(1)函数值y 随x的增大而增大;
m 1 2
(2)函数图象与y
轴的负半轴相交;
m
1且m
1 2
(3)函数的图象过第二、三、四象限; 1 m 1
2
(4)函数的图象过原点。 m 1
2020/8/19
会画一次函数的图象 一次函数的图象与性质,常 数k,b的意义和作用. 数形结合的思想与方法,从 特殊到一般的思想与方法. 进一步体验研究函数的一般 思路与方法.
x
-4 -3 -2 -1 o 1 2 3 4 -1
2020/8/19
-2 y= -2x+1
一次函数通常选取(0,b), (-b/k,0)两点连线
• 一次函数 y = kx + b ( k ≠ 0 ) 有以 下性质:
• (1)当 k > 0 时,y 随 x 的增大 而 增大 。
• (2)当 k < 0 时,y 随 x 的增大 而 减小 。
2020/8/19
o
y=kx+b
y=kx
y
特性:
▲k1=k2=k3 b1≠b2≠b3三 线平行
2020/8/19
x
o y = k1x+b1 y = k2x+b2
例2:在同一坐标系作出下列函数的图象
(1)y = 2x+1 (2)y = -2x+1
根据图象回答,当自变量x逐渐增大时,函数
y的值怎样变化?
y
解: x 0 -1/2
4
y =2x+1 1 0
3
y =2x+1
x
0 1/2
2
y=-2x+1 1 0
1 (0,1)
(-1/2,0)
(1/2,0)
(1)函数值y 随x的增大而增大;
m 1 2
(2)函数图象与y
轴的负半轴相交;
m
1且m
1 2
(3)函数的图象过第二、三、四象限; 1 m 1
2
(4)函数的图象过原点。 m 1
2020/8/19
会画一次函数的图象 一次函数的图象与性质,常 数k,b的意义和作用. 数形结合的思想与方法,从 特殊到一般的思想与方法. 进一步体验研究函数的一般 思路与方法.
x
-4 -3 -2 -1 o 1 2 3 4 -1
2020/8/19
-2 y= -2x+1
一次函数通常选取(0,b), (-b/k,0)两点连线
• 一次函数 y = kx + b ( k ≠ 0 ) 有以 下性质:
• (1)当 k > 0 时,y 随 x 的增大 而 增大 。
• (2)当 k < 0 时,y 随 x 的增大 而 减小 。
2020/8/19
o
y=kx+b
y=kx
y
特性:
▲k1=k2=k3 b1≠b2≠b3三 线平行
2020/8/19
x
o y = k1x+b1 y = k2x+b2
《一次函数的图像和性质》一次函数PPT课件

逆向思维
y 0
x y 0 ( C) x
y 0 (B)
(A )
x y
0 (D)
x
• 3、已知一次函数y = mx-(m-2), 若它的图象经过原点,则 m= 2 ; 若点(0 ,3) 在它的图象上,则m = -1 ;若它的图象经过一、 二、四象限,则m <0 .
4.对于一次函数y = mx-(m-2),若y 随x 的增大而增小,则其图象不
y y y y
x
x
x
x
A
B
C
D
已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件 的m的值:
1 (1)函数值y 随x的增大而增大; m 2 1 (2)函数图象与y 轴的负半轴相交; m 1且m 2 (3)函数的图象过第二、三、四象限; 1 m 1 2 (4)函数的图象过原点。 m 1
一次函数y=kx+b (k‡0)的性质:
当k>0时,y随x的增大而增大;
y
x
一次函数y=kx+b (k‡0)的性质: 当k<0时,y随x的增大而减小. y
x
一次函数图象与性质
y
一 次 函 数 y=kx+b
图象
b
o
x
y o
y x
y x o
b
b
k>0 b<0
o
b
k<0 b<0
x
k,b的符号
k>0 b>0 一、二、三 y随x的增 大而增大
会画一次函数的图象 一次函数的图象与性质,常 数k,b的意义和作用. 数形结合的思想与方法,从 特殊到一般的思想与方法.
进一步体验研究函数的一般 思路与方法.
y 0
x y 0 ( C) x
y 0 (B)
(A )
x y
0 (D)
x
• 3、已知一次函数y = mx-(m-2), 若它的图象经过原点,则 m= 2 ; 若点(0 ,3) 在它的图象上,则m = -1 ;若它的图象经过一、 二、四象限,则m <0 .
4.对于一次函数y = mx-(m-2),若y 随x 的增大而增小,则其图象不
y y y y
x
x
x
x
A
B
C
D
已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件 的m的值:
1 (1)函数值y 随x的增大而增大; m 2 1 (2)函数图象与y 轴的负半轴相交; m 1且m 2 (3)函数的图象过第二、三、四象限; 1 m 1 2 (4)函数的图象过原点。 m 1
一次函数y=kx+b (k‡0)的性质:
当k>0时,y随x的增大而增大;
y
x
一次函数y=kx+b (k‡0)的性质: 当k<0时,y随x的增大而减小. y
x
一次函数图象与性质
y
一 次 函 数 y=kx+b
图象
b
o
x
y o
y x
y x o
b
b
k>0 b<0
o
b
k<0 b<0
x
k,b的符号
k>0 b>0 一、二、三 y随x的增 大而增大
会画一次函数的图象 一次函数的图象与性质,常 数k,b的意义和作用. 数形结合的思想与方法,从 特殊到一般的思想与方法.
进一步体验研究函数的一般 思路与方法.
《一次函数的图像和性质》一次函数PPT课件

②y=-3x+4, ④y=x-6;
①3 ④ ; 函数y随x的增大而增大的是__________
② 函数y随x的增大而减小的是___________ ; ① 图象在第一、二、三象限的是________ 。
小试牛刀 2、已知函数 y = kx的图象在二、四象限,那 么函数y = kx-k的图象可能是( B )
y
y
y
y
o
x
o
x
o
x
o
x
A
B
C
D
已知一次函数 y=(1-2m)x+m-1 , 求满足下列条件 的m的值:
1 (1)函数值y 随x的增大而增大; m 2 1 (2)函数图象与y 轴的负半轴相交; m 1且m 2 (3)函数的图象过第二、三、四象限; 1 m 1 2 (4)函数的图象过原点。 m 1
一次函数y=kx+b (k‡0)的性质:
当k>0时,y随x的增大而增大;
y
x
一次函数y=kx+b (k‡0)的性质: 当k<0时,y随x的增大而减小. y
x
一次函数图象与性质
y
一 次 函 数 y=kx+b
图象
b
o
x
y o
y x
y x o
b
b
k>0 b<0
o
b
k<0 b<0
x
k,b的符号
k>0 b>0 一、二、三 y随x的增 大而增大
(1)直线y=3x-2可由直线y=3x向 下 平 移 2 单位得到。
(2)直线y=x+2可由直线y=x-1向 上 平 移 3 单位得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
...0...
.
.
.
.
.
.
2
y=x+2 y=x
y=x-2
x
.探究 比较它们的函数解析式与图象,你能解释这是为什么吗?
图象与y轴交于(0,b), b就是与y轴交点的纵坐 标
一次函数y=kx+b的图象是经 过(0,b)点且平行于直线y=kx 的一条直线
(0,b) 我们称它为直线y=kx+b
它可以看作由直线y=kx平移|b| 个单位长度得到.
一次函数你y所=画kx出+的b (图象k≠是0什)么的形图状象?是列一表条直线,这 正比条例直函线作数通函y常=数k又x图(称象k为≠一直0般)线步是y骤=经k是过x什+原b么点(?(k≠0,0)0描)连点的线一条直线.
在同一平面直角坐标系中画出下列函数的图象
1 y 1 x
2
y 1x2 2
2 y 1 x 2
y=x
正比例函数
(2)正比例函数y=kx的
y=0.5x 图象有什么特点?
24 6
x 正比例函数y=kx的图象是经 过(0,0),(1,K)的一条直线
(3) y随x的增减性 ?经过的象限?
k>0,y随x的增大而增大;过一,三象限 k<0,y随x增大而减小 ;过二,四象限。
(4)直线的倾斜程度 ?
|k|越大,越接近y轴;|k|越小,越接近x轴
y 3x 2 y 3 x
K不同 b相同 直线(图象)相交
y 1x2 2
y 1x 2
y 1x2 2
y 1x 2
K相同 b不同 直线(图象)平行
y 3x 2
y 3x
请比较下列函数y=x, y=x+2,y=x-2的图 象有什么异同点?
这几个函数的图象形状都 是 直线,并且倾斜程度_相_ 同_ 函数y=x的图象经过原点,函 数y=x+2的图象与y轴交于点 (__0_,_2),即它可以看作由直 线y=x向_上_平移 2 个单位长度 而得到.函数y=x-2的图象与 y轴交于点_(0,-_2)_,即它可 以看作由直线y=x向下 平移 __2__ 个单位长度而得到.
2
y 1x 2
3 y 3x
4 y 3x 2
y 3x 2 y 3 x
一次函数y=kx+b (k≠0)的图象是一条直线,这条
直线通常又称为直线y=kx+b(k≠0)
正比例函数y=kx(k≠0)是经过原点(0,0)的一条
直线.
经过几点可以 确定一条直线?
y 1x2 2
画图象时,只要取两个 点即可
结 y随x的增大而减小, 论
这时函数的图象从左到右下降;
y x2
概括
一次函数y=kx+b有下列性质:
(1) 当k>0时,y随x的增大而_增__大__ ,这时 函数的图象从左到右_上__升__ ; (2) 当k<0时,y随x的增大而_减__小__,这时 函数的图象从左到右下___降__.
五.想一想
1 y 2 x与
y 2x 3
2 y 2 x 1与
y 1 x1 2
比对较于下直列线一y=对k一1x次+函b1数与的直图线象y有=k什2x么+共b同2 点, 有当 当什kk么11=≠不kk同22, 点b, b1?≠1=bb22时时,,两两直直线线平相行交;于点(0,b) ;
直线(图象)平行 K相同 b不同
一般情况下,画一次函 数的图象取与x轴、y轴 的交点比较简便
y 1x 2
画正比例的图象只要过 原点(0,0)和(1,k)y 3x 2 y 3 x 最为简便.
用两点法画一次函数图像
实践:用两点法在同一坐标系中画出函数y=2x-1
与y=-0.5x+1的图象.
y
6
x
0 0.5
5
y=2x-1 -1 0 y=-0.5x+1 4
(当b>0时,向上平移;当b<0 时,向下平移)
直线y=kx+b与y轴相交于点(0, b), b叫做直线
y=kx+b在y轴上的截距,简称截距.
注意: 截距b不是距离,它可以是正数,也可以是负数或零.
b就是与y轴交点的纵坐标 正在原点上方,负在原点下方
k叫直线y=kx+b的斜率.
如何画出一次函数y=kx+b的图象?
y y = 2x + 1 y = 3x - 3
ox
y = -2x+1 y = -3x-3
画出一次函数 y
2 x1 3
的图象
X03 y13 观察分析:
自变量x由_小__到_大__ 函数y的值从_小__到_大__
当一个点在直线上 从左向右移动时, 它的位置怎样变化
画出一次函数
y
2 3
x 1
函数y=3x-2的图
y 5 x5 y
4
6
4
2
y 2x2 3
-6 -4 -2 o
24 6
x
-2
天才=
-4
1%的灵感
+ 99%的汗水
一.复习:
1.作函数图像的步骤是什么?
(1)列表 (2)描点 (3)连线
2.一次函数图像的特点是什么?
是一条直线,所以我们在作一次图像 的时候只需要确定两个点,再过这两 个点作直线就可以了。
的图象象是否也有这种现
象
X03
y13 观察分析:
y 2 x1 3
自变量x由_小__到_大__ 函数y的值从_小__到_大__
结 y随x的增大而增大,
y 3x2
论
这时函数的图象从左到右上升;
观察分析:
y 2 x 1和
3
y 2 x 1
y x2的图象
3
自变量x由_小__到_大__ 函数y的值从_大__到_小__
y=2x-1
3
经过(0,-1)和(0.5,0)两点
2
1
x
02
y= -0.5x+1 1 0
-6 -5 -4 -3 -2 -1 o 1 2 3 4 5 6 x -1
-2
-3
经过(0,1)和(2,0)两点
-4
-5
-6
一次函数y=kx+b(k≠0) 图象的画法 (两点)
例1 在同一平面直角坐标系中画出下列 每组函数的图象:
二.尝试探索
1.在同一坐标系中作出正比例函数 y=0.5x y= –2x , y=-x的图象
y=x ,y=3x和
y
y=-2x 6
y=-x
4
2
-6 -4 -2 o -2
-4
y=3x y=x
y=0.5x
24 6
x
y
y=-2x 6
y=-x
4
2
-6 -4 -2 o -2
-4
y=3x(1)上面的函数都是什么函数?
求一次函数y=kx+b(k≠0)的图象与两坐标轴的交 点的方法是;
令x=0,则得y=b,而得与y轴的交点坐标为(0 ,b);
令y=0,则得x=-b/k,而得与x轴的交点坐标为(
b k
,0)
k:决定直线倾斜的方向当k>0时,k 的值越大,函数图象与x轴正向所成 的锐角最大。 b: 决定直线与y轴相交的交点的位置。