光学发展史
光学发展简史

光学发展简史光学是研究光的传播、反射、折射、干涉、衍射和吸收等现象的科学。
自古以来,人们就对光的性质和行为产生了浓厚的兴趣,并通过不断的实验和观察,逐渐揭示了光学的奥秘。
本文将为您介绍光学发展的简史,从古代到现代,概括了光学领域的重要里程碑和发展趋势。
1. 古代光学的起源光学的起源可以追溯到古代文明时期。
早在公元前3000年左右,古埃及人就开始研究太阳光的性质,并发现了光的反射现象。
古希腊人则对光的传播和折射进行了系统的研究,他们提出了光的直线传播理论,并通过实验验证了这一理论。
2. 光的波动理论的兴起17世纪,荷兰科学家胡克和惠更斯等人提出了光的波动理论。
他们认为光是一种波动,能够解释光的干涉和衍射现象。
这一理论在当时引起了广泛的争议,但随着实验证据的增加,波动理论逐渐被接受。
3. 光的粒子理论的提出在波动理论盛行的同时,牛顿提出了光的粒子理论。
他认为光是由一种微粒组成,这些微粒能够沿直线传播,并且在与物体碰撞时会发生反射和折射。
牛顿的理论在当时得到了广泛的认可,并成为光学研究的基础。
4. 光的电磁理论的建立19世纪,麦克斯韦提出了光的电磁理论,他认为光是由电场和磁场相互作用产生的波动。
这一理论成功地解释了光的偏振现象,并为后来的光的干涉和衍射提供了理论基础。
光的电磁理论对于现代光学的发展起到了重要的推动作用。
5. 光的量子理论的诞生20世纪初,爱因斯坦提出了光的量子理论,他认为光是由一种粒子称为光子组成的。
这一理论解释了光的光电效应和光的发射与吸收现象,并为现代光学的发展奠定了基础。
量子理论的出现使得光学研究更加深入和精确。
6. 光学技术的突破随着科学技术的进步,光学领域出现了许多重要的技术突破。
例如,显微镜的发明使得人们能够观察微小的物体和细胞结构,望远镜的发明使得人们能够观测天体和宇宙。
激光的发明和应用也为光学研究带来了巨大的进展,激光技术在通信、医学和材料加工等领域发挥着重要作用。
7. 光学的未来发展趋势随着科学技术的不断进步,光学领域仍然具有广阔的发展前景。
光学发展简史

光学发展简史光学是一门研究光的性质和行为的学科,它的发展历史可以追溯到古代。
本文将为您详细介绍光学的发展简史,从古代到现代,逐步呈现光学学科的进步和突破。
1. 古代光学在古代,人们对光的性质和行为有了初步的认识。
古希腊的柏拉图和亚里士多德提出了光的传播是通过一种称为“视觉射线”的物质传播的理论。
另外,古希腊的毕达哥拉斯提出了“光锥”的理论,认为光是由一束直线射线组成的。
2. 光的折射与反射在16世纪,伽利略·伽利雷和威廉·斯涅尔分别研究了光的折射和反射现象。
他们的实验和观察结果奠定了光学的基础。
伽利略发现了光在不同介质中传播时的折射现象,并提出了著名的“斯涅尔定律”,即折射角和入射角的正弦比等于两个介质的折射率之比。
3. 光的波动理论到了17世纪,荷兰科学家克里斯蒂安·惠更斯提出了光的波动理论。
他认为光是由一系列波动组成的,这一理论解释了光的干涉和衍射现象。
这项理论为后来的光学研究提供了重要的基础。
4. 光的粒子性质在19世纪末,德国物理学家马克斯·普朗克和爱因斯坦的光电效应实验证明了光的粒子性质。
他们发现,光的能量是以离散的量子形式存在的,这一发现为量子力学的发展打下了基础。
5. 光的电磁理论到了19世纪末和20世纪初,詹姆斯·克拉克·麦克斯韦提出了光的电磁理论。
他认为光是由电磁波组成的,这一理论解释了光的偏振现象和干涉现象。
麦克斯韦的电磁理论为光学研究提供了重要的理论基础。
6. 光的量子理论20世纪初,爱因斯坦提出了光的量子理论,即光的粒子性质。
他认为光由一系列粒子(光子)组成,每个光子具有一定的能量。
这一理论解释了光的光谱现象和能量传递过程。
7. 光学技术的发展随着光学理论的不断发展,光学技术也得到了迅速的发展和应用。
例如,显微镜的发明使得人们可以观察微小的物体和细胞结构;望远镜的发明使得人们可以观测远处的天体;激光的发明和应用使得光学在通信、医学和工业领域有了广泛的应用。
光学发展简史

光学发展简史引言概述:光学作为一门古老而又现代的科学,其发展历程丰富多彩,影响深远。
从古代的光学理论到现代的光学技术应用,光学向来在不断演变和发展。
本文将从光学的起源开始,概述光学的发展历程,展示光学在科学技术领域的重要地位。
一、古代光学理论1.1 古代光学学派的兴起古代光学学派包括希腊学派和伊斯兰学派,分别由柏拉图、亚里士多德和伊本·海萨姆等学者创立。
他们通过实验和理论推导,提出了光的传播和反射规律。
1.2 光学理论的发展古代光学理论主要环绕光的传播、反射、折射等现象展开研究,形成为了光学的基本原理。
柏拉图提出了光线理论,亚里士多德提出了透镜和影子的研究,伊本·海萨姆提出了光的折射规律。
1.3 古代光学理论的影响古代光学理论为后世光学研究奠定了基础,对现代光学学科的发展起到了重要作用。
古代光学学派的成就为光学科学的发展提供了珍贵的经验和启示。
二、近代光学实验2.1 光的波动性实验十七世纪,荷兰科学家惠更斯通过双缝干涉实验证明了光的波动性,揭示了光的波动特性。
这一实验为后来光学理论的发展提供了重要的实验依据。
2.2 光的粒子性实验十九世纪,英国科学家杨·杨和法国科学家德布罗意通过光电效应实验证明了光的粒子性,提出了光子理论。
这一实验揭示了光的微粒性质,对光学理论产生了深远影响。
2.3 光的干涉与衍射实验十九世纪末,美国科学家杨·杨通过干涉和衍射实验,进一步证实了光的波动性,推动了光学理论的发展。
这些实验为光学技术的应用奠定了基础。
三、现代光学技术应用3.1 光学成像技术现代光学成像技术包括光学显微镜、望远镜、相机等,广泛应用于生物医学、天文观测、摄影等领域。
光学成像技术的发展为人类认识世界和宇宙提供了重要工具。
3.2 激光技术激光技术是光学领域的重要分支,广泛应用于医疗、通信、材料加工等领域。
激光技术的发展推动了现代科技的进步,成为一种重要的工具和装置。
3.3 光纤通信技术光纤通信技术是现代通信领域的重要技术之一,通过光纤传输信号可以实现高速、大容量的通信。
光学的发展史

目录
-
1 古代光学 2 文艺复兴时期 3 近代光学 4 现代光学 5 现代光学的重要领域
光学的发展史
光学是一门研究光 和光与物质相互作
用的科学
01
它的发展历史悠久, 从古代的朴素光学观 念到现代的光学理论 和技术,经历了许多
重要的阶段
02
下面将简要介绍光 学的发展史
03
光学的发展史
光学的发展史
近代光学
近代光学的发展始于17世纪。荷 兰科学家斯涅尔(Snell)发现了 光的折射定律,即光线在两种不 同介质的交界面上会发生偏折, 偏折角度与介质的折射率有关。 随后,英国物理学家牛顿 (Newton)进行了光的干涉和衍射 实验,提出了光的粒子说和波动 说,为光学的发展奠定了基础
光学的发展史
光学的发展史
现代光学的重要领域
激光技术:激光是20世纪最重要的 发明之一。它具有高亮度、高方向 性、高单色性等优点,被广泛应用 于通信、医疗、军事等领域
非线性光学:非线性光学研究光与物 质相互作用时产生的非线性效应。这 些效应包括倍频、和频、差频等,被 广泛应用于信息处理、光谱分析等领 域
光学的发展史
量子光学研究光在量子态下的性质和行为。它涉及到光 的量子态制备、测量和控制等方面,是现代物理学的重
要分支之一
光学的发展史
总之,光学的发展史是 一个不断探索和创新的 过程
从古代的朴素光学观念 到现代的光学理论和技 术,人们不断深化对光 和光与物质相互作用的 认识和理解
随着科技的进步和发展 ,光学将在未ຫໍສະໝຸດ 发挥更 加重要的作用古代光学
在古代,人们开始对光产生了一些朴素的认识。古希 腊哲学家亚里士多德提出了"光线说",认为光是一种 直线运动,能够从光源传播到眼睛。同时,他也观察 到光的反射和折射现象,并尝试解释这些现象
光学发展简史

光学发展简史引言概述:光学作为一门研究光的传播、反射、折射等现象的学科,具有悠久的历史。
本文将从光学的起源开始,分五个部分介绍光学的发展历程,包括古代光学、光的波动理论、光的粒子性质、光学仪器的发展和现代光学的应用。
一、古代光学1.1 古代光学的起源古代光学的起源可以追溯到公元前4000年的埃及和美索不达米亚地区,人们开始观察到光的传播和反射现象。
1.2 古希腊的光学理论古希腊时期,光学开始形成理论基础。
毕达哥拉斯提出了光是由小粒子组成的粒子理论,而柏拉图和亚里士多德则认为光是由视觉器官发出的一种特殊物质。
1.3 古代光学的应用古代光学的应用主要集中在光的反射和折射方面,如太阳能的利用和镜子的制作等。
二、光的波动理论2.1 光的波动理论的提出17世纪,荷兰科学家胡克和惠更斯提出了光的波动理论,认为光是一种波动现象。
2.2 光的干涉和衍射现象波动理论的提出解释了光的干涉和衍射现象,如杨氏双缝干涉和菲涅尔衍射。
2.3 光的波动理论的发展随着时间的推移,光的波动理论逐渐完善,电磁理论的发展进一步加深了对光的波动性质的理解。
三、光的粒子性质3.1 光的粒子性质的提出19世纪末,德国物理学家普朗克提出了光的粒子性质,即光量子假设。
3.2 光的粒子性质的实验证据爱因斯坦在1905年提出了光电效应理论,证实了光的粒子性质。
3.3 光的粒子性质的发展量子力学的发展进一步深化了对光的粒子性质的认识,光子的概念得到了广泛的应用。
四、光学仪器的发展4.1 望远镜的发明17世纪,伽利略发明了望远镜,使人们能够观测到更远的天体。
4.2 显微镜的发明17世纪,荷兰科学家安东尼·范·李文虎克发明了显微镜,使人们能够观察微观世界。
4.3 激光的发明20世纪,激光的发明开创了新的光学领域,广泛应用于科学研究、医学、通信等领域。
五、现代光学的应用5.1 光纤通信光纤通信是现代光学的重要应用之一,具有高速传输、大容量等优势。
光学发展简史

光学发展简史光学是研究光的传播、反射、折射和干涉等现象的科学领域,它的发展历史可以追溯到古代。
本文将为您详细介绍光学的发展历程,从古代到现代的重要里程碑。
古代光学古代光学的起源可以追溯到公元前3000年左右的古埃及和古希腊。
古埃及人早在公元前2000年左右就开始研究光的传播和反射现象。
例如,他们发现光线在经过不同介质时会发生折射,并且使用镜子反射光线。
古希腊的科学家也对光学现象进行了深入研究。
著名的古希腊哲学家亚里士多德提出了一种关于光的传播的波动理论,然而这个理论在后来被证明是错误的。
中世纪光学在中世纪,光学的研究进展缓慢。
然而,伊斯兰世界的科学家在光学领域做出了重要贡献。
他们对光的折射现象进行了研究,并提出了光的传播速度是有限的观点。
这一观点为后来的光速测量奠定了基础。
近代光学17世纪是光学领域的重要转折点。
伽利略·伽利雷、罗伯特·胡克等科学家开始进行光学实验,并提出了光的直线传播原理。
然而,最重要的突破发生在1678年,荷兰科学家克里斯蒂亚an·惠更斯发表了《光学原理》一书,这本书被认为是现代光学的奠基之作。
惠更斯提出了光的波动理论,并解释了光的干涉和衍射现象。
18世纪,英国科学家托马斯·杨提出了光的粒子理论,他认为光是由粒子组成的。
这一理论在当时引起了争议,但后来被证明是错误的。
19世纪,法国科学家奥古斯丁·菲涅耳提出了波动理论的修正,解释了光的偏振现象。
这个理论被广泛接受,并为后来的光学研究奠定了基础。
20世纪光学20世纪是光学领域的快速发展时期。
在这个时期,光学技术得到了极大的进步,为现代科学和工业的发展做出了重要贡献。
光学在光通信、激光技术、光学成像等领域发挥了重要作用。
20世纪50年代,激光技术的发明使光学领域迈入了一个新的阶段。
激光的特殊性质使其在科学研究、医学、通信和制造业等领域得到广泛应用。
21世纪光学随着科技的不断进步,光学在21世纪继续发展。
光学发展简史

光学发展简史光学是一门研究光的传播、发射、操控和检测的学科,它对人类社会的发展和科学技术的进步起到了重要的推动作用。
本文将为您介绍光学的发展历程,从古代到现代,从基础理论到应用技术,带您了解光学的演进和影响。
1. 古代光学光学的起源可以追溯到古代文明时期。
早在公元前3000年左右,埃及人就开始研究光的传播和折射现象。
他们利用太阳光的折射现象,设计了日晷,用于测量时间。
古希腊的哲学家和数学家也对光学进行了深入研究,其中最著名的是柏拉图和亚里士多德。
柏拉图提出了“光线是由眼睛发出的”这一错误观点,而亚里士多德则正确地解释了光的传播和折射现象。
2. 光的波动理论17世纪,荷兰科学家胡克和赫维留斯提出了光的波动理论。
他们认为光是一种波动现象,可以通过干涉和衍射来解释光的行为。
这一理论为后来的光学研究奠定了基础。
著名的英国科学家牛顿在17世纪末提出了光的粒子理论,认为光是由微小的粒子组成的。
这一理论在一段时间内占据主导地位,但在19世纪被波动理论所取代。
3. 光的电磁理论19世纪初,英国科学家杨-菲涅耳和法拉第提出了光的电磁理论。
他们认为光是一种电磁波,可以通过振动的电场和磁场来描述。
这一理论得到了实验证据的支持,并成为了现代光学的基础。
随后,英国物理学家麦克斯韦进一步发展了光的电磁理论,并将其与电磁场的统一理论相结合,提出了麦克斯韦方程组。
这一方程组成为了电磁学和光学的基础,并奠定了光的波动性质和电磁波的统一理论。
4. 光的量子理论20世纪初,德国物理学家普朗克提出了量子理论,用于解释光和其他物质的微观行为。
他认为光的能量是以离散的方式传播的,称为光子。
这一理论解释了光的粒子性质,并为后来的量子力学奠定了基础。
随后,爱因斯坦在1905年提出了光电效应理论,进一步支持了光的量子性质。
这一理论对于理解光的相互作用和应用于光电子学等领域具有重要意义。
5. 光学的应用光学的发展不仅仅停留在理论研究,还涉及到了许多重要的应用领域。
光学发展简史

光学发展简史光学是研究光的传播、产生、检测和控制等现象和规律的科学。
它涉及到光的物理性质、光的波动性质、光的粒子性质以及光与物质的相互作用等方面。
光学的发展历史悠久,经历了漫长的探索和发展过程,本文将为您详细介绍光学的发展简史。
1. 古代光学光学的起源可以追溯到古代,古希腊哲学家柏拉图和亚里士多德对光的性质进行了初步的探索。
然而,最早系统地研究光学的是古希腊数学家欧几里得。
他在《几何原本》一书中提出了光的直线传播理论,并研究了光的反射和折射现象。
2. 中世纪光学中世纪时期,阿拉伯学者对光学的研究起到了重要的推动作用。
他们翻译了古希腊的光学著作,并进行了进一步的研究。
其中最著名的学者是伊本·海塔姆,他在《光学篇》中详细描述了光的传播和折射现象,并提出了光的直线传播原理。
3. 光的波动理论17世纪,荷兰科学家胡克和休谟等人提出了光的波动理论。
他们认为光是一种波动现象,能够通过介质中的振动传播。
这一理论得到了英国科学家牛顿的质疑和反驳,牛顿提出了光的粒子理论,并通过实验证实了自己的观点。
4. 光的粒子性质牛顿的光的粒子理论在当时得到了广泛的认可,但在后来的实验中遇到了一些难点。
19世纪初,法国科学家菲涅尔和英国科学家杨益达等人通过干涉和衍射实验证明了光的波动性质,推翻了牛顿的粒子理论。
这一发现对光学的发展产生了深远的影响。
5. 电磁理论与光的电磁性质19世纪中叶,麦克斯韦提出了电磁理论,认为光是由电磁波组成的。
这一理论得到了实验证实,并对光学的发展产生了重要的影响。
电磁理论的提出使得人们能够更好地理解光的传播和产生机制,为光学技术的发展奠定了基础。
6. 光的量子性质20世纪初,普朗克提出了量子理论,揭示了光的量子性质。
他认为光是由一束一束的能量量子组成的,这一理论被后来的实验证实。
量子理论的发展使得人们能够更深入地研究光的微观性质,为光学技术的进一步发展提供了理论基础。
7. 现代光学技术的发展随着科学技术的不断进步,光学技术得到了广泛的应用和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学发展史学院:理学院专业:光电信息科学与工程姓名:孙岐政学号:132720342015年5月15日光学的起源和力学等一样,可以追溯到3000年前甚至更早的时期。
在中国,墨翟(公元前468—公元前376)及其弟子所著的《墨经》记载了光的直线传播和光在镜面上的反射等现象,并具体分析了物、像的正倒及大小关系。
无论从时间还是科学性来讲,《墨经》可以说是世界上较为系统的关于光学知识的最早记录。
约100多年后,古希腊数学家欧几里得(Euclid,约公元前330—公元前275)在其著作中研究了平面镜成像问题,提出了光的反射定律,指出反射角等于入射角,但他同时提出了将光当作类似触须的投射学说。
从墨翟开始打2000多年的漫长岁月构成了光学发展的萌芽期,这期间光学发展缓慢,东西方科学发展都收到很大压抑。
这期间有克莱门德(Cleomedes,公元50年)和托勒密(C. Ptolemy,公元50年)研究了关的折射现象,最先测定了光通过两种介质分界面时的入射角和折射角。
阿拉伯学者阿勒·哈增(Al Hazen,965—1038)写过一本《光学全书》,研究了球面镜和抛物面镜的性质,并对人眼的构造及视觉作用做了详尽的叙述;中国的沈括(1031—1095年)撰写的《梦溪笔谈》对光的直线传播及球面镜成像作了比较深入的研究,并说明了月相的变化规律及月食的成因。
法国的培根(R.Bacon,公元1214—1294)提出了用透镜矫正视力和采用透镜组构成望远镜的想法,并描述了透镜焦点的位置。
到17世纪,在经历了文艺复兴的大潮之后,科学在欧洲又进入了一个蓬勃发展的时期,1621年斯涅耳(W. Snell,1591—1626)从实验中发现了折射定律,而笛卡尔(R. Descartes,1596—1619)第一个把它归纳成解析表达式。
1657年费马(P. de Fermat,1601—1665)提出了最小时间原理,并说明由此可推出光的反射和折射定律,至此几何光学的基础已基本奠定。
人们对光学真正的深入实验和研究始于17世纪,荷兰的李普塞(H. Lippershey,1587—1619)在1608年发明了第一架望远镜;17世纪初,简森(Z. Janssen,1588—1632)和冯特纳(P. Fontana,1580—1656)最早制作了复合显微镜。
1607年,伽利略(G. Galilei,1564—1642)测定光从一个山峰传到另一个山峰所用的时间。
他让山顶上的人打开手中所持灯的遮光罩,作为发光的开始。
又命令第二个山峰上的人看到对方的灯光后立即打开己方灯的遮光罩。
这样测定第一山峰上的人自发出光信号到看到对方的灯光的时间间隔,便得到光在两个山峰间来回一次所需的时间。
但是由于人的反应及动作时间远大于光运行所需的时间,伽利略的实验没有成功。
1610年伽利略用自制的望远镜观察星体,发现了绕木星运行的卫星,给哥白尼关于地球绕日运动的日心说提供了强有力的证据。
关于光的本性的认识,格里马第(F. M. Grinmaldi,1618—1663)首次注意到了衍射现象。
他发现光在通过细棒等障碍物时违背了直线传播的规律,在物体阴影的边缘出现了蓝绿色亮、暗交替的或变化的彩色条纹。
胡克(R. Hooke,1635—1703)和玻意耳(R. Boyle,1652—1691)各自独立的发现了现在称为牛顿环的在白光下薄膜的彩色干涉图样,胡克还明确主张光由振动组成,每一振动产生一个球面并以高速向外传播,这可以认为是波动学说的发端。
到17世纪60世纪末期,丹麦的巴塞林(E. Bartholin,1625—1698)发现了光经过方解石时的双折射现象。
17世纪70年代荷兰的惠更斯(C. Huygens,1629—1695)进一步发现了光的偏振性质。
1690年惠更斯在其著作《论光》中阐述了光的波动说,并提出了后来以他的名字命名的惠更斯原理。
1672年,牛顿(I. Newton,1643—1727)进行了白光的实验,发现白光通过棱镜时,会在光屏上形成按一定次序排列的彩色光带;于是他认为白光由各种色光复合而成,各色光在玻璃中收到不同程度的折射而被分解成许多组成部分。
反之,把各种组成部分复合起来会重新得到原来的白光,并通过棱镜的形状和折射率来进行定量的描述,使对颜色的结社办妥了主观视觉的印象而上升到客观的色光特征;综合这些现象以及解释,1704年,身为英国皇家会会长的牛顿出版了自己一生中最为重要的著作之一《光学》,提出了光的微粒流学说。
光的理论在18世纪实际上没有什么进展,鉴于当时的认识水平,人们只能把光与两种传递能量的机械运动相类比,分别提出了关于光本性的两种学说:微粒说和波动说。
惠更斯于1678年提出了光的波动说。
该学说认为光是一种特殊的媒质—“以太”的波动。
通过与机械波相比,波动说很容易定性的说明干涉和衍射的现象;如果加上惠更斯所作的“子波假设”,它也能定向的解释反射定律和折射定律。
尽管总的来说波动说比微粒说显得更合理一些,但一方面由于牛顿在科学界的威望,另一方面波动说当时还不能定量地说明干涉和衍射现象,甚至不能圆满的解释直线传播规律,使得多数科学家在17世纪和18世纪采纳了光的微粒学说。
但是随着光的干涉、衍射和偏振等光的波动现象的发现,以惠更斯为代表的波动学说逐步提出来了。
1801年,托马斯·杨(T. Young,1773—1829)最先用干涉原理解释了白光照射下薄膜颜色的由来和用双缝显示了光的干涉现象,并且第一次成功的测定了光的波长。
1808年,马吕斯(E. L. Malus,1775—1812)偶然发现光在两种介质面上反射时的偏振现象,随后菲涅尔和阿拉贡(D. Arago,1786—1853)对光的偏振现象和偏振光的干涉进行了研究。
1815年,菲涅尔(A. J. Fresenel,1788—1827)在并不了解杨氏工作的情况下,吸收了惠更斯的子波思想,并补充以干涉原理,提出了惠更斯—菲涅尔原理,成功解释了衍射现象。
1817年,杨氏明确指出,光波是一种横波,使一度被牛顿视为波动说障碍之一的偏振现象转化为波动说的一个佐证。
到19世纪中叶,波动说已被普遍接受,但人们对光波动的实质认识存在两个错误。
其一,无论是惠更斯、托马斯·杨以及菲涅尔等,都认为光是一种机械波,伴随着某种实物的机械振动;其二,大家都认为光波必须依赖假想媒质“以太”才能传播。
19世纪后期的迈克尔逊—莫雷(A. A. Michelson,1852—1931,E. W. Morley,1838—1923)实验发现不能察觉地球与以太之间的任何相对运动,以太被地球完全曳引。
1879年,麦克斯韦去世前不久,建议用干涉方法测定地球与以太的相对速度。
为此,美国的迈克尔逊设计了著名的“迈克尔逊干涉仪”。
在19世纪末和20世纪初,当人们的研究深入到光与物质的相互作用这一领域时,却困惑的发现许多问题是无法用波动学说加以解释。
为解释这些问题,1900年,德国的普朗克(M. Planck,1858—1947)提出了“量子假设”,认为物体的发光过程是量子化的,即发光能量必然是某一单元能量的整数倍,单元能量的大小正比于所发射光波的频率v,比例系数是一个普适常数h——普朗克常数。
1905年爱因斯坦(A. Einstein,1879—1955)将它发展为光子学说,并用它成功地解释了光电效应。
这样,光的粒子说似乎又复活了,但这种粒子已经完全不同于牛顿时期的粒子概念。
1913年,丹麦的波尔(N. Bohr,1885—1962)结合原子的行星模型和普朗克假设,提出波尔原子模型,成功地说明了氢原子的分立光谱线。
1924年德布罗意(L. de Broglie,1892—1987)提出物质波概念,认为每一粒子的运动都与一定波长的波动相联系,此假说很快就被电子通过金属箔的衍射实验所证实。
在此基础上,奥地利的薛定谔(E. Schrodinger,1871—1961)建立了“薛定谔方程”,奠定了量子力学的基础。
在20世纪中期,海森堡(W. K. Heisenberg,1901—1976)、狄拉克(P. Dirac,1902—1984)和波恩(M. Born,1882—1970)等人建立了量子力学,其中光的波动性与粒子性在新的形式下得到了统一。
从20世纪60年代起,随着激光的问世,光学与许多学科领域相结合,形成了现代光学的新的阵地,并且派生了很多新的分支学科,如激光光学、信息光学、非线性光学、导波光学等。
1950年,中学教师阿·卡斯特勒同让·布罗塞尔发明“光泵激”技术,这一发明后来被用来发射激光。
1951年查尔斯·汤斯(C. H. Townes)教授成功地制造出了世界上第一个“微波激射器”,即“受激辐射的微波放大器”。
1958年,汤斯和他的学生阿瑟·肖洛(1981年获得诺贝尔物理学奖)在《物理评论》杂志上发表了关于“受激辐射的光放大”的论文,为此,汤斯于1964年获得诺贝尔物理学奖。
1960年7月,梅曼(T. H. Maiman)用红宝石制成世界上第一台可见光的激光器。
激光的英文表达为Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大),缩写为LASER,最初译为“镭射”、“莱塞”等,1964年由钱学森教授取名为“激光”。
此后,随着激光技术的发展,加之激光的高亮度、高单色性、高方向性等特性,激光物理、激光技术以及激光应用等方面都取得了巨大的发展。
目前激光广泛应用于光通信、光储存、光信息处理、光生物、材料制备与加工、光谱学、医疗育种、激光武器以及激光核聚变等领域。
光学从发展过程来看可以分为经典光学和现代光学。
经典光学通常意义上所说的事应用光学和物理光学,主要包括几何光学的基本原理、几何光学成像、典型的光学系统和仪器、波动光学,其中波动光学又包括光的电磁理论,光的干涉、衍射和偏振等。
现代光学主要包括激光技术、信息光学、非线性光学、导波光学等。
其中激光技术包括原子发光机理、激光的产生原理和应用等;信息光学的核心是光学信息处理,把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,也称为“傅里叶光学”。
导波光学以光的电磁理论为基础,研究光波在光学波导中的传播、散射、偏振、衍射等效应,成为各种光波导器件及光纤技术的理论基础。
母亲又发展出很多新的领域,如光纤光学、非线性光学、光纤传感、光纤器件等。
导波光学中应用最广泛的莫过于光纤光学及器件。
特别指出的是,现代科学的发展使各学科及其分支的相互渗透越来越强。
导波光学、电子学及通信理论与技术的综合使得光通信得到迅速发展和应用。