工程光学全套PPT课件
合集下载
《工程光学与技术》课件

智能制造
智能制造需要高精度、高效率的光学检测和测量技术,工程光学将大有可为。
医疗健康
光学成像、光谱分析等技术将为医疗健康领域带来更多创新。
THANK YOU
感谢各位观看
《工程光学与技术》ppt课件
目录
• 工程光学概述 • 光学基础知识 • 工程光学技术 • 现代光学技术 • 工程光学实验 • 工程光学前沿与展望
01
工程光学概述
光学的基本概念
光的本质
光是一种电磁波,具有波粒二象性。
光的传播
光在真空中沿直线传播,在其他介质中传播方向会发生改变。
光的反射、折射和散射
04
现代光学技术
非线性光学
非线性光学效应
非线性光学效应是光与物质相互作用时产生的非线性现象,如倍频 、和频、差频等。
非线性光学材料
非线性光学材料是实现非线性光学效应的关键,如晶体、玻璃、聚 合物等。
非线性光学应用
非线性光学在激光技术、光电子学、光通信等领域有广泛的应用,如 光参量振荡器、光倍频器等。
光子学与光子技术
ቤተ መጻሕፍቲ ባይዱ光子学基本概念
光子学是研究光子的产生、传播、相互作用和应 用的科学。
光子器件
光子器件是实现光子技术的关键,如激光器、光 放大器、光调制器等。
光子技术的应用
光子技术在通信、信息处理、传感等领域有广泛 的应用,如光纤通信、光计算等。
光学信息存储与处理
01
光学信息存储
光学信息存储是利用光的干涉、 衍射等光学效应实现信息的存储 和读取。
工程光学的研究内容
光学系统设计
研究光学系统的基本理论和设 计方法,涉及光学仪器、摄影
镜头、显微镜等。
光学材料与制造
智能制造需要高精度、高效率的光学检测和测量技术,工程光学将大有可为。
医疗健康
光学成像、光谱分析等技术将为医疗健康领域带来更多创新。
THANK YOU
感谢各位观看
《工程光学与技术》ppt课件
目录
• 工程光学概述 • 光学基础知识 • 工程光学技术 • 现代光学技术 • 工程光学实验 • 工程光学前沿与展望
01
工程光学概述
光学的基本概念
光的本质
光是一种电磁波,具有波粒二象性。
光的传播
光在真空中沿直线传播,在其他介质中传播方向会发生改变。
光的反射、折射和散射
04
现代光学技术
非线性光学
非线性光学效应
非线性光学效应是光与物质相互作用时产生的非线性现象,如倍频 、和频、差频等。
非线性光学材料
非线性光学材料是实现非线性光学效应的关键,如晶体、玻璃、聚 合物等。
非线性光学应用
非线性光学在激光技术、光电子学、光通信等领域有广泛的应用,如 光参量振荡器、光倍频器等。
光子学与光子技术
ቤተ መጻሕፍቲ ባይዱ光子学基本概念
光子学是研究光子的产生、传播、相互作用和应 用的科学。
光子器件
光子器件是实现光子技术的关键,如激光器、光 放大器、光调制器等。
光子技术的应用
光子技术在通信、信息处理、传感等领域有广泛 的应用,如光纤通信、光计算等。
光学信息存储与处理
01
光学信息存储
光学信息存储是利用光的干涉、 衍射等光学效应实现信息的存储 和读取。
工程光学的研究内容
光学系统设计
研究光学系统的基本理论和设 计方法,涉及光学仪器、摄影
镜头、显微镜等。
光学材料与制造
工程光学课件第03章

第三节 反射棱镜
(二)屋脊棱镜
奇数次反射使得物体成镜像,偶数次反射使物体成原像。 如果需得到与物体一致的像,而又不宜增加反射棱镜时,可用交线位 于棱镜光轴面内的两个相互垂直的反射面取代其中一个反射面,使垂直 于主截面的坐标被这二个相互垂直的反射面依次反射而改变方向,从而 得到物体的一致像。这两个相互垂直的反射面叫做屋脊面,带有屋脊面 的棱镜称为屋脊棱镜。 常用的屋脊棱镜有直角屋脊棱镜、半五角屋脊棱镜、五角屋脊棱镜、 斯密特屋脊棱镜等。
亦即同心光束经平行平板后变成了非同心光束。因此平行
平板不能成完善像。
L2 L1 L1 d
第二节 平行平板
二、平行平板的等效光学系统
平行平板在近轴区内以细光束成像时,由于I1及I1'都很小,其 余弦值可用1代替,于是近轴区内的轴向位移为
l d (1 1 )
n
平行平板在近轴区以细光束成像是
L
完善的。不管物体位置如何,其像 P
2
ß只与α有关
出射光线 不稳定
第二节 平行平板
一、平行平板的成像特性
n1 sin I1 n1 sin I1 n2 sin I2 n2 sin I2
B
n1 n2 1,n1 n2 n
I 2
I2
E
F
I1
nsisninI1I
2
n
s s
in in
I1 I 2
I1 U1 U2
A1( A2 ) A1 A2
(四)棱镜的组合——复合棱镜 1、分光棱镜
第三节 反射棱镜
2、分色棱镜
3、转向棱镜
第三节 反射棱镜
第三节 反射棱镜
第三节 反射棱镜
4、双像棱镜
第三节 反射棱镜
第二版工程光学分解课件

详细描述:当光从光密介质射向光疏介质时,如 果入射角大于临界角,光波将被完全反射回原介 质,不进入光疏介质,这种现象称为全反射。全 反射是光的波动性的一种表现。
02
光学系统与元件
透镜与光学镜头
透镜的分类
光学镜头的应用
根据透镜的形状和焦距,透镜可以分 为球面透镜、非球面透镜、双凸透镜 、双凹透镜和凸凹透镜等。
折反镜由反射镜和折射镜 组成,通过改变光路,将 光线聚焦在一点上。
折反镜的应用
在望远镜、显微镜和照相 机等光学仪器中广泛应用 ,用于改变光路和聚焦光 线。
滤光片与分光仪
滤光片的分类
根据滤光片的透过光谱, 滤光片可以分为可见光滤 光片、红外滤光片、紫外 滤光片等。
分光仪的结构
分光仪由棱镜或光栅等分 光元件和探测器组成,可 以将光谱分成不同的波段 。
非线性光学材料
研究和发展新型非线性光学材料,如有机晶体、 无机晶体、光折变晶体等,以提高非线性光学效 应的转换效率。
非线性光学应用
非线性光学在光通信、光信息处理、光计算等领 域有广泛应用,如光参量振荡、倍频、和频等。
光子学与光子技术
光子学基础
01
研究光子的产生、传播、相互作用等基本规律,以及光子与物
在摄影、摄像、显微镜、望远镜等领 域广泛应用,用于聚焦光线、改变光 路等。
光学镜头的基本参数
包括焦距、光圈、视场角、相对孔径 等,这些参数决定了镜头的光学性能 和使用范围。
反射镜与折反镜
01
02
03
反射镜的分类
根据反射面的形状,反射 镜可以分为平面反射镜、 凹面反射镜和凸面反射镜 等。
折反镜的结构
质的相互作用机制。
光子器件
02
02
光学系统与元件
透镜与光学镜头
透镜的分类
光学镜头的应用
根据透镜的形状和焦距,透镜可以分 为球面透镜、非球面透镜、双凸透镜 、双凹透镜和凸凹透镜等。
折反镜由反射镜和折射镜 组成,通过改变光路,将 光线聚焦在一点上。
折反镜的应用
在望远镜、显微镜和照相 机等光学仪器中广泛应用 ,用于改变光路和聚焦光 线。
滤光片与分光仪
滤光片的分类
根据滤光片的透过光谱, 滤光片可以分为可见光滤 光片、红外滤光片、紫外 滤光片等。
分光仪的结构
分光仪由棱镜或光栅等分 光元件和探测器组成,可 以将光谱分成不同的波段 。
非线性光学材料
研究和发展新型非线性光学材料,如有机晶体、 无机晶体、光折变晶体等,以提高非线性光学效 应的转换效率。
非线性光学应用
非线性光学在光通信、光信息处理、光计算等领 域有广泛应用,如光参量振荡、倍频、和频等。
光子学与光子技术
光子学基础
01
研究光子的产生、传播、相互作用等基本规律,以及光子与物
在摄影、摄像、显微镜、望远镜等领 域广泛应用,用于聚焦光线、改变光 路等。
光学镜头的基本参数
包括焦距、光圈、视场角、相对孔径 等,这些参数决定了镜头的光学性能 和使用范围。
反射镜与折反镜
01
02
03
反射镜的分类
根据反射面的形状,反射 镜可以分为平面反射镜、 凹面反射镜和凸面反射镜 等。
折反镜的结构
质的相互作用机制。
光子器件
02
课件工程光学-08典型光学系统.ppt

1.0
0.8
光谱光效率
为什么暗环境下能
0.6
做饭、洗衣,但不
0.4
能描龙绣凤?
0.2
2024/10/8
0.0 400 500 600 700 800
l(nm)
光谱光效率函数曲线
第七章 光度学基础
7
§8.1.5 眼睛的分辨率
眼睛刚能分辨开二个很靠近点的能力称为眼睛的分辨率。 二者成反 比
刚能分辨的二个点对眼睛物方节点的张角称为极限分辨角。
瞄准精度和前面讲到的分辨率是不是一个概念?
瞄准精度随所选取的瞄准标志而异,最高精度可达人眼分辨率的1/6到1/10。
二实线重合 60
2024/10/8
二直线端部对准 叉线对准单线
(10~20)
10
第七章 光度学基础
双线对称夹单线 (5~10)
9
§8.1.7 眼睛的立体视觉
眼睛观察空间物体时,能区别它们的相对远近而具有立体视觉。简称体视。 C
若以50%渐晕点为界来决定线视场2 y
F
2 y 2B2F
f tanW2
f h d
250 f
2 y 500h d
W F
f 眼瞳
W3W2 W1 2a 2h
眼瞳
d
2024/10/8
第七章 光度学基础
14
讨论:
逢年过节,要买放大镜孝敬老人, 该如何选择其放大倍率?
2y h
2y 1
2y 1 d
(2)与照明光谱成份有关:单色光分辨率高(眼睛有色差); (3)与视网膜上成像位置有关,黄斑处分辨率最高。
对眼睛张角小物体的要借助望远镜或显微镜等仪器,仪器 应有适当的放大率,使能被仪器分辨的也能被眼睛分辨。
工程光学实验PPT课件

后将成为一束平行光。若用与主光轴垂直的平面镜将此平行光反 射回去,反射光再次通过透镜后仍会聚于透镜的焦平面上,其会 聚点将在发光点相对于光轴的对称位置上。 • 三、实验仪器
• 1、带有毛玻璃的白炽灯光源S • 2、品字形物屏P: SZ-14 • 3、凸透镜L: f=190mm(f=150mm) • 4、二维调整架: SZ-07 • 5、平面反射镜M • 二维调整架: SZ-07 • 7、通用底座: SZ-04 • 8、二维底座: SZ-02 • 9、通用底座: SZ-04
• 光学表面上如有灰尘,用实验室专备的干燥脱脂棉轻轻拭去或 用橡皮球吹掉。
• 光学表面上若有轻微的污痕或指印,用清洁的镜头纸轻轻拂去, 但不要加压擦拭,
• 更不准用手帕、普通纸片、衣服等擦拭。若表面有较严重的污 痕或指印,应由实验室人员用丙酮或酒精清洗。所有镀膜面均 不能接触或擦拭。
• 防止唾液或其溶液溅落在光学表面上。
F1经Lo后成一放大实像F’1,然后再用目镜Le作为放大镜观察 这个中间像F’1,F’1应成像在Le的第一焦点Fe之内,经过目镜 后在明视距离处成一放大的虚像F’’1。 • 三、实验仪器 • 1、带有毛玻璃的白炽灯光源S • 2、1/10mm分划板F1
•
mx=(像宽/实宽)÷20 (20为测微目镜的放大倍数)
• 像距改变量:s=(a1-a2)+(b2-b1)
• 被测目镜焦距:fe=s/(m2-m1)
• 实验四 自组显微镜
返回
• 一、实验目的 • 了解显微镜的基本原理和结构,并掌握其调节、使用和测量它的
放大率的一种方法。
• 二、实验原理 • 物镜Lo的焦距fo很短,将F1放在它前面距离略大于fo的位置,
2 F 3 4 Le 5
• 1、带有毛玻璃的白炽灯光源S • 2、品字形物屏P: SZ-14 • 3、凸透镜L: f=190mm(f=150mm) • 4、二维调整架: SZ-07 • 5、平面反射镜M • 二维调整架: SZ-07 • 7、通用底座: SZ-04 • 8、二维底座: SZ-02 • 9、通用底座: SZ-04
• 光学表面上如有灰尘,用实验室专备的干燥脱脂棉轻轻拭去或 用橡皮球吹掉。
• 光学表面上若有轻微的污痕或指印,用清洁的镜头纸轻轻拂去, 但不要加压擦拭,
• 更不准用手帕、普通纸片、衣服等擦拭。若表面有较严重的污 痕或指印,应由实验室人员用丙酮或酒精清洗。所有镀膜面均 不能接触或擦拭。
• 防止唾液或其溶液溅落在光学表面上。
F1经Lo后成一放大实像F’1,然后再用目镜Le作为放大镜观察 这个中间像F’1,F’1应成像在Le的第一焦点Fe之内,经过目镜 后在明视距离处成一放大的虚像F’’1。 • 三、实验仪器 • 1、带有毛玻璃的白炽灯光源S • 2、1/10mm分划板F1
•
mx=(像宽/实宽)÷20 (20为测微目镜的放大倍数)
• 像距改变量:s=(a1-a2)+(b2-b1)
• 被测目镜焦距:fe=s/(m2-m1)
• 实验四 自组显微镜
返回
• 一、实验目的 • 了解显微镜的基本原理和结构,并掌握其调节、使用和测量它的
放大率的一种方法。
• 二、实验原理 • 物镜Lo的焦距fo很短,将F1放在它前面距离略大于fo的位置,
2 F 3 4 Le 5
《工程光学基础》PPT课件_OK

中沿BO方向入射,则由反射定律可知,反射光线也一定沿OA方向出射。由
此可见,光线的传播是可逆的,这就是光路的可逆性。
13
• 5. 全反射现象 • 光线入射到两种介质的分界面时,通常都会发生折射与反射。但在一定
条件下,入射到介质上的光会全部反射回原来的介质中,没有折射光产生, 这种现象称为光的全反射现象。下面就来研究产生全反射的条件。
40
•
(2)角度
•
孔径角 U、U '
• 从光轴起算,光轴转向光线(按锐角方向),
顺时针为正,逆时针为负。
•
入射角、折射角
• 从光线起算,光线转向法线(按锐角方向), 顺时针为正,逆时针为负。
• ③ 光轴与法线的夹角(如)
• 从光轴起算,光轴转向法线(按锐角方向), 顺时针为பைடு நூலகம்,逆时针为负。
41
30
• 等光程面的例子:
•
(1)椭球面
•
椭球面对 A、 A'这一对
• 特殊点来说是等光程面,故
• 是完善成像。
• (2)抛物面
• 反射镜等光程面是以 A为
• 焦点的抛物面。无穷远物 • 点相应于平行光,全交于 • (或完善成像于)抛物面 • 焦点。
31
• 四、物、像的虚实
实际光线相交所形成的点为实物点或实像点 光线的延长线相交所形成的点为虚物点或虚像点
• 通常写为: •
sinI ' n (1-3s)inI n'
• 若在此式中令
,则式(1-3)成为
•
,此结果在形式上与反射定律的式
•(1-2) 相同。
n'sin I ' nsin I
n' n
此可见,光线的传播是可逆的,这就是光路的可逆性。
13
• 5. 全反射现象 • 光线入射到两种介质的分界面时,通常都会发生折射与反射。但在一定
条件下,入射到介质上的光会全部反射回原来的介质中,没有折射光产生, 这种现象称为光的全反射现象。下面就来研究产生全反射的条件。
40
•
(2)角度
•
孔径角 U、U '
• 从光轴起算,光轴转向光线(按锐角方向),
顺时针为正,逆时针为负。
•
入射角、折射角
• 从光线起算,光线转向法线(按锐角方向), 顺时针为正,逆时针为负。
• ③ 光轴与法线的夹角(如)
• 从光轴起算,光轴转向法线(按锐角方向), 顺时针为பைடு நூலகம்,逆时针为负。
41
30
• 等光程面的例子:
•
(1)椭球面
•
椭球面对 A、 A'这一对
• 特殊点来说是等光程面,故
• 是完善成像。
• (2)抛物面
• 反射镜等光程面是以 A为
• 焦点的抛物面。无穷远物 • 点相应于平行光,全交于 • (或完善成像于)抛物面 • 焦点。
31
• 四、物、像的虚实
实际光线相交所形成的点为实物点或实像点 光线的延长线相交所形成的点为虚物点或虚像点
• 通常写为: •
sinI ' n (1-3s)inI n'
• 若在此式中令
,则式(1-3)成为
•
,此结果在形式上与反射定律的式
•(1-2) 相同。
n'sin I ' nsin I
n' n
工程光学课件第01章
波面:发光点发出的光波向四周传播时, 某一时刻其振动位相相同的点所构成的 面称为波阵面,简称波面。光的传播即 为光波波阵面的传播。 光束:几何波面与几何光线的关系:在 各项同性介质中,波面上某点的法线即 代表了该点处光的传播方向,即光沿着 波面法线方向传播,因此,波面法线即 为光线。与波面对应的所有光线的集合, 称为光束。
时,可以全反射传送,
i i0
时,光线将会透过内壁进入包层
26
定义 na sin i0 为光纤的数值孔径
够传送的光能越多。
i0
越大,可以进入光纤的光能就越多,也就是光纤能
这意味着光信号越容易耦合入光纤。
27
三、费马原理
费马原理与几何光学的基本定律一样,也是描 述光线传播规律的基本理论。 它以光程的观点描述光传播的规律,涵盖了光 的直线传播和光的折、反射规律,具有更普遍 的意义。 根据物理学,光在介质中走过的几何路程与该 介质折射率的乘积定义为光程。设介质的折射 率为n,光在介质中走过的几何路程为l,则光程 s表示为
同心光束:通常波面可分为平面波、
球面波和任意曲面波。与平面波对应的光
束成为平行光束,与球面波对应的光束称
为同心光束。
平行光束与同心光束
平面波面
球形波面
同心光束
平行光束
各类光束及对应的波面
返回
折射率:折射率是表征透明介质光学 性质的重要参数。我们知道,各种波长的 光在介质中的传播速度会减慢。介质的折 射率正是用来描述介质中光速减慢程度的 物理量,即:
c n v
这就是折射率的定义。
10
二、几何光学的基本定律
几何光学的基本定律决定了光线在一般 情况下的传播方式,也是我们研究光学 系统成像规律以及进行光学系统设计的 理论依据。 几何光学的基本定律有三大定律:
《工程光学》课件
光学信号处理原理
光学信号处理概述 简要介绍了光学信号处理的基本 概念和原理,包括光波的干涉、 衍射、傅里叶变换等方面的知识 。
全息术与光学信息处理 简要介绍了全息术的基本原理和 应用,以及光学信息处理技术的 发展和应用前景。
干涉测量技术 详细介绍了干涉测量技术的基本 原理和应用,包括干涉仪的结构 和工作原理、干涉图样的分析和 解释等方面的知识。
的发展提供了新的机遇和挑战。
工程光学在各领域的应用
能源领域
太阳能利用、激光焊接、激光切割等 。
通信领域
光纤通信、光网络技术等。
环境监测领域
光谱分析、大气污染监测等。
生物医学领域
医学成像、光谱诊断、激光医疗等。
CHAPTER 02
工程光学基础知识
光的本质与传播
光的本质
光是一种电磁波,具有波粒二象性。 其电磁场振动方向与传播方向垂直, 表现出横波的特征。
显微镜
介绍了显微镜的基本原理和结构,包括透射光显微镜和反 射光显微镜等类型,以及显微镜的性能参数和选择方法。
激光器
简要介绍了激光器的基本原理和结构,包括气体激光器、 固体激光器、光纤激光器等类型,以及激光器的性能参数 和应用领域。
光学系统设计原理
光学系统设计基础
介绍了光学系统设计的基本概念和原则, 包括光学材料、光学镀膜、光学元件加工
光学信息处理实验
研究光学信息处理技术,如傅里叶 变换、光学图像处理等,掌握光学 信息处理系统的基本构成和操作方 法。
光学系统设计与制造实践
光学系统设计实践
通过实践了解光学系统设计的基本原理和方法,掌握光学设 计软件的使用技巧,熟悉光学元件的选择和加工工艺。
光学制造工艺实践
大学工程光学课件
光学微纳加工技术
通过微纳加工技术制造微小尺度的光学元件 ,实现高精度、高效率的光学系统。
光学传感技术
利用光学原理对物理量进行测量,具有高精 度、高灵敏度的特点。
工程光学发展趋势预测与展望
集成化与智能化
多学科交叉融会
随着微纳加工技术的发展,工程光学将更 加重视元件的集成化和智能化,提高系统 的性能和效率。
光的本质与传播特性
光的本质
光是一种电磁波,具有波粒二象 性。其波动性质表现为光的干涉 、衍射等现象,粒子性质则体现 为光电效应等。
光的传播特性
光在均匀介质中沿直线传播,遇 到不同介质界面时会产生反射、 折射等现象。
光的反射、折射与干涉
光的反射
光在遇到物体表面时,会改变传 播方向并返回原介质的现象。反 射过程中遵循反射定律,即入射
工程光学在各领域的应用
航空领域
用于飞机导航、着 陆系统、气象观测 等。
能源领域
用于太阳能电池板 、风力发电叶片的 检测与设计等。
国防领域
用于制造精确的武 器瞄准系统、夜视 仪等。
航天领域
用于卫星通讯、空 间探测、天文观测 等。
通讯领域
用于光纤通讯、光 交换、光网络等。
CHAPTER 02
光学基础知识
光的吸取、散射与色散
01 02
光的吸取
光在传播过程中被物质吸取转化为热能或其他情势能量的现象。不同物 质对不同波长光的吸取程度不同,因此可以利用这一特性进行光谱分析 等。
光的散射
光在传播过程中遇到微小颗粒时,产生散射的现象。散射程度与颗粒大 小和入射光的波长有关,可以利用这一现象进行大气污染检测等。
感谢您的观看
大、缩小、旋转等功能。
《工程光学》课件第4章
第4章 平面与平面系统
4.1 平面反射镜 4.2 平行平板 4.3 反射棱镜 4.4 折射棱镜 4.5 光楔
4.1 平面反射镜
4.1.1 单平面镜成像
如图4-1所示,PP′为平面反射镜,由物点A发出的光 束被平面反射镜反射,其中任意一条光线AO经平面镜PP′ 反射后,沿OB方向射出;另一条光线AP垂直于镜面入射, 并沿原路反射,这两条反射光线的反向延长线交于A′, A′点即为物点A被平面镜反射后所成的像。
折射后,射向第二面,经折射后沿EB 方向射出。出射光线的 延长线与光轴交于点A2 ,此即为物点A 经平行平板后的虚像 点。光线在第一、第二两面上的入射角和折射角分别为I1 I、1 和 I 2 、 I 2 ,按折射定律有
sin I1 nsin I1 n sin I 2 sin I 2
因 两 折 射 面 平 行 , 所 以 I 2 I1 ,I 2 I1 , 故 U1 U 2 ,可见出射光线EB 和入射光线AD 相互平
垂直。根据反射面数目的不同,简单棱镜又分为一次反射棱 镜、二次反射棱镜和三次反射棱镜。
1)一次反射棱镜 一次反射棱镜具有一个反射面,相当于单块平面镜,对 物成镜像,即垂直于主截面的坐标方向不变,位于主截面内 的坐标方向改变。 最常用的一次反射棱镜是等腰直角棱镜,如图4-10(a) 所示为等腰直角棱镜,光线从一直角面入射,从另一直角面 出射,使光轴折转90°。图4-10(b)所示的等腰棱镜可以使 光轴折转任意角度。确定反射面角度时,只需使反射面的法 线方向处于入射光轴与出射光轴夹角的平分线上即可。这两 种棱镜的入射面与出射面都与光轴垂直,在反射面上的入射 角大于临界角,能够发生全反射,反射面上无需镀反射膜。
l2 l1 d l
(4-6)
而无需对平行玻璃平板逐面进行计算。因此,在进行光
4.1 平面反射镜 4.2 平行平板 4.3 反射棱镜 4.4 折射棱镜 4.5 光楔
4.1 平面反射镜
4.1.1 单平面镜成像
如图4-1所示,PP′为平面反射镜,由物点A发出的光 束被平面反射镜反射,其中任意一条光线AO经平面镜PP′ 反射后,沿OB方向射出;另一条光线AP垂直于镜面入射, 并沿原路反射,这两条反射光线的反向延长线交于A′, A′点即为物点A被平面镜反射后所成的像。
折射后,射向第二面,经折射后沿EB 方向射出。出射光线的 延长线与光轴交于点A2 ,此即为物点A 经平行平板后的虚像 点。光线在第一、第二两面上的入射角和折射角分别为I1 I、1 和 I 2 、 I 2 ,按折射定律有
sin I1 nsin I1 n sin I 2 sin I 2
因 两 折 射 面 平 行 , 所 以 I 2 I1 ,I 2 I1 , 故 U1 U 2 ,可见出射光线EB 和入射光线AD 相互平
垂直。根据反射面数目的不同,简单棱镜又分为一次反射棱 镜、二次反射棱镜和三次反射棱镜。
1)一次反射棱镜 一次反射棱镜具有一个反射面,相当于单块平面镜,对 物成镜像,即垂直于主截面的坐标方向不变,位于主截面内 的坐标方向改变。 最常用的一次反射棱镜是等腰直角棱镜,如图4-10(a) 所示为等腰直角棱镜,光线从一直角面入射,从另一直角面 出射,使光轴折转90°。图4-10(b)所示的等腰棱镜可以使 光轴折转任意角度。确定反射面角度时,只需使反射面的法 线方向处于入射光轴与出射光轴夹角的平分线上即可。这两 种棱镜的入射面与出射面都与光轴垂直,在反射面上的入射 角大于临界角,能够发生全反射,反射面上无需镀反射膜。
l2 l1 d l
(4-6)
而无需对平行玻璃平板逐面进行计算。因此,在进行光
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的性质,如光电效应等。这两方面的综合说明光不是单纯的波,也不是单纯
的粒子,而是具有波粒二象性的物质。这是认识上的不断加深而得到的结论。
应该注意这也还不是最后的答案。对于光的本性,虽然经过这么多年的探索,
我们所知道的也的确是太少了。光到底是什么?是在某一时刻表现为粒子,
而在另一时刻表现为波?还是完全不同于我们现在所知的某种物质?这些问
学、生理光学及兵器光学等。因此,应用光学是以学习经 典光学和近代光学的基本原理和基本理论 ,并将此在各分 支学科中工程应用的一门基础课程。
1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了 十分明确的表示,特别指出光与物质相互作用时,光也是以光子 为最小单位进行的。
.
5
光学的发展历史
在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光 学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、 光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒 性。
论,揭示了光波其实是电磁波的一种,这时波动理论的最后的一个难题--传
播媒质问题也被解决了。但从十九世纪末起,却发现了一系列令人困惑的新
的实验结果。这些结果共同的特点是,他们无法用麦克斯韦理论来解释。其
中最典型的是光电效应实验。伟大的爱因斯坦于1905年提出光量子说来解释
该实验。光一方面具有波动的性质,如干涉、偏振等;另一方面又具有粒子
.
6
光的本性
很久以来,人们对光就进行了各种各样的研究。光到底是什么东西呢?
这个问题困扰了许多有才智之士。牛顿提出著名的光微粒说:光是由极小的
高速运动微粒组成的;不同色光有不同的微粒,其中紫光微粒的质量最大,
红光微粒的质量最小。到十九世纪初期,发现了光的干涉、绕射和偏振现象,
这些行为只适合于光的波动理论解释。到1863年麦克斯韦发表著名的电磁理
物理光学(波动光学)是从光的波动性出发来研究光在传播过程 中所发生的现象的学科,所以也称为波动光学。它可以比较方便 的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒 质中传插时所表现出的现象。
量子光学是从光子的性质出发,来研究光与物质相互作用的学科 即为量子光学。它的基础主要是量子力学和量子电动力学。
自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公 元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一 直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观 察结果,归结为今天大家所惯用的反射定律和折射定律。
.
3
光学的发展历史
1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组 成部分,这些成分形成一个颜色按一定顺序排列的光分布—— 光谱。它使人们第一次接触到光的客观的和定量的特征,各单 色光在空间上的分离是由光的本性决定的。
19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了 “薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉 原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更 斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能 解释光的直线传播。
1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年, 韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单 位的比值。他们的发现表明光学现象与磁学、电学现象间有一 定的内在关系。
.
4
光学的发展历史
1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限 于空间的某一部分,而是以等于电流的电磁单位与静电单位的比 值的速度传播着,光就是这样一种电磁现象。这个结论在1888 年为赫兹的实验证实。
1900年,普朗克从物质的分子结构理论中借用不连续性的概念, 提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能 以各自确定分量的能量从振子射出,这种能量微粒称为量子,光 的量子称为光子。
题也是当今的科学家们在苦苦思索的问题。
.
7
什么是光学?
.
8
什么是光学?
狭义来说,光学是关于光和视见的科学, optics(光学)这个词,早期只用于跟眼睛和视见 相联系的事物。而今天,常说的光学是广义的, 是研究从微波、红外线、可见光、紫外线直到 X射线的宽广波段范围内的,关于电磁辐射的 发生、传播、接收和显示,以及跟物质相互作 用的科学。
.
10
什么是应用光学?
.
11
什么是应用光学?
应用光学(工程光学):光学是由许多与物理学紧密联系的 分支学科组成;由于它有广泛的应用,所以还有一系列应 用背景较强的分支学科也属于光学范围。例如,有关电磁 辐射的物理量的测量的光度学、辐射度学;以正常平均人 眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心 理物理量的测量的色度学;以及众多的技术光学:光学系 统设计及光学仪器理论,光学制造和光学测试,干涉量度 学、薄膜光学、纤维光学和集成光学等;还有与其他学科 交叉的分支,如天文光学、海洋光学、遥感光学、大气光
工
程
光
.
学
1
光是什么?
.
2
光学的发展历史
光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 人类对光的研究,最初主要是试图回答“人怎么能看见周围的物 体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》 中记录了世界上最早的光学知识。它有八条关于光学的记载,叙 述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的 文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。
光学是物理学的一个重要组成部分,也是与其 他应用技术紧密相关的学科。
.
9
经典光学的研究内容
通常把光学分成几何光学、物理光学(波动学)和量子光学三 个大类。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播 问题的学科。它利用光线的概念、折射、反射定律来描述光在各 种媒质中传播的途径,它得出的结果通常总是波动光学在某些条 件下的近似或极限。
1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时 已能从实验上获得的原子光谱的超精细结构,它们都表明光学的 发展是与量子物理紧密相关的。光学的发展历史表明,现代物理 学中的两个最重要的基础理论——量子力学和狭义相对论都是在 关于光的研究中诞生和发展的。
此后,光学开始进入了一个新的时期,以致于成为现代物理学和 现代科学技术前沿的重要组成部分。