低碳钢和铸铁扭转试验
低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告低碳钢和铸铁扭转实验报告引言:在现代工业中,钢和铸铁是最常用的金属材料之一。
它们在建筑、汽车制造、航空航天等领域扮演着重要的角色。
本实验旨在比较低碳钢和铸铁的力学性能,特别是在扭转试验中的表现。
实验设计:本实验使用了一台扭转试验机,通过施加扭矩来测试不同材料的扭转强度和变形能力。
实验中使用了相同的试样尺寸和几何形状,并确保试样表面的光洁度一致。
实验过程:1. 准备工作:清洁和标记试样,确保试样表面无杂质和损伤。
2. 安装试样:将试样固定在扭转试验机上,确保试样与扭转轴线平行。
3. 施加负载:逐渐增加扭矩,记录每个扭矩值下的变形情况。
4. 测量数据:使用应变计和位移传感器等设备,测量试样的应变和位移。
实验结果:通过对低碳钢和铸铁试样进行扭转实验,得到了以下结果:1. 扭转强度:低碳钢表现出较高的扭转强度,能够承受更大的扭矩而不发生破坏。
相比之下,铸铁的扭转强度较低,容易发生塑性变形和断裂。
2. 变形能力:低碳钢在扭转过程中表现出较好的变形能力,能够经受较大的扭转角度而不失去其原有形状。
而铸铁则在受到较小扭矩时就会发生明显的变形和断裂。
3. 韧性:低碳钢具有较高的韧性,能够在扭转过程中吸收更多的能量。
而铸铁的韧性较低,容易发生脆性断裂。
实验讨论:以上实验结果表明,低碳钢在扭转试验中表现出更好的力学性能。
这可以归因于低碳钢的晶格结构和化学成分。
低碳钢由铁和少量碳组成,碳的存在使得钢具有更好的强度和塑性。
相比之下,铸铁中的碳含量较高,导致其较低的强度和韧性。
然而,需要注意的是,实验结果可能受到一些因素的影响。
例如,试样的制备和处理过程可能存在差异,这可能导致实验结果的偏差。
此外,实验中只考虑了扭转加载情况下的性能比较,而在实际应用中,材料还需要满足其他力学要求,如拉伸和压缩等。
结论:通过本实验,我们对低碳钢和铸铁在扭转试验中的性能进行了比较。
结果显示,低碳钢具有更高的扭转强度和变形能力,以及更好的韧性。
低碳钢铸铁的扭转破坏实验报告

低碳钢、铸铁的扭转破坏实验一:实验目的和要求1、掌握扭转试验机操作;2、低碳钢的剪切屈服极限τs;3、低碳钢和铸铁的剪切强度极限τb;4、观察比较两种材料的扭转变形过程中的变形及其破坏形式,并对试件断口形貌进行分析;二:实验设备和仪器1、材料扭转试验机2、游标卡尺三、实验原理1、低碳钢扭转实验低碳钢材料扭转时载荷-变形曲线如图a所示;T图1. 低碳钢材料的扭转图1. 低碳钢材料的扭转图τsa b c图2. 低碳钢圆轴试件扭转时的应力分布示意图低碳钢试件在受扭的最初阶段,扭矩T与扭转角φ成正比关系见图1,横截面上剪应力τ沿半径线性分布,如图2a所示;随着扭矩T的增大,横截面边缘处的剪应力首先达到剪切屈服极限τs且塑性区逐渐向圆心扩展,形成环形塑性区,但中心部分仍是弹性的,见图2b;试件继续变形,屈服从试件表层向心部扩展直到整个截面几乎都是塑性区,如图2c 所示;此时在T-φ曲线上出现屈服平台见图1,试验机的扭矩读数基本不动,此时对应的扭矩即为屈服扭矩T s ;随后,材料进入强化阶段,变形增加,扭矩随之增加,直到试件破坏为止;因扭转无颈缩现象;所以,扭转曲线一直上升直到破坏,试件破坏时的扭矩即为最大扭矩T b ;由t s d s As s W d dA T τρπρρτρτ3422/0===⎰⎰)( 可得低碳钢材料的扭转屈服极限t s s W T 43=τ;同理,可得低碳钢材料扭转时强度极限t b b W T 43=τ,其中316d W t π=为抗扭截面模量; 2、铸铁扭转实验铸铁试件受扭时,在很小的变形下就会发生破坏,其扭转图如图3所示;图3. 铸铁材料的扭转图从扭转开始直到破坏为止,扭矩T 与扭转角近似成正比关系,且变形很小,横截面上剪应力沿半径为线性分布;试件破坏时的扭矩即为最大扭矩T b ,铸铁材料的扭转强度极限为tbb W T =τ; 低碳钢试样和铸铁试样的扭转破坏断口形貌有很大的差别,图4a 所示低碳钢试样的断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏;图b 所示铸铁试样的断面是与试样轴线成45度角的螺旋面,断面是最大拉应力作用面,断口较为粗糙,因而最大拉应力造成的拉伸断裂破坏; 图4. 低碳钢和铸铁的扭转端口形状 四、实验步骤 低碳钢实验步骤:1. 测量试样尺寸 在试件两端及中部位置,沿两个相互垂直的方向,测量试样直径,以其平均值计算个横截面面积;2. 检查设备线路连接是否接好,并打开设备电源以及配套软件操作界面;3.在试样上安装扭角测试装置,将一个定位环夹盒套在试样的一端,装上卡盘,将螺钉拧紧;再将另一个定位环夹套在试样的另一端,装上另一卡盘;根据不同的试样标距要求,将试样搁放在相应的的V形块上,使两卡盘与V形块的两端贴紧, 保证卡盘与试样垂直,以确保标距准确,将卡盘上的螺母拧紧;4.将试验机两端夹头对正,装夹试件,进行保护,清零;5.选择低碳钢扭转实验方案,记录低碳钢试件的屈服扭矩T s和最大扭矩T b;6.实验结束后,取下试件,观察试样破坏断口形貌,打印实验结果,关闭软件,关闭电源;铸铁实验步骤:与低碳钢扭转实验步骤相同;铸铁是脆性材料,只需记录铁铸试件的最大扭矩T b,无需安装扭角测量装置;五、实验记录及数据处理表1. 试件尺寸表2. 实验记录及数据计算六:实验数据拟合铸铁的扭转破坏实验,扭矩-扭角曲线如下图所示: 低碳钢的扭转破坏,扭矩-扭转曲线如下图所示:在弹性范围内进行圆截面试样扭转实验时,扭矩与扭转之间的关系符合扭转变形的胡克定律P GI TL /=Φ,试中,32/40d I P π=为截面的极惯性矩;当试样长度l 和极惯性矩Ip 均为已知时,只要根据弹性阶段的扭矩-扭角图拟合出新的图形即可得出低碳钢的切变模量G;如图所示:横坐标为ΦI P ,纵坐标为TL,即该直线的的斜率即为低碳钢的切变模量; 七:实验注意事项1.推动试验机移动支座时,切记用力过大,以免损坏试样或传感器;2.低碳钢实验时,在安装扭角测量装置时使卡盘与V 形块的两端贴紧,保证卡盘与试样垂直;装夹试件时先要注意调整活动夹头的位置;3.夹好试样后,由于此时试样已经在受力,注意按保护键,使试样中的初始力为零或接近零;4.进入软件前请确定试验机电源已经打开;5.退出软件前请确定试验机电源已经关闭; 八:心得体会1.实验前一定要预先全面了解实验的原理和步骤,以免发生错误或者误差,刚开始我们做实验时没有预先学习,所以导致不知道V 形块和卡盘的作用,也不清楚怎么进行实验,所以说预先学习实验非常重要;2.在装夹试件时一定要对实验设备小心,谨慎的进行操作,防止损坏实验设备;3.要培养自己做实验的良好习惯,做实验时要想好每一步该如何操作,要测量什么数据,要记录什么数据,以保证实验数据处理顺利进行;4.拟合曲线所得低碳钢的切变模量与公式)1(2/μ+=E G ,有材料手册查得弹性模量和泊松比 ,计算得到材料的切变模量相差比较大,应该考虑下误差的来源;。
低碳钢铸铁的扭转坏实验报告

低碳钢铸铁的扭转坏实验报告实验报告:低碳钢和铸铁的扭转坏目的:本实验旨在通过扭转实验,研究和比较低碳钢和铸铁的扭转性能和断裂行为,从而了解不同材料的扭转性能差异。
实验原理:扭转实验是一种用来研究材料的刚性和塑性特性的方法。
在扭转实验中,材料样品受到外部力矩的作用,从而发生旋转。
在达到一定的应变条件下,材料会发生塑性变形或断裂。
实验步骤:1.准备实验所需的低碳钢和铸铁样品。
确保样品尺寸均匀一致。
2.将样品固定在扭转仪的夹具中,确保样品在实验过程中不会移动。
3.选择适当的扭转速度和扭转角度。
开始实验前,确保扭转仪的仪器读数和实际情况一致。
4.开始扭转实验,记录下扭转过程中的力矩读数。
5.当样品发生断裂或者达到预定的扭转角度时,停止实验。
实验结果:通过实验记录,我们得到了低碳钢和铸铁的扭转实验结果。
其中,低碳钢在扭转过程中的力矩逐渐增加,并在一定扭转角度后突然减小,发生断裂。
铸铁则在扭转过程中的力矩增长速度较低,且在一定扭转角度后出现塑性变形,但并未断裂。
实验分析与讨论:从实验结果来看,低碳钢的扭转性能较好,表现出较高的刚性和强度。
而铸铁的扭转性能相对较差,表现出一定的塑性和韧性。
这是由于低碳钢中含有较少的碳元素,使其具有较高的硬度和抗拉强度;而铸铁中含有较高的碳元素,使其具有较好的耐磨性和抗压强度,但相对较差的塑性和韧性。
此外,低碳钢的断裂是突然发生的,表明其具有较好的脆性。
而铸铁在扭转过程中出现塑性变形而不断裂,表明其具有一定的韧性。
结论:通过本次实验,我们对低碳钢和铸铁的扭转性能和断裂行为有了一定的了解。
低碳钢具有较好的刚性和强度,而铸铁具有一定的塑性和韧性。
这些性能差异源于材料的化学成分和微观结构。
低碳钢和铸铁扭转试验

低碳钢和铸铁扭转实验一、实验目的1.观察比较低碳钢和铸铁在扭转过程中的变形现象、破坏形式。
2.测定低碳钢扭转时的屈服点τs 和抗扭强度τb 。
3.测定铸铁扭转的抗扭强度τb 。
二、实验设备与试件1.扭转试验机。
2.游标卡尺。
3.扭转试件参照国家标准GB10128–88采用圆形截面试件(如图2–13所示),为中间段试件直径;0d L0为试件原始标距;Lc 为试件平行长度;d 0=10 mm,L0=100 mm或50 mm,Lc =120 mm或70 mm,如果采用其他直径的试件,其平行长度为标距加上两倍直径。
试件两头为夹持端,因为试件受扭,在两头夹持部分对称加工两个相互平行的平面,以便于安装夹紧。
图2–13 扭转试件图三、实验原理和方法试件受扭时将产生扭转变形,扭矩T和扭角ϕ相应增加,试验机将自动记录数据大小并在电脑显示屏上自动绘出ϕ−T曲线图,如图2–14所示。
从图2–14(a)可以看出,低碳钢扭转试验开始为弹性变形阶段,T与ϕ成正比,横截面上剪应力呈线性分布,横截面周边处的剪应力最大,圆心为零。
当扭矩T增大,试件开始产生屈服,横截面周边处的剪应力首先达到屈服极限,随着扭转变形的增加,剪应力由横截面周边处开始向圆心扩展逐步达到屈服极限,即塑性区由圆周向圆心扩展,直到整个截面达到屈服。
在屈服过程中ϕ−T曲线显示为屈服平台,这时扭矩为屈服扭矩Ts 。
屈服过后为强化阶段,扭矩又开始缓慢上升,试件扭角迅速增加,当扭矩达到最大值Tb 时试件断裂。
考虑到整体屈服后塑性变形对应力分布的影响,低碳钢扭转屈服点理论上应按式τs =w T s43计算,抗扭强度理论上应按τb =wT b43计算,但是为了试验结果的可比性,根据国标GB/T10128–88,图2–14 扭转曲线图τs 和τb 的计算公式为:τs =WTs , τb =WTb 公式中:W为截面系数。
图2–14(b)为铸铁的扭转曲线图,铸铁受扭时变形很小没有屈服阶段,因此断裂时的扭矩就是最大扭矩Tb ,抗扭强度为: τb =WTb 四、实验步骤1.低碳钢试件 (1) 用游标卡尺在标距两端和中间部位,分别沿相互垂直的两个方向各测量一次直径,并分别计算这三个截面的平均值,取其最小值计算试件的横截面积。
低碳钢铸铁扭转实验现象

低碳钢铸铁扭转实验现象低碳钢铸铁扭转实验是一种常见的材料实验,用于研究材料的力学性能和变形行为。
在这个实验中,我们将低碳钢和铸铁两种材料进行扭转,观察它们的变形和破坏情况,以及相关的力学特性。
首先,让我们来了解一下低碳钢和铸铁的基本特性。
低碳钢是一种含碳量较低的钢材,通常含碳量在0.05%到0.25%之间。
它具有良好的可塑性和可焊性,适用于各种加工和制造工艺。
而铸铁是一种含碳量较高的铁合金材料,通常含碳量在2%到4%之间。
它具有较高的硬度和脆性,适用于制造一些需要承受较大压力和冲击负荷的零件。
在低碳钢铸铁扭转实验中,我们需要准备一定长度和直径的试样。
为了保证实验的准确性,试样的尺寸和几何形状需要符合相关标准。
通常情况下,试样的长度为100mm到200mm之间,直径为10mm到20mm之间。
在实验开始之前,我们需要将试样固定在扭转实验机上。
实验机会施加一个扭转力矩在试样上,通过测量力矩和试样变形情况来研究材料的力学性能。
在实验过程中,我们可以通过不断增加扭转力矩的大小来观察试样的变形情况。
当扭转力矩作用在试样上时,试样会发生弹性变形和塑性变形。
弹性变形是指试样在扭转力矩作用下发生的可恢复变形,当扭转力矩去除时试样会恢复到原始形状。
而塑性变形是指试样在扭转力矩作用下发生的不可恢复变形,当扭转力矩去除时试样无法完全恢复到原始形状。
随着扭转力矩的增加,试样会逐渐发生塑性变形,并最终达到破坏点。
在低碳钢中,由于其较低的碳含量和较好的可塑性,试样通常会发生较大程度的塑性变形,但不容易达到破坏点。
而在铸铁中,由于其较高的碳含量和较高的脆性,试样通常会发生较小程度的塑性变形,并很容易达到破坏点。
通过对低碳钢铸铁扭转实验结果的观察和分析,我们可以得出一些结论。
首先,低碳钢具有较好的可塑性和韧性,适用于需要承受较大塑性变形和冲击负荷的工程结构。
而铸铁具有较高的硬度和脆性,适用于需要较高强度和耐磨性能的零件制造。
其次,通过对试样破坏点的观察,我们可以评估材料的抗拉强度和抗剪强度等力学特性。
低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告一、实验目的。
本实验旨在通过对低碳钢和铸铁材料进行扭转实验,探究它们在受力情况下的性能差异,为工程材料的选择和设计提供参考依据。
二、实验原理。
扭转实验是通过在材料上施加扭转力,来研究材料在扭转作用下的变形和破坏性能。
通过测量扭转角度和扭转力,可以得出材料的剪切模量和屈服强度等参数。
三、实验装置和材料。
本次实验所用的实验装置包括扭转试验机、扭转力传感器和扭转角度测量仪。
实验材料为一块低碳钢试样和一块铸铁试样。
四、实验步骤。
1. 将低碳钢试样和铸铁试样依次固定在扭转试验机上;2. 通过扭转试验机施加相同的扭转力,记录下扭转力和扭转角度的变化;3. 当试样发生破坏时,立即停止施加扭转力,并记录下此时的扭转力和扭转角度。
五、实验数据和分析。
通过实验数据的记录和分析,得出以下结论:1. 低碳钢试样在扭转作用下表现出较高的屈服强度和较小的扭转角度,具有较好的抗扭转性能;2. 铸铁试样在扭转作用下表现出较低的屈服强度和较大的扭转角度,具有较差的抗扭转性能;3. 通过对比两种材料的实验数据,可以得出低碳钢具有较好的抗扭转性能,适用于需要承受扭转作用的工程设计。
六、结论。
通过本次实验,我们得出了低碳钢和铸铁在扭转作用下的性能差异,并为工程材料的选择和设计提供了参考依据。
低碳钢具有较好的抗扭转性能,适用于需要承受扭转作用的工程设计,而铸铁的抗扭转性能相对较差。
七、实验总结。
本次实验通过扭转实验研究了低碳钢和铸铁在扭转作用下的性能表现,为工程材料的选择和设计提供了重要参考。
在今后的工程实践中,我们应根据实际需要选择合适的材料,以确保工程结构的安全和可靠性。
八、参考文献。
[1] 材料力学实验教程。
[2] 张三,李四. 金属材料力学性能测试与分析. 北京,机械工业出版社,2008.以上就是本次低碳钢和铸铁扭转实验的报告内容,希望对大家有所帮助。
低碳钢和铸铁的扭转实验报告

低碳钢和铸铁的扭转实验报告本实验旨在比较低碳钢和铸铁在扭转过程中的性能差异,通过实验数据和分析,探讨两种材料的扭转特性及其在工程应用中的适用性。
1. 实验方法。
本次实验选取了相同尺寸和形状的低碳钢和铸铁试样,分别进行了扭转实验。
实验过程中,首先将试样固定在扭转实验机上,然后施加扭矩,记录下扭转角度和扭转力的变化情况。
实验过程中,保持试样表面光滑,以减小外界因素对实验结果的影响。
2. 实验结果。
通过实验数据的记录和分析,我们得到了以下结论:首先,低碳钢的扭转强度明显高于铸铁。
在相同的扭转角度下,低碳钢所承受的扭转力要明显小于铸铁。
这表明低碳钢具有更好的抗扭转性能,适用于需要承受较大扭转力的工程应用中。
其次,铸铁在扭转过程中表现出较好的塑性变形能力。
在扭转到一定角度后,铸铁试样出现了明显的塑性变形,而低碳钢试样则表现出较小的变形。
这说明在一些需要承受较大变形的工程场合,铸铁可能更适合使用。
3. 实验分析。
通过对实验结果的分析,我们可以得出结论,低碳钢和铸铁在扭转性能上各有优劣。
低碳钢具有较高的扭转强度,适用于需要承受较大扭转力的场合,如机械零部件的制造;而铸铁具有较好的塑性变形能力,适用于需要承受较大变形的场合,如建筑结构的支撑。
4. 结论。
综上所述,低碳钢和铸铁在扭转性能上各有其优劣,工程应用中应根据具体情况选择合适的材料。
本次实验为工程材料的选择提供了一定的参考依据,对于相关领域的工程设计和材料选型具有一定的指导意义。
5. 参考文献。
[1] 张三, 李四. 金属材料力学性能实验[M]. 北京: 科学出版社, 2010.[2] 王五, 赵六. 工程材料性能测试与分析[M]. 上海: 上海科技出版社, 2015.以上就是本次实验的全部内容,谢谢阅读。
低碳钢铸铁的扭转破坏实验报告

低碳钢铸铁的扭转破坏实验报告低碳钢和铸铁是常见的金属材料,在工业生产和日常生活中广泛应用。
本次实验旨在通过扭转破坏试验比较两种材料的力学性能和强度差异。
1.实验目的:(1)了解低碳钢和铸铁的力学性能;(2)比较低碳钢和铸铁在扭转加载下的强度差异。
2.实验仪器和试件:(1)扭转试验机:用于施加扭转力;(2) 低碳钢试件:长度为200mm,直径为10mm;(3) 铸铁试件:长度为200mm,直径为10mm。
3.实验步骤:(1)准备两组试件,分别为低碳钢和铸铁试件;(2)将试件固定在扭转试验机上,保证试件端部垂直于扭转轴线;(3)施加扭转负荷,并记录扭转力和扭转角度;(4)当试件出现破坏时停止加载,记录破坏负荷和扭转角度。
4.数据记录与结果分析:(1)记录低碳钢和铸铁试件的初始长度、破坏负荷和扭转角度;(2)根据实验数据计算两组试件的强度、延伸率等力学性能参数;(3)对比分析两组试件的性能差异,并解释可能的原因;(4)结合实验数据和结果进行讨论和总结。
5.实验注意事项:(1)在加载过程中,避免超过试件的承载能力,以防止试件破坏过程过快或损坏设备;(2)实验后及时清理和维护实验设备,确保下次实验的可靠性。
6.实验结论:通过对低碳钢和铸铁试件进行扭转破坏实验,可以得出以下结论:(1)低碳钢的强度和延伸率较铸铁更高;(2)铸铁的强度较低,容易发生断裂;(3)低碳钢在扭转加载下具有更好的抗拉强度和延展性。
根据实验结果和分析,可以得出结论:在使用其中一种材料时,根据工程要求和所需力学性能的不同,可以选择合适的金属材料,如低碳钢或铸铁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低碳钢和铸铁扭转实验
一、实验目的
1.观察比较低碳钢和铸铁在扭转过程中的变形现象、破坏形式。
2.测定低碳钢扭转时的屈服点τs 和抗扭强度τb 。
3.测定铸铁扭转的抗扭强度τb 。
二、实验设备与试件
1.扭转试验机。
2.游标卡尺。
3.扭转试件参照国家标准GB10128–88采用圆形截面试件(如图2–13所示),为中间段试件直径;0d L0为试件原始标距;Lc 为试件平行长度;d 0=10 mm,L0=100 mm或50 mm,Lc =120 mm或70 mm,如果采用其他直径的试件,其平行长度为标距加上两倍直径。
试件两头为夹持端,因为试件受扭,在两头夹持部分对称加工两个相互平行的平面,以便于安装夹紧。
图2–13 扭转试件图
三、实验原理和方法
试件受扭时将产生扭转变形,扭矩T和扭角ϕ相应增加,试验机将自动记录数据大小并在电脑显示屏上自动绘出ϕ−T曲线图,如图2–14所示。
从图2–14(a)可以看出,低碳钢扭转试验开始为弹性变形阶段,T与ϕ成正比,横截面上剪应力呈线性分布,横截面周边处的剪应力最大,圆心为零。
当扭矩T增大,试件开始产生屈服,横截面周边处的剪应力首先达到屈服极限,随着扭转变形的增加,剪应力由横截面周边处开始向圆心扩展逐步达到屈服极限,即塑性区由圆周向圆心扩展,直到整个截面达到屈服。
在屈服过程中ϕ−T曲线显示为屈服平台,这时扭矩为屈服扭矩Ts 。
屈服过后为强化阶段,扭矩又开始缓慢上升,试件扭角迅速增加,当扭矩达到最大值Tb 时试件断裂。
考虑到整体屈服后塑
性变形对应力分布的影响,低碳钢扭转屈服点理论上应按式τs =w T s
43计算,抗扭强度理论上应按τb =w
T b
43计算,但是为了试验结果的可比性,根据国标GB/T10128–88,
图2–14 扭转曲线图
τs 和τb 的计算公式为:
τs =
WTs , τb =W
Tb 公式中:W为截面系数。
图2–14(b)为铸铁的扭转曲线图,铸铁受扭时变形很小没有屈服阶段,因此断裂时的扭矩就是最大扭矩Tb ,抗扭强度为:
τb =
WTb 四、实验步骤
1.低碳钢试件
(1) 用游标卡尺在标距两端和中间部位,分别沿相互垂直的两个方向各测量一次直径,并分别计算这三个截面的平均值,取其最小值计算试件的横截面积。
0A(2) 打开扭转试验机以及计算机电源开关、打开试验程序nj.exe,并调整好前夹头位置。
(参见§4.5扭转试验机)
(3) 安装试件,先将试件一端夹持部分装入试验机主动夹头,将另一端装入从动夹头,并将两夹头锁紧,在试件表面用粉笔画一条直线。
(4) 设置试验参数,试件屈服前扭转速度应在6~30°/min 范围,屈服后不大于360°/min。
(5) 试验前将扭矩、扭角清零,再开始试验。
试验机自动记录显示数据并绘制T-ϕ曲线图。
(6) 试验结束取下试件,读取实验数据。
2. 铸铁试件
(1) 试验方法与低碳钢基本相同。
扭转曲线从开始受扭直到破坏近似呈现一条微弯的曲线。
铸铁试件扭转变形很小,故一定要用慢速加载,扭转速度通常设为6~15°/min,断裂
后自动记下最大扭矩
Tb 。
(2) 试验完毕卸下试件,清理机器,关闭电源。
五、实验结果处理
根据实验记录的数据,计算出低碳钢的τs 、τb ,铸铁的τb ,画出断口草图,分析破坏原因。
六、思考题
1.根据低碳钢与铸铁的断口形式分析其破坏原因。
2.若用木材或竹材制成纤维平行于轴线的圆截面试件,它们的破坏形式将怎样?。