高考数学:解题有道——四大数学思想

合集下载

【高中数学】掌握了这4种数学思想,就掌握了整个高中数学!

【高中数学】掌握了这4种数学思想,就掌握了整个高中数学!

【高中数学】掌握了这4种数学思想,就掌握了整个高中数学!要学好数学,学会解题是关键。

在进行解题的过程中,不仅需要加强必要的训练,其还要掌握一定的解题规律与技巧。

下面来具体介绍一下数学思想。

数学思维方法在解决问题中起着重要作用解题过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。

1.函数与方程的概念函数与方程的思想是中学数学最基本的思想。

所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。

而所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。

2.数形结合的理念数与形在一定的条件下可以转化。

如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。

因此数形结合的思想对问题的解决有举足轻重的作用。

3.分类讨论的思路分类讨论的思想之所以重要,原因一是因为它的逻辑性较强,原因二是因为它的知识点的涵盖比较广,原因三是因为它可培养学生的分析和解决问题的能力。

原因四是实际问题中常常需要分类讨论各种可能性。

解决分类讨论问题的关键是将整体分割成部分,减少局部讨论的难度。

常见类型:类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;讨论一个数学运算的两边是正的还是负的问题,例如相同类型的乘法;类型3:由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;类型4:因图形位置不确定引起的讨论,如直角、锐角和钝角三角形相关问题引起的讨论。

类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

第2讲 解题有道——四大数学思想

第2讲 解题有道——四大数学思想
8
【训练1】 函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的 解集为________. 解析 f′(x)>2转化为f′(x)-2>0,构造函数F(x)=f(x)-2x,得F(x)在R上是增函数. 又F(-1)=f(-1)-2×(-1)=4,f(x)>2x+4, 即F(x)>4=F(-1),所以x>-1. 答案 (-1,+∞)
10
探究提高 运用方程思想解决问题,要善于使用已知方程,还要根据题意列方程、 解方程.
11
【训练 2】 直线 3x-y+m=0 与圆 x2+y2-2x-2=0 相切,则实数 m=________. 解析 圆的方程为(x-1)2+y2=3,由题意知圆心(1,0)到直线的距离等于半径, 即| 33++m1|= 3,∴| 3+m|=2 3∴m= 3或 m=-3 3. 答案 -3 3或 3
19
(3)数列:由Sn求an分n=1和n>1的讨论;等比数列中分公比q=1和q≠1的讨论. (4)三角函数:角所在的象限及函数值范围的讨论. (5)不等式:解含参数不等式时的讨论,基本不等式取等号时条件是否满足的讨 论. (6)立体几何:点、线、面及图形位置关系的不确定性引起的讨论. (7)平面解析几何:直线方程中斜率k分存在和不存在,直线在坐标轴上的截距相 等时分截距b=0和b≠0的讨论;轨迹方程中含参数时曲线类型及形状的讨论. (8)去绝对值时的讨论及分段函数的讨论等.
24
【训练 4】 已知实数 a≠0,函数 f(x)=2-x+x-a, 2ax,<x1≥,1.若 f(1-a)=f(1+a),则 a 的值为________. 解析 当a>0时,1-a<1,1+a>1, 这时f(1-a)=2(1-a)+a=2-a, f(1+a)=-(1+a)-2a=-1-3a. 由f(1-a)=f(1+a)得2-a=-1-3a, 解得 a=-32,不合题意,舍去;

高中数学四大思想方法

高中数学四大思想方法

高中数学四大思想方法高中数学是数学学科的一部分,其主要涉及代数、几何、函数、概率和统计等内容。

在学习过程中,数学家们发展了许多思想方法,以解决和理解数学问题。

以下是高中数学中常见的四大思想方法。

1.抽象思维方法抽象思维方法是数学的核心思想之一、它通过剥离具体的数学问题中的不必要部分,从而将问题抽象化为更为一般的形式,并建立相应的模型。

例如,在代数中,我们可以将具体的算式和方程抽象为符号表示,以简化问题的描述和解决过程。

抽象思维方法能够提高学生的思维能力和数学抽象能力,培养学生的逻辑思维和推理能力。

2.归纳与演绎思维方法归纳与演绎思维方法是数学推理的重要方法。

归纳是通过观察事实和案例,找出普遍规律和规则。

例如,通过观察一系列数列,我们可以归纳出它们的通项公式。

演绎是通过已知条件和推理规则,从而推导出结论。

例如,通过已知两条平行线被一条横截线相交,我们可以演绎出对应角相等的结论。

归纳和演绎相辅相成,使学生能够更好地理解和应用数学定理和思想。

3.综合思维方法4.探究思维方法探究思维方法是数学学科中重要的思想方法之一、它强调学生通过实践探索和发现数学规律和定理。

例如,通过动手操作、观察和实验,学生可以发现一些几何定理或数学规律,并且对其原理和应用有更深入的理解。

探究思维方法能激发学生的学习兴趣,培养学生的发现问题和解决问题的能力。

同时,它也强调学生的自主学习和合作学习能力。

综上所述,高中数学中的四大思想方法包括抽象思维方法、归纳与演绎思维方法、综合思维方法和探究思维方法。

这些方法能够培养学生的数学思维和解决问题的能力,提高学生的数学水平和学习效果。

学生在学习和应用这些方法时,应结合实际问题进行思考和讨论,不断深化对数学的理解和应用。

第二节 解题有手段——四大数学思想 1-2

第二节   解题有手段——四大数学思想  1-2

的图像与 y=|kx2-2x|的图像有 4 个交点,利用数形结合求解.选 D.
C.(-∞,0)∪(0,2 2)
D.(-∞,0)∪(2 2,+∞)
2.(2019·全国卷Ⅰ)关于函数 f(x)=sin|x|+|sinx|
有下述四个结论:
①f(x)是偶函数;②f(x)在区间π2,π单调递增;
易知函数 f(x)为偶函 数,所以只需画出
90°,由渐近线方程
渐近线的交点分别为 M,N.若△OMN 为直角三角形,
及图形可知,|OM|
则|MN|=( )
=|OF|·cos30°,|MN|
3 A.2
B.3
=|OM|·tan60°.选 B.
C.2 3
D.4
4.(2017·全国卷Ⅱ)已知△ABC 是边长为 2 的等边
三角形,P 为平面 ABC 内一点,则P→A·(P→B+P→C )
=25 3 ,则( )
函数的单调性判断.选
A.b<a<c
B.a<b<c
A.
C.b<c<a
D.c<a<b
6.(2019·全国卷Ⅱ)△ABC 的内角 A,B,C 利用余弦定理建立关于
的对边分别为 a,b,c.若 b=6,a=2c,B c 的方程,求出 c,再求
=π3,则△ABC 的面积为________.
面积.答案:6 3.
7.(2018·天津卷Ⅲ)已知 a>0,函数 就 x 的取值范围分段处理方
f(x)=x-2+x22+ax2+axa-,2xa≤,0x,>0. 若关
程 f(x)=ax,得到两个含有 参数 a 的关于 x 的方程,通
于 x 的方程 f(x)=ax 恰有 2 个互异的 过方程根的情况得出 a 的取
a=( )

高中数学:四大解题思想很重要

高中数学:四大解题思想很重要

高中数学:四大解题思想很重要分类讨论思想、数形结合思想、函数与方程、转化与划归思想是高中数学四大专门重要的思想,是同学们学好数学的保证,突破高分的门槛。

它们贯穿于高中数学的整个学习过程中,同时也是高考数学必考的数学思想方法。

因此,学好高中数学,突破数学高分,必须有这四大思想方法的保驾护航。

数学思想方法之分类讨论分类讨论思想具有较高的逻辑性及专门强的综合性,纵观近几年的高考数学真题,不管是文科依旧理科,同学们在解决最后的数学综合问题时,差不多上都需要分类讨论。

本节课老师给同学们深度剖析了分类讨论思想,并结合典型例题引导同学们树立分类讨论思想,教会同学们如何灵活运用分类讨论思想解决数学问题。

数学思想方法之数形结合数形结合思想是借助于数学图形解决数学问题,它能够使复杂的问题简单化,抽象的问题直观化,是解决综合问题的得力助手。

正是因为数形结合的这种优越性,它差不多成为高考必考的数学思想方法。

在这节课中,老师通过典例精析给同学们总结了数形结合思想在高中数学各个板块中的灵活运用,关心你形成数形结合的思维方式,突破数学难题。

数学思想方法之函数函数与方程思想是专门重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多;数学思想方法之方程、转化与化归死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

转化与化归思想在高考中也占有十分重要的地位,数学问题的解决,总离不开转化与化归.本节课老师给大伙儿总结并分析了函数与方程思想以及转化与化归思想的常见题型,并重点讲解了函数与方程、转化与化归在解题中的灵活运用。

要练说,得练听。

听是说的前提,听得准确,才有条件正确仿照,才能不断地把握高一级水平的语言。

高中四大数学思想

高中四大数学思想

高中四大数学思想高中四大数学思想导语:高中四大数学思想对于我们解答数学题目大有裨益,甚至是必不可少的,接下来跟我一起学学四大思想吧!高中四大数学思想一、数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的.全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。

高中数学四大数学思想

高中数学四大数学思想

高中数学四大数学思想数学作为一门学科,具有其独特的思维方式和方法论。

在高中阶段,学生接触到了更加深入和复杂的数学知识,需要掌握一些基本的数学思想。

本文将向你介绍高中数学的四大数学思想,它们分别是抽象思想、推理思想、循环思想和应用思想。

一、抽象思想抽象思想是数学思维中最基本的思想之一。

它通过将具体的事物抽象为符号或概念,以便进行更深入和广泛的研究。

高中数学中的代数就是一个典型的应用抽象思想的例子。

代数通过使用字母和符号来表示未知数和运算关系,使得数学问题在更广泛的背景下得到了解决。

通过抽象思想,我们可以在不受具体物体限制的情况下进行推理和运算,拓宽了数学的应用范围。

二、推理思想推理思想是高中数学中最为重要的思想之一。

它是通过逻辑推理和推导来得出新的结论或解决问题的思维方式。

在数学证明中,推理思想被广泛运用。

我们可以通过假设、应用公理和定理等方法,一步一步地推导出结论的正确性。

推理思想还可以帮助我们解决实际生活中的问题,例如用数学推理去解决日常生活中的谜题或者逻辑难题。

推理思想培养了我们的逻辑思维和分析能力,帮助我们解决问题时更加清晰和准确。

三、循环思想循环思想是高中数学中的重要思维方式之一。

它通过观察和总结事物的循环规律,揭示了事物发展的规律性和特点。

在数列、函数和几何等数学概念中,循环思想起到了关键的作用。

通过观察数列中数字的排列规律,我们可以归纳出通项公式;通过观察图形的对称性和重复性,我们可以发现其特殊性质。

循环思想培养了我们的观察力和归纳能力,帮助我们理解和解决更加复杂的数学问题。

四、应用思想应用思想是高中数学中最具实践性的思维方式之一。

它将数学中的知识和方法应用于实际问题的解决中。

高中数学的各个分支,如数列、函数、统计等,都与实际生活息息相关。

通过学习这些数学概念和方法,我们可以解决现实生活中的各种问题。

例如,我们可以使用函数来建立生活中的数学模型,预测未来某种现象的发展趋势;我们可以使用统计学方法来分析数据,了解社会经济的变化。

数学答题如何找解题思路?小编教你四种数学解题思想!

数学答题如何找解题思路?小编教你四种数学解题思想!

数学答题如何找解题思路?小编教你四种数学解题思想!学习资料第一栏第二栏第三栏第四栏第五栏高考数学解题思想一:函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。

利用转化思想我们还可进行函数与方程间的相互转化。

高考数学解题思想二:数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。

它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

高考数学解题思想三:特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。

不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。

高考数学解题思想四:极限思想解题步骤极限思想解决问题的一般步骤为:(1)对于所求的未知量,先设法构思一个与它有关的变量;(2)确认这变量通过无限过程的结果就是所求的未知量;(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

高考数学解题思想五:分类讨论思想我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。

在分类讨论解题时,要做到标准统一,不重不漏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 解题有道——四大数学思想思想概述 高考数学以能力立意,一是考查数学的基础知识、基本技能;二是考查基本数学思想方法,考查数学思维的深度、广度和宽度.数学思想方法是指从数学的角度来认识、处理和解决问题,是数学意识、数学技能的升华和提高,中学数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想.类型一 函数与方程思想函数与方程思想的实质就是用联系和变化的观点,描述两个量之间的依赖关系,刻画数量之间的本质特征,在提出数学问题时,抛开一些非数学特征,抽象出数量特征,建立明确的函数关系,并运用函数的知识和方法解决问题.有时需要根据已知量和未知量之间的制约关系,列出方程(组),进而通过解方程(组)求得未知量.函数与方程思想是相互联系、互为所用的. 应用1 求解不等式、函数零点的问题【例1】 (1)设0<a <1,e 为自然对数的底数,则a ,a e ,e a -1的大小关系为( ) A.e a -1<a <a e B.a e <a <e a -1 C.a e <e a -1<aD.a <e a -1<a e(2)(2019·浙江新高考联盟考试)已知函数h (x )=x ln x 与函数g (x )=kx -1的图象在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不同的交点,则实数k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤1+1e ,e -1B.⎝ ⎛⎦⎥⎤1,1+1e C.(1,e -1]D.(1,+∞)解析 (1)设f (x )=e x -x -1,x >0, 则f ′(x )=e x -1>0,∴f (x )在(0,+∞)上是增函数,且f (0)=0,f (x )>0, ∴e x -1>x ,即e a -1>a .又y =a x (0<a <1)在R 上是减函数,得a >a e , 从而e a -1>a >a e .(2)令h (x )=g (x ),得x ln x +1=kx , 即1x +ln x =k .若方程x ln x -kx +1=0在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不等实根,则函数f (x )=ln x +1x 与y=k 在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不相同的交点,f ′(x )=1x -1x 2,令1x -1x 2=0可得x =1,当x ∈⎣⎢⎡⎭⎪⎫1e ,1时f ′(x )<0,函数是减函数;当x ∈(1,e]时,f ′(x )>0,函数是增函数,函数的极小值,也是最小值为f (1)=1,而f ⎝ ⎛⎭⎪⎫1e =-1+e ,f (e)=1+1e ,又-1+e>1+1e ,所以,函数的最大值为e -1.所以关于x 的方程x ln x -kx +1=0在区间⎣⎢⎡⎦⎥⎤1e ,e 上有两个不等实根,则实数k 的取值范围是⎝ ⎛⎦⎥⎤1,1+1e .答案 (1)B (2)B探究提高 1.第(1)题构造函数,转化为判定函数值的大小,利用函数的单调性与不等式的性质求解.2.函数方程思想求解方程的根或图象交点问题(1)应用方程思想把函数图象交点问题转化为方程根的问题,应用函数思想把方程根的问题转化为函数零点问题.(2)含参数的方程问题一般通过直接构造函数或分离参数化为函数解决. 【训练1】 (1)设函数f (x )=x 2-cos x ,则方程f (x )=π4所有实根的和为( )A.0B.π4C.π2D.3π2(2)(2019·郑州模拟)已知函数f (x )=3x -13x +1+x +sin x ,若存在x ∈[-2,1],使得f (x 2+x )+f (x -k )<0成立,则实数k 的取值范围是( ) A.(-1,+∞) B.(3,+∞) C.(0,+∞)D.(-∞,-1)解析 (1)由f (x )=x 2-cos x =π4,得x 2-π4=cos x , 令y 1=x 2-π4,y 2=cos x .在同一坐标系内作出两函数图象,易知两图象只有一个交点⎝ ⎛⎭⎪⎫π2,0.∴方程f (x )=π4的实根之和为π2.(2)由题意知,函数f (x )的定义域为R ,且f (x )是奇函数.又f ′(x )=2ln 3·3x(3x +1)2+1+cos x >0在x ∈[-2,1]上恒成立,函数f (x )在x ∈[-2,1]上单调递增.若存在x ∈[-2,1],使得f (x 2+x )+f (x -k )<0成立, 则f (x 2+x )<-f (x -k )f (x 2+x )<f (k -x )x 2+x <k -x ,故问题转化为存在x ∈[-2,1],k >x 2+2x , 即k >(x 2+2x )min ,当x ∈[-2,1]时,y =x 2+2x =(x +1)2-1的最小值为-1. 故实数k 的取值范围是(-1,+∞). 答案 (1)C (2)A应用2 函数与方程思想在数列中的应用【例2】 设等差数列{a n }的前n 项和为S n ,若S 4=-2,S 5=0,S 6=3.(1)求数列{a n }的前n 项和S n ; (2)求nS n 的最小值.解 (1)∵S 4=-2,S 5=0,S 6=3, ∴a 5=S 5-S 4=2,a 6=S 6-S 5=3, 又{a n }是等差数列,则公差d =a 6-a 5=1, 由于S 5=5(a 1+a 5)2=0,所以a 1=-2,故S n =-2n +n (n -1)2=n 2-5n2.(2)由(1)知nS n =n 3-5n 22,设f (x )=x 3-5x 22, 则f ′(x )=32x 2-5x (x >0),令f ′(x )>0,得x >103;令f ′(x )<0,得0<x <103.∴f (x )在⎝ ⎛⎭⎪⎫103,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,103上单调递减,又f (3)=-9,f (4)=-8.∴当n =3时,nS n 取到最小值-9.探究提高 1.本题完美体现了函数与方程思想的应用,第(2)问利用数列前n 项和公式求出nS n ,构造函数,运用单调性求最值.2.数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式与前n 项和公式即为相应的解析式,但要注意数列问题中n 的取值为正整数,涉及的函数具有离散性特点.【训练2】 设等比数列{a n }的前n 项和为S n ,公比q >0,a 1+a 2=4,a 3-a 2=6. (1)求数列{a n }的通项公式;(2)若对任意n ∈N *,ka n ,S n ,-1成等差数列,求实数k 的值.解 (1)∵a 1+a 2=4,a 3-a 2=6, ∴⎩⎪⎨⎪⎧a 1(1+q )=4,a 1(q 2-q )=6,∵q >0,∴q =3,a 1=1,∴a n =1×3n -1=3n -1(n ∈N *), 故数列{a n }的通项公式为a n =3n -1.(2)由(1)知a n =3n -1,S n =1×(1-3n )1-3=3n -12,∵ka n ,S n ,-1成等差数列,∴2S n =ka n -1. 则2×3n -12=k ·3n -1-1,解得k =3.应用3 函数与方程思想在几何问题中的应用【例3】 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与线段AB 相交于点D ,与椭圆相交于E ,F 两点. (1)若ED→=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.解 (1)依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k2.①由ED →=6DF →知x 0-x 1=6(x 2-x 0),得x 0=17(6x 2+x 1)=57x 2=1071+4k2;由D 在AB 上知x 0+2kx 0=2, 得x 0=21+2k .所以21+2k =1071+4k2,化简得24k 2-25k +6=0,解得k =23或k =38.(2)根据点到直线的距离公式和①式知,点E ,F 到AB 的距离分别为 h 1=|x 1+2kx 1-2|5=2(1+2k +1+4k 2)5(1+4k 2),h 2=|x 2+2kx 2-2|5=2(1+2k -1+4k 2)5(1+4k 2).又|AB |=22+12=5,所以四边形AEBF 的面积为 S =12|AB |(h 1+h 2)=12·5·4(1+2k )5(1+4k 2)=2(1+2k )1+4k 2=21+4k 2+4k 1+4k2=21+41k +4k≤22,当且仅当4k 2=1(k >0),即当k =12时,上式取等号.所以S 的最大值为2 2.即四边形AEBF 面积的最大值为2 2.探究提高 解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,找准函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的求法来求解,这是求面积、线段长最值(范围)问题的基本方法.【训练3】 已知圆M :x 2+y 2=r 2(r >0)与直线l 1:x -3y +4=0相切,设点A 为圆上一动点,AB ⊥x 轴于点B ,且动点N 满足AB →=2NB →,设动点N 的轨迹为曲线C .(1)求曲线C 的方程.(2)直线l 与直线l 1垂直且与曲线C 交于P ,Q 两点,求△OPQ (O 为坐标原点)面积的最大值.解 (1)设动点N (x ,y ),A (x 0,y 0),因为AB ⊥x 轴于B ,所以B (x 0,0), 由已知得,r =|4|1+3=2,所以圆M 的方程为x 2+y 2=4. 因为AB→=2NB →, 所以(0,-y 0)=2(x 0-x ,-y ),即⎩⎪⎨⎪⎧x 0=x ,y 0=2y ,又A 点在圆上,所以x 20+y 20=4,即动点N 的轨迹方程为x 24+y 2=1.(2)由题意,设直线l :3x +y +m =0,P (x 1,y 1),Q (x 2,y 2), 联立直线l 与椭圆C 的方程⎩⎪⎨⎪⎧y =-3x -m ,x 2+4y 2=4,消去y ,得13x 2+83mx +4m 2-4=0,Δ=192m 2-4×13×(4m 2-4)=16(-m 2+13)>0, 解得m 2<13,x 1+x 2=-83m13,x 1·x 2=4(m 2-1)13,又点O 到直线l 的距离d =|m |2, |PQ |=2|x 1-x 2|=813-m 213, 所以S △OPQ =12·|m |2·813-m 213=2m 2(13-m 2)13≤113(m 2+13-m 2)=1,当且仅当m 2=13-m 2,即m =±262时,等号成立. 所以△OPQ 面积的最大值为1. 类型二 数形结合思想数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确. 应用1 数形结合思想在函数与方程中的应用【例4】 (1)记实数x 1,x 2,…,x n 中最小数为min{x 1,x 2,…,x n },则定义在区间[0,+∞)上的函数f (x )=min{x 2+1,x +3,13-x }的最大值为( ) A.5 B.6 C.8D.10(2)(2019·石家庄模拟)已知函数f (x )=⎩⎨⎧e x ,x ≤0,ln x ,x >0, g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞)D.[1,+∞)解析 (1)在同一坐标系中作出三个函数y =x 2+1,y =x +3,y =13-x 的图象如图:由图可知,在实数集R 上,min{x 2+1,x +3,13-x }为y =x +3上A 点下方的射线,抛物线AB 之间的部分,线段BC ,与直线y =13-x 上点C 下方的部分的组合图.显然,在区间[0,+∞)上,在C 点时,y =min{x 2+1,x +3,13-x }取得最大值.解方程组⎩⎪⎨⎪⎧y =x +3,y =13-x得点C (5,8).所以f (x )max =8.(2)函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1.答案 (1)C (2)C探究提高 1.第(1)题利用函数的图象求最值,避免分段函数的讨论;第(2)题把函数的零点或方程的根转化为两函数图象的交点问题,利用几何直观求解. 2.探究方程解的问题应注意两点:(1)讨论方程的解(或函数的零点)一般可构造两个函数,使问题转化为讨论两曲线的交点问题.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则,不要刻意去用数形结合.【训练4】 已知函数f (x )=⎩⎪⎨⎪⎧(-x )12,x ≤0,log 5x ,x >0,函数g (x )是周期为2的偶函数且当x ∈[0,1]时,g (x )=2x -1,则函数y =f (x )-g (x )的零点个数是( ) A.5 B.6 C.7D.8解析 在同一坐标系中作出y =f (x )和y =g (x )的图象如图所示,由图象可知当x >0时,有4个零点,当x ≤0时,有2个零点,所以一共有6个零点. 答案 B应用2 数形结合求解不等式与平面向量问题【例5】 (1)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( ) A.-2 B.-32 C.-43D.-1(2)若实数x ,y 满足不等式组⎩⎨⎧x ≥1,x -y +1≤0,2x -y -2≤0,则x 2+y 2的最小值是()A.25B.5C.4D.1解析 (1)如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0).设P (x ,y ),则P A →=(-x ,3-y ),PB→=(-1-x ,-y ),PC →=(1-x ,-y ).所以P A →·(PB →+PC →)=(-x ,3-y)·(-2x ,-2y )=2x 2+2⎝ ⎛⎭⎪⎫y -322-32.当x =0,y =32时,P A →·(PB→+PC →)取得最小值-32.(2)作出不等式组⎩⎪⎨⎪⎧x ≥1,x -y +1≤0,2x -y -2≤0表示的平面区域(如图阴影部分).x 2+y 2的最小值表示阴影部分(含边界)中的点到原点O (0,0)的距离的最小值的平方.由⎩⎪⎨⎪⎧x =1,x -y +1=0,得A (1,2). ∴(x 2+y 2)min =|OA |2=12+22=5. 答案 (1)B (2)B探究提高 1.平面向量中数形结合关注点:(1)能建系的优先根据目标条件建立适当的平面直角坐标系;(2)重视坐标运算、数量积及有关几何意义求解.2.求参数范围或解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化为数量关系解决问题.【训练5】 (1)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.(2)(2019·长沙调研)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A.1 B.2 C. 2D.22解析 (1)在同一坐标系中,作出y =|x -2a |和y =12x +a -1的简图.依题意可知2a ≤2-2a ,解得a ≤12.(2)因为(a -c )·(b -c )=0,所以(a -c )⊥(b -c ).如图所示,设OC→=c ,OA →=a ,OB →=b , 则CA →=a -c ,CB →=b -c , 所以AC →⊥BC →.又因为OA→⊥OB →,所以O ,A ,C ,B 四点共圆,当且仅当OC 为圆的直径时,|c |最大,且最大值为 2. 答案 (1)⎝ ⎛⎦⎥⎤-∞,12 (2)C应用3 圆锥曲线中的数形结合思想【例6】 已知抛物线的方程为x 2=8y ,点F 是其焦点,点A (-2,4),在此抛物线上求一点P ,使△APF 的周长最小,此时点P 的坐标为________.解析 因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部,如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,连接AQ .则△APF 的周长为|PF |+|P A |+|AF |=|PQ |+|P A |+|AF |≥|AQ |+|AF |≥|AB |+|AF |, 当且仅当P ,B ,A 三点共线时,△APF 的周长取得最小值,即|AB |+|AF |. 因为A (-2,4),所以不妨设△APF 的周长最小时,点P 的坐标为(-2,y 0),代入x 2=8y ,得y 0=12.故使△APF 的周长最小的点P 的坐标为⎝ ⎛⎭⎪⎫-2,12.答案 ⎝ ⎛⎭⎪⎫-2,12探究提高 1.对于几何图形中的动态问题,应分析各个变量的变化过程,找出其中的相互关系求解.2.应用几何意义法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.【训练6】 (2019·昆明诊断)设A ,B 在圆x 2+y 2=1上运动,且|AB |=3,点P 在直线l :3x +4y -12=0上运动,则|P A →+PB →|的最小值为( ) A.3 B.4 C.175D.195解析 设AB 的中点为D ,则P A →+PB→=2PD →,∴当且仅当O ,D ,P 三点共线且OP ⊥l 时,|P A →+PB →|取得最小值. ∵圆心到直线l 的距离为129+16=125,|OD |=1-34=12,∴|P A →+PB→|的最小值为2×⎝ ⎛⎭⎪⎫125-12=195.答案 D类型三 分类讨论思想分类讨论思想是当问题的对象不能进行统一研究时,需对研究的对象按某个标准进行分类,然后对每一类分别研究,给出每一类的结论,最终综合各类结果得到整个问题的解答.实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想.应用1 由概念、法则、公式、性质引起的分类讨论【例7】 若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________. 解析 若a >1,有a 2=4,a -1=m . 解得a =2,m =12.此时g (x )=-x 为减函数,不合题意. 若0<a <1,有a -1=4,a 2=m , 故a =14,m =116,检验知符合题意. 答案 14探究提高 指数函数、对数函数的单调性取决于底数a ,因此,当底数a 的大小不确定时,应分0<a <1,a >1两种情况讨论.【训练7】 (1)(2019·济南调研)已知S n 为数列{a n }的前n 项和且S n =2a n -2,则S 5-S 4的值为( ) A.8 B.10 C.16D.32(2)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0.若f (1)+f (a )=2,则a 的取值集合是________.解析 (1)当n =1时,a 1=S 1=2a 1-2,解得a 1=2. 因为S n =2a n -2,当n ≥2时,S n -1=2a n -1-2,两式相减得,a n =2a n -2a n -1,即a n =2a n -1,则数列{a n }是首项为2,公比为2的等比数列,则a n =2n , 有S 5-S 4=a 5=25=32. (2)f (1)=e 0=1,即f (1)=1. 由f (1)+f (a )=2,得f (a )=1.当a ≥0时,f (a )=1=e a -1,所以a =1. 当-1<a <0时,f (a )=sin(πa 2)=1, 所以πa 2=2k π+π2(k ∈Z ).所以a 2=2k +12(k ∈Z ),k 只能取0,此时a 2=12, 因为-1<a <0,所以a =-22. 则实数a取值的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1. 答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-22,1 应用2 由参数变化引起的分类讨论【例8】 (2018·北京卷)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x . (1)若曲线y =f (x )在点(2,f (2))处的切线斜率为0,求a ; (2)若f (x )在x =1处取得极小值,求a 的取值范围. 解 (1)由f (x )=[ax 2-(3a +1)x +3a +2]e x , 得f ′(x )=[ax 2-(a +1)x +1]e x . f ′(2)=(2a -1)e 2.由题设知f ′(2)=0,即(2a -1)e 2=0,解得a =12.(2)由(1)得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x .若a >1,则当x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).探究提高 1.若遇到题目中含有参数的问题,常常结合参数的意义及对结果的影响进行分类讨论.2.如果参数有明确的几何意义,在讨论时还应适当地运用数形结合思想.注意分类标准要明确统一,做到“不重不漏”.【训练8】 已知函数f (x )=mx 2-x +ln x .若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.解析 f ′(x )=2mx -1+1x =2mx 2-x +1x(x >0),即2mx 2-x +1<0在(0,+∞)上有解. 当m ≤0时显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故需且只需Δ>0,即1-8m >0,故m <18.综上所述,实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,18.答案 ⎝ ⎛⎭⎪⎫-∞,18应用3 由图形位置或形状引起的分类讨论【例9】 (1)已知变量x ,y 满足的不等式组⎩⎨⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k =( ) A.-12 B.12 C.0D.-12或0(2)设点A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析(1)不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的可行域如图(阴影部分)所示.由图可知,若要使不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的平面区域是直角三角形,只有当直线kx -y +1=0与直线y 轴或y =2x 垂直时才满足.结合图形可知斜率k 的值为0或-12.(2)当0<m <3时,焦点在x 轴上,若曲线C 上存在点M 满足∠AMB =120°,则ab ≥tan 60°=3,即3m≥3,得0<m ≤1;当m >3时,焦点在y 轴上,依题设,则ab ≥tan 60°=3,即m3≥3,得m ≥9.故m 的取值范围为(0,1]∪[9,+∞),故选A. 答案 (1)D (2)A探究提高 1.相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.2.圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论.【训练9】 (1)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________.(2)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2,则a 的值为________.解析 (1)不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0. 若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32. ∴曲线C 的离心率为12或32.(2)由三角形面积公式,得12×3×1×sin A =2, 故sin A =223.因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13.①当cos A =13时,由余弦定理,得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8, 所以a =2 2.②当cos A =-13时,由余弦定理,得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝ ⎛⎭⎪⎫-13=12,所以a =2 3.综上所述,a =22或2 3. 答案 (1)12或32 (2)22或23 类型四 转化与化归思想转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式. 应用1 特殊与一般的转化【例10】 (1)过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A.2aB.1 2aC.4aD.4 a(2)已知向量a,b满足|a|=1,|b|=2,则|a+b|+|a-b|的最小值是________,最大值是________.解析(1)抛物线y=ax2(a>0)的标准方程为x2=1a y(a>0),焦点F⎝⎛⎭⎪⎫0,14a.不妨设过焦点F作直线垂直于y轴,则|PF|=|QF|=12a ,∴1p+1q=4a.(2)由题意,不妨设b=(2,0),a=(cos θ,sin θ),则a+b=(2+cos θ,sin θ),a-b=(cos θ-2,sin θ).令y=|a+b|+|a-b|=(2+cos θ)2+sin2θ+(cos θ-2)2+sin2θ=5+4cos θ+5-4cos θ,则y2=10+225-16cos2θ∈[16,20].由此可得(|a+b|+|a-b|)max=20=25,(|a+b|+|a-b|)min=16=4,即|a+b|+|a-b|的最小值是4,最大值是2 5.答案(1)C(2)42 5探究提高 1.一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.2.对于某些选择题、填空题,如果结论唯一或题目提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【训练10】(1)如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,那么()A.a1a8>a4a5B.a1a8<a4a5C.a 1+a 8>a 4+a 5D.a 1a 8=a 4a 5(2)(2019·许昌模拟)在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tan A 2tan C 2的值为( )A.15B.14C.12D.23解析 (1)取特殊数列{a n },其中a n =n (n ∈N *).显然a 1·a 8=8<a 4·a 5=20.(2)令a =4,c =5,b =3,则符合题意(取满足条件的三边).则由∠C =90°,得tan C 2=1,由tan A =43,得tan A 2=12.所以tan A 2tan C 2=12×1=12.答案 (1)B (2)C应用2 正与反、常量与变量的转化【例11】 (1)设y =(log 2x )2+(t -2)log 2x -t +1,若t 在[-2,2]上变化时,y 恒取正值,则x 的取值范围是________.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t ,3)上总不为单调函数,则实数m 的取值范围是________.解析 (1)设y =f (t )=(log 2x -1)t +(log 2x )2-2log 2x +1,则f (t )是一次函数,当t ∈[-2,2]时,f (t )>0恒成立,则⎩⎪⎨⎪⎧f (-2)>0,f (2)>0,即⎩⎪⎨⎪⎧(log 2x )2-4log 2x +3>0,(log 2x )2-1>0,解得log 2x <-1或log 2x >3,即0<x <12或x >8,故实数x 的取值范围是⎝ ⎛⎭⎪⎫0,12∪(8,+∞). (2)g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t ,3)上总为单调函数,则①g ′(x )≥0在(t ,3)上恒成立,或②g ′(x )≤0在(t ,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x .当x ∈(t ,3)时恒成立,∴m +4≥2t -3t 恒成立,则m +4≥-1,即m ≥-5;由②得m +4≤2x -3x ,当x ∈(t ,3)时恒成立,则m +4≤23-9,即m ≤-373.∴使函数g (x )在区间(t ,3)上总不为单调函数的m 的取值范围是⎝ ⎛⎭⎪⎫-373,-5. 答案 (1)⎝ ⎛⎭⎪⎫0,12∪(8,+∞) (2)⎝ ⎛⎭⎪⎫-373,-5 探究提高 1.第(1)题是把关于x 的函数转化为在[-2,2]内关于t 的一次函数大于0恒成立的问题.在处理多变元的数学问题时,我们可以巧妙选取其中的参数,将其看作是“主元”,而把其它变元看作是参数.2.第(2)题是正与反的转化,由于不为单调函数有多种情况,先求出其反面,体现“正难则反”的原则.【训练11】 (1)(2019·日照调研)由命题“存在x 0∈R ,使e |x 0-1|-m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的取值是( )A.(-∞,1)B.(-∞,2)C.1D.2(2)已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________. 解析 (1)命题的否定:“任意x ∈R ,使e |x -1|-m >0”是真命题,∴m <e |x -1|恒成立,∴m 取值范围为(-∞,1).因此(-∞,1)与(-∞,a )相等,故a =1.(2)由题意,知g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1.对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧φ(1)<0,φ(-1)<0,即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0,解得-23<x <1. 故当x ∈⎝ ⎛⎭⎪⎫-23,1时,对满足-1≤a ≤1的一切a 的值,都有g (x )<0. 答案 (1)C (2)⎝ ⎛⎭⎪⎫-23,1 应用3 函数、方程、不等式之间的转化【例12】 已知函数f (x )=3e |x |.若存在实数t ∈[-1,+∞),使得对任意的x ∈[1,m ],m ∈Z 且m >1,都有f (x +t )≤3e x ,试求m 的最大值.解 ∵当t ∈[-1,+∞)且x ∈[1,m ]时,x +t ≥0,∴f (x +t )≤3e x e x +t ≤e x t ≤1+ln x -x .∴原命题等价转化为:存在实数t ∈[-1,+∞),使得不等式t ≤1+ln x -x 对任意x ∈[1,m ]恒成立.令h (x )=1+ln x -x (1≤x ≤m ).∵h ′(x )=1x -1≤0,∴函数h (x )在[1,+∞)上为减函数,又x ∈[1,m ],∴h (x )min =h (m )=1+ln m -m .∴要使得对任意x ∈[1,m ],t 值恒存在,只需1+ln m -m ≥-1.∵h (3)=ln 3-2=ln ⎝ ⎛⎭⎪⎫1e ·3e >ln 1e=-1,h (4)=ln 4-3=ln ⎝ ⎛⎭⎪⎫1e ·4e 2<ln 1e=-1,又函数h (x )在[1,+∞)上为减函数, ∴满足条件的最大整数m 的值为3. 探究提高 1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.【训练12】 已知e 为自然对数的底数,若对任意的x ∈⎣⎢⎡⎦⎥⎤1e ,1,总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤1e ,e B.⎝ ⎛⎦⎥⎤2e ,e C.⎝ ⎛⎭⎪⎫2e ,+∞ D.⎝ ⎛⎭⎪⎫2e ,e +1e 解析 设f (x )=ln x -x +1+a ,x ∈⎣⎢⎡⎦⎥⎤1e ,1, ∴f ′(x )=1x -1=1-x x ≥0,f (x )在⎣⎢⎡⎦⎥⎤1e ,1上是增函数, 因此a -1e =f ⎝ ⎛⎭⎪⎫1e ≤f (x )≤f (1)=a , 设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)上单调递减,在[0,1]上单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈⎣⎢⎡⎦⎥⎤1e ,1,存在唯一的y ∈[-1,1],使得f (x )=g (y )成立, 所以⎣⎢⎡⎦⎥⎤a -1e ,a ⎝ ⎛⎦⎥⎤1e ,e ,⎩⎨⎧a -1e >1e ,a ≤e ,解得2e<a≤e. 答案 B。

相关文档
最新文档