初二数学分式考试题

合集下载

初二数学分式测试题

初二数学分式测试题

分式测试题(一)一、填空1、当______x 时,分式55+x x 有意义; 2、在分式152-y y 中,当y=时,分式无意义;当y=时,分式值为0; 3、当x=时,分式392+-x x 的值为0; 4、某工厂原计划a 天完成b 件产品,若现在需要提前x 天完成,则现在每天要比原来多生产产品__________ 件;5、写出未知的分子或分母:111122-=-=+-a a a a 6、m 取时,方程323-=--x m x x 会产生增根; 7、分式,21x xyy 51,212-的最简公分母为。

8、化简=-32224m n m . 二、选择1. 下列各式是最简分式的是( ) A.8a B.a b a 2 C.y x -1 D.22ab a b -- 2. 化简aba b a +-222的结果为( ) A.a b a 2- B.a b a - C.a b a + D.ba b a +- 3. 化简分式ac ab c c ab 35123522÷•的结果是( ) A 34 B b c 4 C b a 34 D acb 45 4. 计算y x y x y y x y x x ----+-22的结果是( )5. A 1 B 3 Cy x y x -+ D y x y x --3 6、计算11--+a a a 的结果是( ) A 11-a B 11--a C 112---a a a D 1-a 7.计算y x x x y x y x +•+÷+222)(的结果是( ) A yx x +22B y x +2C y 1D y +11 8. 若023=-y x ,则1+yx 等于( ) A.32 B.23 C.35 D.-35 三、计算,求下列各式的值,要求写出必要的计算过程! 1.a b a b a b -+- 2.324332⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛x y y x 3.222931x x x x x --÷-+ 4.224+--x x 5.22224421b ab a b a b a b a ++-÷+-- 6.先化简,再求值:11112-÷⎪⎭⎫ ⎝⎛-+x x x , 其中:x=-2。

初二数学分式练习题及答案

初二数学分式练习题及答案

初二数学分式练习题及答案分式是数学中的重要概念,也是初中数学的基础知识之一。

在初中数学学习中,分式的运算是一个关键的内容。

为了帮助同学们更好地掌握分式的运算,以下将提供一些初二数学分式练习题及答案。

一、基础练习题1. 计算下列分式的值:(1) $\frac{2}{3}+\frac{1}{6}$(2) $\frac{5}{7}-\frac{2}{7}$(3) $\frac{3}{4}\times\frac{2}{5}$(4) $\frac{6}{13}\div\frac{2}{3}$2. 按照要求变换下列分式:(1) 化简:$\frac{4x^2-2x}{2x}$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$3. 求解方程:(1) $\frac{7}{10}x=\frac{35}{4}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$二、提高练习题1. 小明在旅行中用一辆摩托车以每小时40千米的速度行驶,计划经过$\frac{2}{5}$小时后休息10分钟,然后以每小时50千米的速度行驶到终点。

求小明旅行一段的总时间。

2. 甲,乙两个工程队共同进行一项工程,甲队完成全工程的$\frac{2}{5}$,乙队完成剩下的部分。

如果两队同时施工,还需6天可以完成全工程;如果只由甲队自行施工,需要10天完成全工程。

请问乙队自行施工需要多少天才能完成全工程?3. 甲、乙两人一起做一件工作,甲独立完成全工作需要8小时,乙独立完成全工作需要12小时。

他们两人合作完成全工作,需要多少小时?三、答案基础练习题答案:1.(1) $\frac{2}{3}+\frac{1}{6}=\frac{4}{6}+\frac{1}{6}=\frac{5}{6}$(2) $\frac{5}{7}-\frac{2}{7}=\frac{3}{7}$(3)$\frac{3}{4}\times\frac{2}{5}=\frac{3\times2}{4\times5}=\frac{3}{10}$(4)$\frac{6}{13}\div\frac{2}{3}=\frac{6}{13}\times\frac{3}{2}=\frac{6}{13 }\times\frac{3}{2}=\frac{9}{13}$2.(1) 化简:$\frac{4x^2-2x}{2x} = \frac{2x(2x-1)}{2x}=2x-1$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}=\frac{5}{xy}-\frac{7}{xy}=\frac{5-7}{xy}=-\frac{2}{xy}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}=\frac{a\times b}{b\timesc}=\frac{a}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$ 通过分数的通分,两边同乘以$xy$得到等式$\frac{xy}{x}+\frac{xy}{y}=x+y$,化简得到$x+y=x+y$3.(1) $\frac{7}{10}x=\frac{35}{4}$,两边同乘以$\frac{10}{7}$得到等式$x=\frac{35}{4}\times\frac{10}{7}=\frac{25}{2}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$,先通分得到等式$\frac{10}{12}+\frac{3x}{12}=\frac{7}{8}$,化简得到$\frac{10+3x}{12}=\frac{7}{8}$,两边同乘以12得到$10+3x=12\times\frac{7}{8}$,解方程得到$x=\frac{63}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$,先通分得到等式$\frac{3(x-1)-2x}{x(x-1)}=\frac{5}{x(x-1)}$,化简得到$\frac{3x-3-2x}{x(x-1)}=\frac{5}{x(x-1)}$,整理得到$\frac{x-3}{x(x-1)}=\frac{5}{x(x-1)}$,可以得到方程$x-3=5$,解方程得到$x=8$。

初二数学分式试题

初二数学分式试题

初二数学分式试题1.下列分式,当取何值时有意义.(1);(2).【答案】(1);(2)【解析】根据分式有意义的条件即可求得结果.(1)由题意得,解得;(2)由题意得,解得.【考点】本题考查的是分式有意义的条件点评:解答本题的关键是熟练掌握分式的分母不为0时,分式才有意义.2.下列各式中,无论取何值,分式都有意义的是()A.B.C.D.【答案】D【解析】根据分式有意义的条件依次分析各项即可判断.A、B、当,即时,分式无意义,故错误;C、当,即时,分式无意义,故错误;D、,∴该分式无论取何值都有意义,本选项正确【考点】本题考查的是分式有意义的条件点评:解答本题的关键是熟练掌握分式的分母不为0时,分式才有意义.3.当______时,分式无意义.【答案】【解析】根据分式无意义的条件即可求得结果.由题意得,【考点】本题考查的是分式无意义的条件点评:解答本题的关键是熟练掌握分式的分母为0时,分式无意义.4.当______时,分式的值为1;当_______时,分式的值为.【答案】,【解析】先根据题意列出方程,解出即可得到结果.由题意得,解得;,解得【考点】本题考查的是分式值为的条件的应用点评:解答本题的关键是读懂题意,找准等量关系,正确列出方程.5.分式中,当时,下列结论正确的是()A.分式的值为零;B.分式无意义C.若时,分式的值为零;D.若时,分式的值为零【答案】C【解析】根据分式有意义的条件和分式值为零的条件即可求得结果.由题意得,当,,,时,分式的值为零,故选C.【考点】本题考查的是分式有意义的条件,分式值为零的条件点评:解答本题的关键是熟练掌握分式的分子为0,分母不为0时,分式的值为零.6.当______时,分式的值为正;当______时,分式的值为负.【答案】,为任意实数【解析】根据分式的值的正负结合分式的特征即可得到结果.由题意得,当,时,分式的值为正;,∴当为任意实数时,分式的值为负.【考点】本题考查的是分式的值点评:解答本题的关键是熟练掌握分子分母同号,分式的值为正;分子分母异号,分式的值为负.7.使分式无意义,x的取值是()A.0B.1C.D.【答案】D【解析】根据分式无意义的条件即可求得结果.由题意得,解得,故选D.【考点】本题考查的是分式无意义的条件点评:解答本题的关键是熟练掌握分式的分母为0时,分式无意义.8.若把x克食盐溶入克水中,从其中取出克食盐溶液,其中含纯盐________.【答案】克【解析】先根据x克食盐溶入克水中表示出食盐溶液的浓度,即可求得结果.由题意得,从其中取出克食盐溶液,其中含纯盐克.【考点】本题考查的是根据实际问题列分式点评:解答本题的关键是读懂题意,先求出食盐溶液的浓度.9.李丽从家到学校的路程为s,无风时她以平均米/•秒的速度骑车,便能按时到达,当风速为米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.【答案】秒【解析】根据时间=路程÷速度,即可得到结果.由题意得她必须提前秒出发.【考点】本题考查的是根据实际问题列分式点评:解答本题的关键是读懂题意,知道顶风速=无风速-风速.10.若分式的值是0时,求的值.【答案】【解析】先根据题意列出方程,解出即可.由题意得=0,解得经检验,是原方程的解.【考点】本题考查的是解分式方程点评:解答本题的关键是读懂题意,正确列出方程,再求解,注意解分式方程最后要写检验.。

初二数学分式方程精华题(含答案)

初二数学分式方程精华题(含答案)

初二数学分式方程精华题(含答案)1.分式方程解:本题考查分式方程的解法,根据题意可列出方程:frac{x}{x+12}=\frac{1}{2}$$化简后得到:2x=x+12$$解得$x=6$,因此选项C正确。

2.若分式方程 $\frac{x}{a}=\frac{2}{x-4}$ 有增根,则a的值为()解:根据题意,可列出方程:frac{x}{a}=\frac{2}{x-4}$$移项化简得到:x^2-4ax-8=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:4a)^2-4\times 1\times (-8)<0$$化简得到 $a^2+2>0$,因此 $a$ 可以取任意实数,选项中没有正确答案。

3.解关于x的方程 $\frac{x-3m}{x-1}=\frac{1}{x-1}$ 产生增根,则常数m的值等于()解:根据题意,可列出方程:frac{x-3m}{x-1}=\frac{1}{x-1}$$移项化简得到:x^2-4mx+3m=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:16m^2-12m<0$$化简得到 $0<m<\frac{3}{4}$,因此选项C正确。

4.求 $\frac{1-x}{2-xx}=3$,去分母后的结果,其中正确的是()解:根据题意,可列出方程:frac{1-x}{2-xx}=3$$移项化简得到:x^2+3x-5=0$$解得$x=1$或$x=-5$,代入原式可知$x=-5$不合法,因此$x=1$是方程的唯一解。

将$x=1$代入原式得到:frac{1-x}{2-xx}=\frac{0}{1}=0$$因此选项A正确。

5.计算:$\frac{b^2+2b+2a}{2b^3-7a^2b}=?$解:根据题意,可将分子分母同时除以$b$,得到:frac{b^2+2b+2a}{2b^3-7a^2b}=\frac{\frac{b^2}{b}+\frac{2b}{b}+\frac{2a}{b}}{\frac{2 b^3}{b}-\frac{7a^2b}{b}}=\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$$因此答案为$\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$。

初二50道分式方程练习题

初二50道分式方程练习题

初二50道分式方程练习题1. 解方程:(3x + 2)/(5 - x) = 7/92. 解方程:(2x - 1)/(x + 3) = 4/53. 解方程:(5x + 1)/(2x - 3) = 3/44. 解方程:(4 - 2x)/(7x + 1) = 2/35. 解方程:(3x - 4)/(4 - x) = 2/56. 解方程:(x + 1)/(2x - 3) = 5/87. 解方程:(3x - 2)/(x + 5) = 1/28. 解方程:(2x - 5)/(x + 1) = 3/49. 解方程:(4x - 3)/(7x + 2) = 2/510. 解方程:(3x + 1)/(2 - x) = 7/911. 解方程:(5x - 4)/(3x - 2) = 1/212. 解方程:(x - 2)/(4x + 3) = 3/513. 解方程:(3 - 4x)/(5x + 2) = 2/714. 解方程:(2x - 3)/(x + 4) = 1/215. 解方程:(4x + 1)/(3 - 2x) = 5/716. 解方程:(9 - 2x)/(6x - 1) = 3/418. 解方程:(3x + 4)/(5 + x) = 1/319. 解方程:(2x - 5)/(3x + 1) = 4/920. 解方程:(4x + 3)/(7 - x) = 2/521. 解方程:(7x - 1)/(x - 3) = 5/922. 解方程:(3x + 2)/(4 - 2x) = 1/323. 解方程:(x - 1)/(2x + 3) = 2/524. 解方程:(4 - 3x)/(x + 2) = 1/425. 解方程:(5x + 1)/(3x - 4) = 7/826. 解方程:(3 - 5x)/(x + 2) = 2/327. 解方程:(2x + 1)/(3 - 4x) = 1/528. 解方程:(4 - 3x)/(2 + x) = 5/729. 解方程:(5x + 2)/(7x - 3) = 3/430. 解方程:(3x - 2)/(5x + 1) = 5/731. 解方程:(6 - 2x)/(5x - 3) = 1/232. 解方程:(3x + 2)/(2 - 4x) = 1/733. 解方程:(x - 3)/(4x - 1) = 3/535. 解方程:(2x + 1)/(3 - 5x) = 7/836. 解方程:(4 - 2x)/(3x + 1) = 3/537. 解方程:(3x - 1)/(2x + 5) = 1/238. 解方程:(2x + 3)/(x - 4) = 7/939. 解方程:(3 - 2x)/(x + 3) = 4/540. 解方程:(4x - 1)/(2x + 3) = 3/441. 解方程:(5 - 3x)/(x + 4) = 2/542. 解方程:(2x + 1)/(5x - 2) = 3/743. 解方程:(3x - 2)/(4x + 1) = 1/344. 解方程:(x + 3)/(2 - 3x) = 2/545. 解方程:(5x - 1)/(2x + 3) = 4/946. 解方程:(4 - 3x)/(3x - 2) = 1/247. 解方程:(2x - 1)/(7x + 3) = 5/948. 解方程:(3x + 4)/(5 - x) = 7/849. 解方程:(x + 2)/(3x - 5) = 4/750. 解方程:(5x - 2)/(4 + 3x) = 1/2以上是初二50道分式方程练习题,请根据题目逐一解答,求出每道题的x值。

8年级数学分式计算100题 -

8年级数学分式计算100题 -

0. 计算: ÷( -1)
1. 化简:( 3 1- 䁛1)÷

1
. 化简:

1 䁛 ͳ,
3. 化简: 3 ÷(
-3)

. 先化简,再求值: 3 ÷(x+2- ),其中 x=1.
. 计算: 16
16䁛8 䁛
÷
•.
䁛8 䁛
6. 解答下列各题
(1)解方程:
=
1 䁛
1.
第 10页,共 18页
(2)先化简,再求值:
第 18页,共 18页
76. 解方程: (1) 1- 䁛1=1
(2) 䁛 -1= 3 .
(2)
9+
䁛33=
1.
3
第 1 页,共 18页
77. 解方程: 1 䁛 3 1
78. 解下列方程:
(1)
6 䁛
-2=0
79. 解分式方程: (1) 3 1;
(2) 3 = + 6 .
(2) 1

1
80. 解方程: 䁛 6=1- 1 .
解方程: 6
1

3.

68. 解方程 1= 3 1ͳ+2.
69. 解方程: 1=2- 3 .
70.
解分式方程: 3 +1=

1
71. 解方程:
(1)
䁛 1

1
(2)
8 7
1 7
8.
第 13页,共 18页
7
.
解方程: 3
3
1

3
73. 解分式方程: 1 1 3.
7 . 解方程:1 -2= 1 .
7 . 解分式方程: (1) 1+13 =1

初二数学分式试卷

初二数学分式试卷

初二数学分式试卷一、选择题(每题3分,共30分)1. 下列式子是分式的是()A. (x)/(2)B. (x + 1)/(3)C. (1)/(x - 1)D. (2x)/(π)2. 当x =()时,分式(x + 1)/(x - 2)无意义。

A. 2B. -1C. 0D. 13. 分式(2)/(a^2),(3)/(2a^3)的最简公分母是()A. 2a^2B. 2a^3C. a^3D. 6a^54. 化简frac{x^2-1}{x + 1}的结果是()A. x - 1B. x + 1C. 1 - xD. -x - 15. 计算(a)/(a - 1)+(1)/(1 - a)的结果是()A. 1B. -1C. (a + 1)/(a - 1)D. (a - 1)/(a + 1)6. 若分式frac{x^2-9}{x - 3}的值为0,则x的值为()A. 3B. -3C. ±3D. 07. 方程(1)/(x)=(3)/(x + 2)的解为()A. x = 1B. x = -1C. x = 3D. x=-38. 化简<=ft(frac{a^2}{a - 1}-a - 1)÷(1)/(a - 1)的结果是()A. 2aB. 2a - 1C. (1)/(a - 1)D. a - 19. 已知(1)/(x)-(1)/(y)=3,则分式(2x + 3xy - 2y)/(x - 2xy - y)的值为()A. (3)/(5)B. -(3)/(5)C. 1D. -110. 某工程队要修路a米,原计划平均每天修b米,因天气原因,实际每天平均少修m米,则实际完成工程比原计划推迟的天数为()A. (a)/(b - m)-(a)/(b)B. (a)/(b)-(a)/(b - m)C. (b - m)/(a)-(b)/(a)D. (b)/(a)-(b - m)/(a)二、填空题(每题3分,共15分)1. 当x =______时,分式frac{x^2-4}{x + 2}的值为0。

初二数学分式方程练习题(含答案)

初二数学分式方程练习题(含答案)

分式方程精华练习题(含答案)(一)1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④.;1392=+-x x ⑤;621=+x ⑥211=-+-ax a x . A.2个 B.3个 C.4个 D.5个2. 关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定3.方程xx x -=++-1315112的根是( ) A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-15.下列分式方程去分母后所得结果正确的是( ) A.11211-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B.125552=-+-xx x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2+=+--x x x x ; D.,1132-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14B.21280280++x x =14 C.21140140++x x =14D.211010++x x =1 7.若关于x 的方程0111=----x x x m ,有增根,则m 的值是( ) A.3 B.2 C.1 D.-18.若方程,)4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-19.如果,0,1≠≠=b b a x 那么=+-ba b a ( ) A.1-x 1 B.11+-x x C.x x 1- D.11+-x x 10.使分式442-x 与6526322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10二、填空题(每小题3分,共30分)11. 满足方程:2211-=-x x 的x 的值是________. 12. 当x=________时,分式x x ++51的值等于21. 13.分式方程0222=--x x x 的增根是. 14. 一汽车从甲地开往乙地,每小时行驶v1千米,t 小时可到达,如果每小时多行驶v2千米,那么可提前到达________小时.15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为.16.已知,54=y x 则=-+2222yx y x . 17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是.19.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程.三、解答题(共5大题,共60分)21. .解下列方程 (1)x x x --=+-34231(2)2123442+-=-++-x x x x x (3)21124x x x -=--. 22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多53倍,问她第一次在供销大厦买了几瓶酸奶?答案一、1.B ,2.C 3.C ;4.B ,5.D ,6.C , 7.B ,8.C9.B ,10.D ;二、11.0;12.3,13.2=x ;14.212v v t v +;15.3215315-=x x ;16.941-. 17.51=a ;18.21212v v v v +;19.6或12,20.()240024008120%x x-=+; 三、21.(1)无解(2)x= -1;(3)方程两边同乘(x-2)(x+2),得x(x+2)-(x2-4)=1, 化简,得2x=-3,x=32- 经检验,x=32-是原方程的根. 22.6天,24.解;5=x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式测试题
一、填空
1、当______x 时,分式
55+x x 有意义; 2、在分式1
52-y y 中,当y= 时,分式无意义;当y= 时,分式值为0; 3、当x= 时,分式3
92+-x x 的值为0; 4、某工厂原计划a 天完成b 件产品,若现在需要提前x 天完成,则现在每天要比原
来多生产产品__________ 件;
5、写出未知的分子或分母:1
11122-=-=+-a a a a 6、m 取 时,方程
323-=--x m x x 会产生增根; 7、分式,21x xy
y 51,212-的最简公分母为 。

8、化简=-3
2
224m n m . 二、选择
1. 下列各式是最简分式的是( ) A.8a B.a b a 2 C.y x -1 D.22a
b a b -- 2. 化简ab
a b a +-22
2的结果为( ) A.
a b a 2- B.a b a - C.a b a + D.b
a b a +- 3. 4. 化简分式a
c ab c c ab 35123522÷•的结果是( ) A 34 B b c 4 C b a 34 D ac
b 45
5. 计算y
x y x y y x y x x ----+-22的结果是( ) 6. A 1 B 3 C
y x y x -+ D y x y x --3 6、计算1
1--+a a a 的结果是( ) A 11-a B 1
1--a C 112---a a a D 1-a 7.计算y x x x y x y x +•+÷+222
)(的结果是( ) A y
x x +22
B y x +2
C y 1
D y +11 8. 若023=-y x ,则
1+y x 等于( ) A.32 B.23 C.35 D.-3
5
三、计算,求下列各式的值,要求写出必要的计算过程! 1. a b a b a b -+- 2. 3
24332⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫ ⎝⎛x y y x
3. 222931x x x x x --÷-+
4. 22
4+--x x
5.22224421b ab a b a b a b a ++-÷+--
6.先化简,再求值:11112-÷⎪⎭
⎫ ⎝⎛-+x x x , 其中:x=-2。

四、解下列方程:
(1)1
617222-=-++x x x x x
(2)
11262213x x =---
五、应用题
1.一名同学计划步行30千米参观博物馆,因情况变化改骑自行车,且骑车的速度是步行速度的1.5倍,才能按要求提前2小时到达,求这位同学骑自行车的速度。

2.某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年1月份的水费是36元,已知小明家今年1月份的用水量比去年12月份的用水量多6m
3.求该市今年居民用水的价格.
3.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相同,已知水流速度是每小时3千米,求轮船在静水中的速度。

相关文档
最新文档