平面内点的坐标

合集下载

坐标平面内点的坐标特征(初中数学)

坐标平面内点的坐标特征(初中数学)

坐标平面内点的坐标特征平面直角坐标系内不同位置的点,它们的坐标各具特点,熟练掌握这些特殊位置的点及其坐标特征是解决有关问题的关键.一、各象限内点的坐标特征四个象限内点的坐标特征分别为第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).例1 在平面直角坐标系中,若点P(a,b)在第四象限,则点Q(-b,a)在第象限.解析:因为点P(a,b)在第四象限,根据第四象限内点的坐标特征,知a>0,b<0,则-b>0,a>0,所以点Q(-b,a)在第一象限.故填一.二、坐标轴上点的坐标特征若P(x,y)在x轴上,则y=0,x为任意数;若P(x,y)在y轴上,则x=0,y为任意数;若P(x,y)在原点,则x=0,y=0.例2 在平面直角坐标系中,若点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)解析:由于点P(m+3,m+1)在x轴上,所以m+1=0,解得m=-1.当m=-1时,m+3=2,故点P的坐标为(2,0).故选B.三、平行于坐标轴的直线上的点的特征平行于x轴的直线上的所有点的纵坐标都相同,即若A(a1,b1),B(a2,b2),且AB//x轴,则b1=b2;平行于y轴的直线上的所有点的横坐标都相同,即若A(a1,b1),B(a2,b2),且AB//y轴,则a1=a2.例3 在平面直角坐标系中,已知点A(4,y)和B(x,-3),过A,B两点的直线平行于x轴,且AB=5,则x= ,y= .解析:因为过A,B两点的直线平行于x轴,所以y=-3.因为AB=5,所以x-4=5或x-4=-5,解得x=9或x=-1.故分别填9或-1,-3.四、各象限角平分线上的点的坐标特征若P(x,y)在第一、三象限的角平分线上,则x=y;若P(x,y)在第二、四象限的角平分线上,则x=-y.例4 已知点P(2a+5,10-3a)位于两坐标轴所成角的平分线上,则点P的坐标为.解析:当点P在一、三象限角的平分线上时,得2a+5=10-3a,解得a=1,此时点P的坐标为(7,7).当点P在二、四象限角的平分线上时,得2a+5=-(10-3a),解得a=15,此时点P的坐标为(35,-35). 故填(7,7)或(35,-35).第1 页共1 页。

平面直角坐标系内点的坐标特征

平面直角坐标系内点的坐标特征

横坐标的绝 对值
③点P(a,b)与坐标原点的距离是 a2 b2
学习文档
练一练
1.点M〔-5,12〕到x轴的距离是__1_2_;到y轴的距 离是__5__;到原点的距离是__1_3_. 2.点M〔m,-5〕. ①点M到x轴的距离是__5__; ②假设点M到y轴的距离是4;那么 m 为±_4___.
学习文档
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标. 〔3〕点Q的坐标为〔1,5〕,直线PQ∥y轴;
解:∵点Q的坐标为(1,5),直线PQ∥y轴, ∴a-2=1, 解得 a=3, 故2a+8=14,那么P(1,14);
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标.
2
学习文档
问题3:如图,在平面直角坐标系中你能画出点A关 于y轴的对称点吗?
y
A′(-2,3)
A (2,3)
你能说出点A 与点A'坐标的 关系吗?
O
x
学习文档
做一做:在平面直角坐标系中画出以下各点关于y轴
的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2)
O
C '(-3,-4)
-4 -3 -2 -1O 1 2 3 4 5 x
E
-1 -2
H
F
-3 -4
Q
G
学习文档
总结归纳 y
O L(-x,-y)
M〔x,y〕 x
关于原点对称的两点,横坐标和纵坐标都互为 相反数.
学习文档
做一做
点〔4,3〕与点〔4,- 3〕的关系是〔 B 〕 A.关于原点对称 B.关于 x轴对称 C.关于 y轴对称 D.不能构成对称关系

八年级上册平面内点的坐标知识点

八年级上册平面内点的坐标知识点

八年级上册平面内点的坐标知识点篇一:八年级数学平面直角坐标系知识点归纳平面直角坐标系知识点归纳1.在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2.坐标平面上的任意一点P的坐标,都和惟一的一对有序实数对(a,b)一一对应;其中,a为横坐标,b为纵坐标坐标;3.x轴上的点,纵坐标等于0;y轴上的点,横坐标等于0;坐标轴上的点不属于任何象限;4.四个象限的点的坐标具有如下特征:5.在平面直角坐标系中,已知点P(a,b),则(1)点P到x轴的距离为b;(2)点P到y轴的距离为a;(3)点P到原点O的距离为PO= a2?b2 6.平行直线上的点的坐标特征:a)在与x轴平行的直线上,所有点的纵坐标相等;点A、B的纵坐标都等于m;xb)在与y轴平行的直线上,所有点的横坐标相等;点C、D的横坐标都等于n;`7.对称点的坐标特征:A)点P(m,n)关于x轴的对称点为P1(m,?n),即横坐标不变,纵坐标互为相反数; B)点P(m,n)关于y轴的对称点为P2(?m,n),即纵坐标不变,横坐标互为相反数; C)点P(m,n)关于原点的对称点为P3(?m,?n),即横、纵坐标都互为相反数;P? X X X8.两条坐标轴夹角平分线上的点的坐标的特征:A)若点P(m,n)在第一、三象限的角平分线上,则m?n,即横、纵坐标相等;B)若点P(m,n)在第二、四象限的角平分线上,则m??n,即横、纵坐标互为相反数;X在第一、三象限的角平分线上在第二、四象限的角平分线上 `篇二:八年级知识点1 坐标确定位置知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:①一、三象限:a?b;②二、四象限:a??b.1.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)2.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)3.小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米4.(2022?曲靖模拟)在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏”点的可能坐标是.5.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1, 2),写出“兵”所在位置的坐标.知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6-b,a-10)落在第几象限?() A.一B.二C.三D.四2.已知点P(1-2m,m-1),则不论m取什么值,该P点必不在() A.第一象限B.第二象限C.第三象限D.第四象限3.如果点P(a,b)在第四象限,那么点Q(-a,b-4)所在的象限是()知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.1.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.3.如图,Rt△OAB的斜边AO在x轴的正半轴上,直角顶点B在第四象限内,S△OAB=20,OB:AB=1:2,求A、B两点的坐标.5.如图,在平面直角坐标系中,有一矩形COAB,其中三个顶点的坐标分别为C(0,3),O(0,0)和A(4,0),点B在⊙O上.(1)求点B的坐标;(2)求⊙O的面积.知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)?P(2m-a,b)②关于直线y=n对称,P(a,b)?P(a,2n-b)2 坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)?P(x+a,y)向左平移a个单位,坐标P(x,y)?P(x-a,y)向上平移b个单位,坐标P(x,y)?P(x,y+b)向下平移b个单位,坐标P(x,y)?P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°. 1.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)2.将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限篇三:初中八年级--平面上点的坐标练习题节节练-平面上点的坐标1、如图所示:“马”所处的位置为(2,3).(1)你能表示图中“象”的位置吗?(2)请写出“马”的下一步可以到达的所有位置.参考答案:(1)(5,3);(2)(1,1)、(3,1)、(4,2)、(4,4)、(3,5)、(1,5).考核的知识点:点的坐标的表示方法2、在方格纸上建立一个平面直角坐标系,描出点A(?2,4),B(3,4),连接AB,若点C为直线AB上的任意一点,则点C的纵坐标是什么?(1)如果一些点在平行于x轴的直线上,那么这些点的纵坐标有什么特点?(2)如果一些点在平行于y轴的直线上,那么这些点的横坐标有什么特点?参考答案:点C的纵坐标是4;(1)相等;(2)相等.考核的知识点:平面直角坐标系中点的特征3、正方形ABCD中,A,B,C坐标分别是(1,2),(?2,1),(?1,?2),则顶点D坐标是________.参考答案:(2,?1).考核的知识点:平面直角坐标系中点坐标的表示方法4、在下图所示的直角坐标系中描出下列各点:(0,4);(?1,1);(?4,1);(?2,?1);(?3,?4);(0,?2);(3,?4);(2,?1);(4,1);(1,1);(0,4).依次连结各点,观察得到的图形,你觉得它像什么?参考答案:像五角星.考核的知识点:平面直角坐标系表示点的坐标5、李强同学家在学校以东100m再往北150m处,张明同学家在学校以西200m再往南50m处,王玲同学家在学校以南150m处,如图,在直角坐标系中画出这三位同学家的位置,并用坐标表示出来.参考答案:李强家(100,150);张明家(?200,?50);王玲家(0,?150).考核的知识点:平面直角坐标系中表示点的坐标6、点P的坐标是(?1,?2),则?1是点P的,?2是点P的点P在第象限.参考答案:横坐标;纵坐标;三.考核的知识点:平面直角坐标系中点的坐标7、在直角坐标系中,点P(x,y)在第二象限,且P到x轴、y轴距离分别为3、7,则P点坐标为()B.(1,0)C.(0,2)D.(0,1)A.(?3,?7)B.(?7,?3)C.(3,7)D.(7,3)参考答案:C.考核的知识点:点到坐标轴的距离与点的坐标之间的关系8、已知a>b>0,那么点P(a?b,?a)在第几象限?参考答案:第四象限.考核的知识点:象限内点坐标的特征9、已知点P(x,y)在第三象限,则(x?y,?x?y)在第几象限?参考答案:第二象限.考核的知识点:象限内点坐标的特征10、已知点A(1,2),AC⊥x轴于C,则点C坐标为()A.(2,0)参考答案:B.考核的知识点:平行于坐标轴的直线上点坐标的特征。

11.1平面内点的坐标

11.1平面内点的坐标

X
确定点的位置
点的坐标的确定方法
有了平面直角坐标 系,平面内的点就 可以用一对实数来 表示。例如:
P
y 点的纵坐标 N b (y坐标)
P (a,b)
横坐标写在前,
M
a
点的横坐标 (x坐标)
O
x
纵坐标写在后,
中间用逗号隔开
在方格图中建立平面直角坐标系 y
2 1
-3
-2
-1 O -1
1
2
3
x
注意事项:在画平面直角坐标系时, -2 一定要画x轴、y轴的正方向,即箭 头,标出原点O,单位长度要统一( -3 长度不统一的情况目前不要求)
x
D(-4,-2.5)
y
2
在平面直角坐标 系中找到表示 A(3,-2)的点.
1
-3
-2
-1 O -1 -2
-3
1
2
3
x
A
由坐标找点的方法: 先找到表示横坐标与纵坐标的点, 然后过这两点分别作x轴与y轴的垂线, 垂线的交点就是该坐标对应的点。
练习2:在直角坐标系中,画出下列各点: A(4,3), B(-2,y 3), C(-4,-1), 6 D(2,-2),E(3, 0 ), F ( 0 , -4 ) 5 B·
D D(2 , 0) (2 , -3)
y 5 4 3 2 1 -4 -3 -2 -1 O -1 -2 1
●C ● A
两点间的距离=
F F(2 , -4) (5 , -3)
x1 x2
2、平行于y轴的直线上 的点,其横坐标相同, 两点间的距离= y1 y2
2D3 4
●B


5 x
E

【教案一】11.1平面内点的坐标

【教案一】11.1平面内点的坐标

11.1平面内点的坐标(一)教学目标:【知识目标】1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念。

2、认识并能画出平面直角坐标系。

3、能在给定的平面直角坐标系中,由点的位置写出它的坐标。

4、认识象限,熟悉各个象限内点的坐标特征。

【能力目标】1、通过画坐标系,由点找坐标等过程,发展学生的数形结合意识,合作交流意识。

2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。

【情感目标】由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。

教学重点:1、理解平面直角坐标系的有关知识。

2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标。

3、由点的坐标观察,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。

教学难点:1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究。

2、坐标轴上点的坐标有什么特点的总结。

教学方法:讨论式学习法教学过程设计:一、导入新课『师』:同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图,回答以下问题:(图5-6)(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴、分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?在上一节课,我们已经学习了许多确定位置的方法,主要学习用反映极坐标思想的定位方式,和用反映直角坐标思想的定位方式。

在这个问题中大家看用哪种方法比较合适?『生』:用反映直角坐标思想的定位方式。

考点01 平面直角坐标系内点的坐标特征(解析版)

考点01 平面直角坐标系内点的坐标特征(解析版)

考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A.电影城1号厅6排B.北京市海淀区C.北纬31︒,东经103︒D.南偏西40︒【答案】C【分析】本题考查了平面内的点与有序实数对一一对应,根据平面内的点与有序实数对一一对应分别对每个选项判断.【详解】A、电影城1号厅6排不能确定具体位置.故本选项不合题意;B、北京市海淀区不能确定具体位置.故本选项不合题意;C、北纬31︒,东经103︒能确定具体位置.故本选项符合题意;D、南偏西40︒不能确定具体位置.故本选项不合题意.故选:C2.下列表述,能确定准确位置的是()A.威高广场东面B.环翠楼北偏西10︒C.U度影城2号厅一排D.北纬37︒,东经122︒【答案】D【分析】本题考查了有序数对,利用有序数对可以准确的表示出一个位置.确定位置需要两个数据,对各选项分析判断利用排除法即可求解.【详解】解:A、威高广场东面,不能确定具体位置,故本选项不符合题意;B、环翠楼北偏西10︒,不能确定具体位置,故本选项不符合题意;C 、U 度影城2号厅一排,不能确定具体位置,故本选项不符合题意;D 、北纬37︒,东经122︒,能确定具体位置,故本选项符合题意.故选:D .3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒【答案】C【分析】本题考查利用有序实数对表示位置,解题的关键是根据理解题意.根据()3,330E ︒,()2,30F ︒得到第一个数为由里向外的圈数,第二个数为角度,直接逐个判断即可得到答案【详解】解:∵()3,330E ︒,()2,30F ︒,∴()5,60A ︒,()3,120B ︒,()4,210C ︒,()5,270D ︒,故选:C5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【答案】A【分析】本题考查了坐标确定位置,解题关键是清楚有序数对与排号之间的关系,根据题意可前一个数表示排数,后一个数表示号数即可求解.【详解】解:由“5排2号”记作()5,2可知,有序数对与排号对应,所以()7,9表示第7排9号.故选:A .6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,5【答案】B【解析】略7.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【答案】C【解析】略变式拓展00,【答案】()【分析】本题考查有序数对位置的确定,进而得出答案,采用数形结合的思想是解此题的关键.【详解】解:根据棋子“马”和“车”00,.故答案为()【答案】23【分析】本题主要考查了数字类的规律探索,的数为()1n n+,据此算出第三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()2,3;【答案】(1)()(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,2,3;∴校门的位置为数对()9,7表示的位置为第9列,第7行,(2)解:数对()由图可知,表示的地方为教学楼.14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.【答案】(1)见解析(2)D52(3)见解析【详解】(1)如图所示(2)图中的蜜蜂所在位置记作D52.(3)行进路线如图所示.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领∴点()3,1Q a a -+所在象限是第二象限,故选:B .变式拓展二、填空题所以23a a +=±,解得3a =-(舍去)或1-.故答案为:1-.三、解答题考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .2014【答案】D【分析】本题考查了探究规律,利用规律即可解决问题,涉及坐标与图形变化-对称、规律型:点的坐标,先根据题意写出已知点的坐标,再找到规律为次数是2的奇数倍的偶数,位于x 轴上,横坐标为这个翻转次数;次数是2的偶数倍的偶数,位于x 轴的上方,横坐标为这个翻转次数加上1;据此作答即可.A .()3032,1-B .()3034,4C .()3036,4D .()3031,1【答案】B【分析】本题考查坐标的规律问题,先找到点的规律,然后计算解题即可,解题的关键是找到点的坐标规律.【详解】由题可知,每四个点纵坐标重复一次,横坐标向左平移6个单位长度,∴202345053÷= ,则2023A 的横坐标为:505643034⨯+=,纵坐标为4,故选:B .4.对一组数(),x y 的一次操作变换记为()111,P x y ,定义其变换法则如下:()111,(,)P x y x y x y =+-,()()()()22211111111,,,,n n n n n n n P x y x y x y P x y x y x y ----=+-=+- (n 为大于1的整数),如这组数为(1,2),则1(3,1)P =-,2(2,4)P =,3(6,2)P =-…当这组数为(1,1)-时,2024P =()A .()101210122,2-B .()10120,2-C .()10110,2D .()101110112,2-【答案】A【分析】本题考查了新定义点的坐标,根据操作方法依次求出前几次变换的结果,然后根据规律解答,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.【详解】解:当这组数为()1,1-时,()()11,10,2P -=,()()21,12,2P -=-,()()()231,10,40,2P -==,()()()2241,14,42,2P -=-=-,()()()351,10,80,2P -==,∴()()1012101220241,12,2P -=-,故选:A .二、填空题【答案】()20212,【分析】本题考查了点坐标规律探索,旨在考查学生的抽象概括能力.标为对应的运动次数减3,纵坐标依次为:4,2,1,1,2-,每5次一个循环,据此即可求解.【详解】解:由题意得:动点0()34P -,在平面直角坐标系中的运动为:1()22P -,,()21,1P -,31(0)P -,,42(1)P ,,54(2)P ,,62(3)P ,,...∴横坐标为对应的运动次数减3,则第2024次运动到点2024P 的横坐标为:202432021-=;∵()202415405+÷=,∴第2024次运动到点2024P 的纵坐标为:2;故答案为:()20212,变式拓展【答案】()20242024,0P 【分析】本题考查了坐标系中点的坐标规律探索,仔细观察点的坐标发现第()22,0P ,第4次坐标为()44,0P ,第6次坐标为()66,0P ,故第2024次的坐标为【详解】第2次坐标为()22,0P ,第4次坐标为()44,0P ,第6次坐标为故第2024次的坐标为()20242024,0P .故答案为:()20242024,0P .7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.【答案】5-【分析】本题主要考查了规律型:点的坐标,解答本题的关键是准确理解题意,发现变换规【答案】()2023,1-【分析】本题主要考查的是坐标系中的规律探究问题,计算P 的时间,根据规律即可求得第2023秒P 点位置,找出运动规律是解题的关键.【详解】由题意可知,点P 运动一个半圆所用的时间为:π÷三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.【答案】(1)2,0;4,0;6,0;(2)()2,0n (3)向右.【分析】(1)本题考查了在平面坐标系中点的坐标特点,根据题意知道按向上、向右、向下、向右的方向每次移动1个单位,即可解题.(2)本题考查了在平面坐标系中坐标的特点和坐标的规律,观察点4A 的位置,由图可知,蚂蚁每走4步为一个周期,得出4n OA 的值,再根据点4n A 在x 轴的正半轴上,即可解题.(3)本题考查了在平面坐标系中坐标的特点和坐标的规律,根据点4n A 的坐标,分析可得点2020A 的坐标,再结合题意知道按方向每次移动1个单位,得到点2021A 和点2021A 的坐标,即可解题.【详解】(1)解:由图可知,点4A ,点8A ,点12A 都在x 轴的正半轴上,小蚂蚁每次移动1个单位,42OA ∴=,84OA =,126OA =,()42,0A ∴,()84,0A ,()126,0A ,故答案为:2,0;4,0;6,0.(2)解:由图可知,蚂蚁每走4步为一个周期,44422n OA n n ∴=÷⨯=,点4n A 在x 轴的正半轴上,()42,0n A n ∴.(3)解: 当2020n =时,4505n ∴=⨯,∴点2020A 的坐标为()1010,0,∴点2021A 的坐标为()1010,1,点2022A 的坐标为()1011,1,∴蚂蚁从点2021A 到点2022A 的移动方向为向右.。

111平面内点的坐标讲解

111平面内点的坐标讲解

学习目标:1、 通过生活中的实例,认识到可以用有序数对表示点的位置。

2、 会用有序数对确定平面内的点。

注意强调数对的 有序”。

3、 让学生感受到可以用数量表示图形位置,形成形数结合的意识。

重点:理解有序数对的概念,用有序数来表示位置。

难点:理解有序数对是“有序的”,并用它解决实际问题。

预习案一、情境1:在一条笔直的街道边,竖着一排等距离的路灯,小华、小红、小明的位置 如图1所示,你能根据图示确切地描述他们三个人的位置关系吗?j j \\ I I _ I. I >1不知小阴通1情境2:我们到电影院看电影时,每个人都需要一张电影票,你是怎么根据电影票上的 数子找到位置的?1. 有 的两个数a 与b 组成的数对,叫做有序数对,记作2. (a,b)与(b.a)的顺序不同,含义就不同,如(3,4)表示的座位是 (4,3)表示的座次是 。

二、填空1、 有序数对a,b 正确的表示方法是 。

2、 用1, 2, 3可以组成有序数对有 对。

3、 课间操时,小华、小军、小刚的位置如图,小华对小刚说: “如果我的位置用(0, 0)表示,小军的位置用(2, 1)表示, 那么你的位置可以表示成()”A 、 (5, 4)B 、 (4, 5)C 、 (3, 4)D 、 (4, 3)4、在电影票上,将“7排6号”简记为(7, 6),则6排7号可表示为 (8, 6)表示的意义是。

5、 如图的棋盘中,若“帅”位于点(1, 一2)上, “相”位于点(3, 一 1)上,则“炮”位于点 .6、 某阶梯教室共有12排座位,第一排有16个座位,后面每 排都比前一排多1个座位,若每排座位数为 m 排数为n.(3)用含有 n 的代数式表示 mi : .7、某人在车间里工作的时间 t 与工作总量y 组成有序数对(t, y),若他的工作效率是 不变的,其中两组数对分别为(4, 80), (7, y),则y =.8 、 如图所示,A 的位置为(2,6), 小明从 A 出发,经 (2.5) 7(3,5) 7(4,5) 7(4,4) ^(5,4) ^(6,4),小刚也从 A 出发,经(3.6) 7(4,6) 7(4,7) 7(5,7) ^(6,7),则此时两人相距几个格?探究案1、如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?2、 阅读教材第47页的“用经纬度表示地理位置” 一文.3、 你有没有见过用其他的方式来表示位置的?1)如有的电影院分楼上楼下两层,这时就要在电影票上写明是楼上几排几号了;又如 在一些大型会场,往往把场地分为 A 、B C 等区,这时就要在座位票上写明是哪个区、几排 几号了2)、我们规定:沿正北方向顺时针旋转 9角并前进a 个单位,记作(9 , a),那么你能说明下列有序数对所表示的图形的含义吗? (1) (45度,6)(2) (120度,8)(一)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。

平面直角坐标系内点的坐标特征

平面直角坐标系内点的坐标特征

1、平面直角坐标系内点的坐标特征2、《平面直角坐标系》错解剖析3、坐标、棋盘、考题4、坐标方法的应用5、《平面直角坐标系》考点聚焦6、《平面直角坐标系》考点例析1、平面直角坐标系内点的坐标特征在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

平面直角坐标系将平面分成四个象限,在坐标轴上以及四个象限内的各点的坐标各有特征。

现就有关点的坐标特征归纳如下。

一、各象限内点的坐标特征如图,点P(a,b)在各象限内的特点:①点P在第一象限⇔a>0,b>0;②点P在第二象限⇔a<0,b>0;③点P在第三象限⇔a<0,b<0;④点P在第二象限⇔a>0,b<0;例1 、若a>0,则点P(-a,2)应在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:因为a>0,所以-a<0.根据各象限内的坐标特点可知,点P(-a,2)应在第二象限内,故应选(C)。

二、坐标轴上的点的坐标特征在x轴上的点的纵坐标为0,即x轴上的点的坐标可记作(x,0),如点(-3,0)在x 轴上;在y轴上的点的横坐标为0,即y轴上的点的坐标可记作(0,y),如点(0,-3)在y 轴上;原点的坐标为(0,0)。

归纳:点P(a,b)在坐标轴上的特点:①点P在x轴上⇔a为任何实数,b=0;②点P在y轴上⇔a=0,b为任何实数;③点P在原点⇔a=0,b=0;例2、若点A(2、n)在x轴上则点B(n-2 ,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限析解:因为点A(2、n)在x轴上,所以n=0,所以n-2 =-2,n+1=1,因此点B的坐标为(-2,1),故点B在第二象限内,选(B).三、点的坐标与点到坐标轴的距离的关系点到直线的距离,也就是这一点到直线的垂线段的长度。

根据点在平面直角坐标系中的特点,点P(a,b)到x轴的距离为|b|,到y轴的距离为|a|。

如图点A(-2,3)到x轴的距离为AD=OE=|3|=3,到y轴的距离为AE=OD=|-2|=2.例3 、P(3,-4)到x轴的距离是.解析:根据上面的结论可知,点P到x轴的距离为|-4|=4,到y轴的距离为|3|=3,所以应填4.四、象限角的平分线上的点的坐标特征①若P(a,b)在第一、三象限的角平分线上⇔横、纵坐标相等,即a=b;②若P(a,b)在第二、四象限的角平分线上⇔横、纵坐标互为相反数,即a=-b或a+b=0;例4 已知点P(a+3,7-a)位于象限的角平分线上,则点P的坐标为_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
6
2
-6
-2
o
-1
2
6x
在下图的直角坐标系中描出下列各组点,并将各组内的 线段依次连接起来.
1、(2,0), (4,0), (6,2), (6,6), (5,8), (4,6), (2,6), (1,8), (0,6), (0,2), (2,0); 2、(1,3), (2,2), (4,2), (5,3); 3、(1,4), (2,4), (2,5), (1,5), (1,4); 4、(4,4), (5,4),(5,5), (4,5), (4,4); 5、(3,3).
(2)如果中心广场处定为(0,0),一个小格的边长为1,
你能表示“碑林”的位置吗?
y
【解析】如图,建立平面
直角坐标系,“碑林”的
位置为(3,1)
O
x
如图,矩形ABCD的长与宽分别为6、4,建立适当的直角
坐标系,并写出各个顶点的坐标
B
A
C
D
y
A
D
4
B0
x 6C
【解析以】点B为坐标原点,分别以BC、BA所在直线为 x轴、y轴,建立直角坐标系.坐标分别为A(0,4),B(0, 0),C(6 ,0),D(6,4).
y
A
2
D
x
-3
0
3BLeabharlann -2C【解析】以长方形的中心为坐标原点,平行于BC、BA的直 线
为x轴、y轴,建立直角坐标系.坐标分别为A(-3,2),
B(-3,-2),C(3,-2),D(3,2)
通过本课时的学习,需要我们掌握: 建立适当的直角坐标系,描述物体的位置:关键是选 好原点.
y
8
6 4
2
o 24 6 8
x
观察所得的图形,你觉得它像什么? 【解析】答案不唯一,可以说“像猫脸”等
【例3】如图是某市旅游景点的示 意图. (1)“大成殿”在“中心广场” 的西、南各多少格?碑林在“中 心广场”的东、北各多少格?
【解析】(1) “大成殿”在“中 心广场”的西、南各2格,碑林在 “中心广场”的东3格,北1格.
y
6
2
-6
-2
o
-1
2
6x
在下图的直角坐标系中描出下列各点,并把各点用线段依次连接
起来,观察它的形状并计算其面积.(2,2)(5,6)(-4,6)
(-7,2)
y
【解析】如图,是
平行四边形,它的面
积为(7+2)×
6
(6-2)=36
2
-6
-2 -1 o 2
6x
【例2】在下图的直角坐标系中描出下列各 点,并把各点用线段依次连接起来.观察它是什么形状,并 计算它的面积(0,4),(-4,-1),(-9,3).
11.1.3 平面上点的坐标
忆一忆
1、什么是平面直角坐标系? 2、两条坐标轴把平面分成了几部分?(不包括坐标轴) 3、给你平面上的一个点,如何找出它的坐标? 4、坐标轴上的点有何特点?
【例1】在下图的直角坐标系中描出下列各 点,并把各点用线段依次连接起来.观察它是什么形状,并 计算它的面积(3,1),(7,1),(3,6).
相关文档
最新文档