平面内点的坐标.1 平面上点的坐标
第09章 平面直角坐标系与函数初步-2021年中考数学一轮复习(通用版)(含答案)

2021年中考数学一轮复习(通用版)第09章平面直角坐标系与函数初步考点梳理考点一平面直角坐标系及点的坐标1.平面直角坐标系(1)在平面内画两条互相垂直并且原点重合的数轴,就建立了平面直角坐标系.其中,水平的数轴叫做x轴或横轴,取为正方向;垂直的数轴叫做y轴或纵轴,取为正方向;两轴的交点为原点.(2)坐标平面内点与有序实数对建立的关系,即坐标平面内的任何一点可以用一对有序实数来表示;反过来,每一对有序实数都表示坐标平面内的一点.2.点的坐标(1)各象限内点的坐标的符号特征. 如图所示.①点P(x,y)在第一象限①x>0,y>0;①点P(x,y)在第二象限①;①点P(x,y)在第三象限①;①点P(x,y)在第四象限①;①坐标轴不属于任何象限.(2)坐标轴上点的坐标特征①点P(x,y)在x轴上①y=0;①点P(x,y)在y轴上①=0;①原点的坐标为.(3)各象限角平分线上点的坐标特征①点P(x,y)在第一、三象限角平分线上①x=y;①点P(x,y)在第二、四象限角平分线上①.(4)对称点的坐标特征①点P(x,y)关于x轴对称的点的坐标为(x,-y);①点P(x,y)关于y轴对称的点的坐标为;①点P(x,y)关于原点对称的点的坐标为.(5)平行于坐标轴的点的坐标特征①平行于x轴,纵坐标都,直线上两点A(x1,y),B(x2,y)的距离为|x1-x2|;①平行于y轴,横坐标都,直线上两点A(x,y1),B(x,y2)的距离为|y1-y2|.(6)点平移的坐标特征(7)①点P(a,b)到x轴的距离为|b|;①点P(a,b)到y轴的距离为;①点P(a,b)到原点的距离为①.考点二函数的概念及其表示方法1.函数及相关概念(1)变量与常数:在一个变化过程中,可以变化的量,是变量;保持不变的量,是常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x,y,且对于x在它允许取值范围内的每一个值,y 都有的值与它对应,那么就说x是自变量,y是x的函数.(3)函数值:对于一个函数,取自变量x在允许范围内的一个确定值,代入函数表达式求得的函数y的值,就叫做函数值.2.函数的表示方法(1)列表法:通过列出自变量的值与对应函数值的表格来表示函数的方法叫做列表法.(2)解析法:用数学式子表示函数关系的方法叫做解析法.其中的等式叫做函数表达式(或函数解析式或函数关系式).(3)图象法:用图象来表示两个变量间的函数关系的方法,叫做图象法.①函数的图象:对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形就是这个函数的图象.①画函数图象的步骤:列表、描点、连线.3.函数自变量取值范围重难点讲解考点一点的坐标与图形的变化规律方法指导:点的坐标在变换中的规律:(1)平移:左右平移时横坐标左减右加,纵坐标不变;上下平移时纵坐标上加下减,横坐标不变;(2)关于坐标轴对称,与其同名的坐标不变,另一个坐标变为相反数;(3)关于原点对称,其坐标互为相反数;(4)点(x,y)关于原点顺时针旋转90°后的点坐标为(y,-x),点(x,y)关于原点逆时针旋转90°后的点坐标为(-y,x).经典例题1 (2020•安徽宿州模拟)已知点M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M 的坐标为()A.(2,3) B.(2,-3) C.(3,2) D.不能确定【解析】M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3).【答案】B考点二函数图象的分析与判断方法指导:根据函数的图象分析实际意义:要读懂图象的意义,就要会析图、用图.在解答过程中,要弄清楚图象的横、纵坐标表示的意义,函数图象上的点的意义,图象的变化趋势、变化快慢等,特别地,若是问题在整体过程中分为几个阶段,则其对应的图象也应分段分析,注意特殊点,如起点、终点、交点、转折点等的实际意义.经典例题2 (2020•湖南衡阳模拟)如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B 出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x 的函数图象如图2所示,则矩形ABCD的面积是()图1 图2A.20B.24C.48D.60【解析】如图2所示,当OP⊥BC时,BP=CP=4,OP=3,所以AB=2OP=6,BC=2BP=8,所以矩形ABCD的面积=6×8=48.【解析】C过关演练1. (2020•湖南长沙模拟)点P在第二象限内,若P到x轴的距离是3,到y轴的距离是4,那么点P的坐标为()A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)2. (2020·安徽阜阳模拟)如果m是任意实数,则点P(m-4,m-1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3. (2020•湖南邵阳中考)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b) B.(﹣a,b) C.(﹣a,﹣b) D.(a,﹣b)4.(2020•山东滨州中考)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5) B.(﹣5,4) C.(4,﹣5) D.(5,﹣4)5.(2020•四川甘孜州中考)函数y=13x中,自变量x的取值范围是()A.x>﹣3 B.x<3 C.x≠﹣3 D.x≠36.(2020•江苏无锡中考)函数y=2+31x-中自变量x的取值范围是()A.x≥2 B.x≥13C.x≤13D.x≠137.(2020•四川遂宁中考)函数y中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x>﹣2且x≠1 D.x≥﹣2且x≠18.(2020·河北模拟)如图所示,两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;①甲的速度比乙快1.5米/秒;①乙的起跑点在甲的前方12米处;①8秒钟后,甲超过了乙其中正确的说法是()A.①① B.①①① C.①① D.①①①9.(2020·安徽模拟)小明、小刚兄弟俩的家离学校的距离是5km.一天,兄弟俩同时从家里出发到学校上学,小刚以匀速跑步到学校;小明骑自行车出发,骑行一段路程后,因自行车故障,修车耽误了一些时间,然后以比出发时更快的速度赶往学校,结果比小刚早一点到了学校.下列能正确反映两人离家的距离y(米)与时间x(小时)之间的函数关系的图象是()A BC D10.(2020·江苏徐州一模)已知A,B两地相距1000米,甲从A地步行到B地,乙从B地步行到A地,若甲行走的速度为100米/分钟,乙行走的速度为150米/分钟,且两人同时出发,相向而行,则两人之间的距离y(米)与时间t(分钟)之间的函数图象是()A BC D11.(2020•安徽淮南模拟)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B,C不重合)EF ∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A B C D 12.(2020•四川州模拟)小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;①他步行的速度是100m/min;①他在校车站台等了6min;①校车运行的速度是200m/min;其中正确的个数是()A.1 B.2 C.3 D.413. (2020•湖北黄冈中考)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A B C D14. (2020•青海中考)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A B C D 15.(2020•贵州遵义中考)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1,S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A B C D 16.(2020·贵州贵阳模拟)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是.17.(2020·安徽铜陵模拟)若点P(a,b)在第四象限,则点M(b-a,a-b)在第象限.18.(2020·安徽合肥二模)函数y的自变量取值范围是.19.(2020•上海一模)在平面直角坐标系xOy中,点A(4,3)为O上一点,B为O内一点,请写出一个符合条件要求的点B的坐标.20.(2020·河南模拟)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.当它们行驶7h时,两车相遇,则乙车速度的速度为.21.(2020•浙江金华中考)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).22.(2020•黑龙江齐齐哈尔中考)在函数y中,自变量x的取值范围是.23.(2020•上海中考)已知f(x)=21x-,那么f(3)的值是.参考答案考点梳理考点一 1. (1)向右向上(2)一一对应 2. (1)①x<0,y>0 ①x<0,y<0 ①x>0,y<0 (2)①x ①(0,0) (3)①x=-y (4)①(-x,y) ①(-x,-y) (5)①相等①相等(6)(x,y+b) (x,y-b) (7)①|a|考点二 1. (2)唯一确定 3.不等于0 非负数不为0过关演练1. A解析:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0,又∵P到x轴的距离是3,到y轴的距离是4可知,∴点P的横坐标是-4,纵坐标是3,即点P的坐标为(-4,3).2. D 解析:①(m-1)-(m-4)=m-1-m+4=3,①点P的纵坐标大于横坐标,①点P一定不在第四象限.3. B 解析:①a+b>0,ab>0,①a>0,b>0.(a,b)在第一象限,因为小手盖住的点在第二象限,故选项A不符合题意;(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故选项B符合题意;(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故选项C不符合题意;(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故选项D不符合题意.4. D 解析:①在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,①点M 的纵坐标为﹣4,横坐标为5,即点M的坐标为(5,﹣4).5. C 解析:由题意得x+3≠0,解得x≠﹣3.6. B 解析:由题意得,3x﹣1≥0,解得x≥13.7. D 解析:根据题意,得21xx≥-⎨≠+⎧⎩,,解得x≥﹣2且x≠1.8. B9. A 解析:由题意可知,小刚匀速从家去学校,故小刚对应的函数图象是一条线段,故选项D错误;小明骑自行车先行一段路程,中途出现故障需要维修,然后以更快的速度赶往学校,比小刚早到一点到达学校,故选项B、C错误,选项A正确.10. C 解析:两人相遇时所用时间为1000÷(100+150)=4(分钟),乙从B 地步行到A 地所用时间为1000÷150=203(分钟),则203分钟后,甲、乙两人之间距离的变化变缓,甲从A 地步行到B 地所用时间为1000÷100=10(分钟),由此可知选项C 能反映两人之间的距离y (米)与时间t (分钟)之间的关系.11. C 解析:∵菱形ABCD 中,∠B =60°,∴△ABC 是等边三角形,∵EF ∥AC ,∴△BFE 是等边三角形,∴BE =BF =x ,∵BE =x ,∴S △BFE =12x ﹒=x 2,∵AB =1,∴EC =AF =1-x ,∴S △AFD =S △CED =12(1-x )﹒=-x ,∵S 菱形ABCD =12×1×=,∴S △DFE =-x 2-2(-x )=-4(x -1)2(其中0<x <1).符合此图象表达式为选项C .12. C 解析:根据题意得:小明用了10分钟步行了1km 到校站台,即小明步行了1km 到校车站台,①正确,1000÷10=100m/min ,即他步行的速度是100m/min ,①正确,小明在校车站台从第10min 等到第16min ,即他在校车站台等了6min ,①正确,小明用了14min 的时间坐校车,走了7km 的路程,7000÷14=500m/min ,即校车运行的速度是500m/min ,①不正确,即正确的是①①①.13. D 解析:根据题意:时间t 与库存量y 之间函数关系的图象为先平,再逐渐减小,最后为0.14. B 解析:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.15. C 解析:此函数图象中,S 2先达到最大值,即兔子先到终点,故选项A 不符合题意;此函数图象中,S 2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,故选项B 不符合题意;此函数图象中,S 1,S 2同时到达终点,故选项C 符合题意;此函数图象中,S 1先达到最大值,即乌龟先到终点,故选项D 不符合题意.16. (-2,3)或(-2,-3)17. 二 解析:①点P (a ,b )在第四象限,①a >0,b <0,①b -a <0,a -b >0,①点M (b -a ,a -b )在第二象限.18. x≤2且x≠0 解析:根据题意得,2-x≥0,且x≠0,解得x≤2且x≠0.19. (2,2) 解析:连结OA,OA5,∵B为O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.20. 75千米/小时解析:甲返程的速度为600÷(14-6)=75(千米/时),设乙车的速度为x(千米/时),由题意得600=7x+75,解得x=75.21. ﹣1(答案不唯一) 解析:①点P(m,2)在第二象限内,①m<0,则m的值可以是﹣1.(答案不唯一)22. x≥﹣3且x≠2 解析:由题可得,3020xx+≥⎧⎨-≠⎩,,解得32xx≥-⎧⎨≠⎩,,①自变量x的取值范围是x≥﹣3且x≠2.23. 1 解析:①f(x)=21x-,①f(3)=231-=1.。
数学六年级下册第七章-平面直角坐标系(1)——点的坐标-课件与答案

-3
3.点(x,y)到x轴的距离是|y|,到y轴的距离是
,纵坐标
|x|
.
7.1
数学
七年级 下册
配RJ版
第七章
7.1
基础过关
1.点C的横坐标是-4,纵坐标是1,则点C的坐标记作 (-4,1)
2.如图是标准围棋盘的一部分,棋盘上有三枚黑子A,B,C.若
棋子A所处位置的坐标为(0,8),棋子B所处位置的坐标为(3,3),则棋子C所处位置的坐标为 (3,1) .
.
数学
七年级 下册
配RJ版
第七章
7.1
4.原点O的坐标是( 0 , 0 ),横轴上的点的坐标为(x, 0 ),
纵轴上的点的坐标为( 0 ,y).
5.已知点P(3,a),并且点P到x轴的距离是2个单位长度,则点P
(3,2)或(3,-2)
的坐标为
.
6.点A在x轴上,距离原点4个单位长度,则A点的坐标是
7.1
数学
七年级 下册
配RJ版
第七章
7.1
A组
1.如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少
数突出的齿.将其放在平面直角坐标系中,表示叶片“顶
部”A,B两点的坐标分别为(-2,2),(-3,0),则叶杆“底部”点C的
坐标为 ( B )
A.(2,-2)
B.(2,-3)
C.(3,-2)
D.(3,-3)
分别写出点A,B,C的坐标.
解:点A的坐标为(3,3);点B的坐
标为(-3,4);点C的坐标为(5,-2).
数学
七年级 下册
配RJ版
第七章
7.1
【变式1】点A,B,C,D在平面直角坐标系中的位置如图所示.
平面直角坐标系内点的坐标特征

横坐标的绝 对值
③点P(a,b)与坐标原点的距离是 a2 b2
学习文档
练一练
1.点M〔-5,12〕到x轴的距离是__1_2_;到y轴的距 离是__5__;到原点的距离是__1_3_. 2.点M〔m,-5〕. ①点M到x轴的距离是__5__; ②假设点M到y轴的距离是4;那么 m 为±_4___.
学习文档
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标. 〔3〕点Q的坐标为〔1,5〕,直线PQ∥y轴;
解:∵点Q的坐标为(1,5),直线PQ∥y轴, ∴a-2=1, 解得 a=3, 故2a+8=14,那么P(1,14);
学习文档
7.点P(a-2,2a+8),分别根据以下条件求出点P的 坐标.
2
学习文档
问题3:如图,在平面直角坐标系中你能画出点A关 于y轴的对称点吗?
y
A′(-2,3)
A (2,3)
你能说出点A 与点A'坐标的 关系吗?
O
x
学习文档
做一做:在平面直角坐标系中画出以下各点关于y轴
的对称点.
y
(x , y)
关于 y轴 对称
( -x, y )
B(-4,2)
O
C '(-3,-4)
-4 -3 -2 -1O 1 2 3 4 5 x
E
-1 -2
H
F
-3 -4
Q
G
学习文档
总结归纳 y
O L(-x,-y)
M〔x,y〕 x
关于原点对称的两点,横坐标和纵坐标都互为 相反数.
学习文档
做一做
点〔4,3〕与点〔4,- 3〕的关系是〔 B 〕 A.关于原点对称 B.关于 x轴对称 C.关于 y轴对称 D.不能构成对称关系
初二数学上册:位置与坐标知识点

1、确定位置在平面内,确定物体的位置一般需要两个数据。
2、平面直角坐标系及有关概念①平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
②坐标轴和象限为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
③点的坐标的概念•对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
•点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。
•平面内点的与有序实数对是一一对应的。
④不同位置的点的坐标的特征a、各象限内点的坐标的特征•点P(x,y)在第一象限→ x>0,y>0•点P(x,y)在第二象限→ x<0,y>0•点P(x,y)在第三象限→ x<0,y<0•点P(x,y)在第四象限→ x>0,y<0b、坐标轴上的点的特征•点P(x,y)在x轴上→ y=0,x为任意实数•点P(x,y)在y轴上→ x=0,y为任意实数•点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点c、两条坐标轴夹角平分线上点的坐标的特征•点P(x,y)在第一、三象限夹角平分线(直线y=x)上→ x与y相等•点P(x,y)在第二、四象限夹角平分线上→ x与y互为相反数d、和坐标轴平行的直线上点的坐标的特征•位于平行于x轴的直线上的各点的纵坐标相同。
•位于平行于y轴的直线上的各点的横坐标相同。
平面直角坐标系内点的坐标特征

平面直角坐标系内点的坐标特征1. 坐标系的基本概念嘿,大家好,今天我们来聊聊平面直角坐标系,这听起来是不是有点像数学课上的枯燥内容?别急,让我们把它变得轻松有趣些!想象一下,我们的生活就像是一张大大的地图,而这个坐标系就是给我们定位的工具。
平面直角坐标系有两个轴,一个是横轴(也就是我们常说的X轴),另一个是纵轴(也就是Y轴)。
它们交叉在一个点上,那个点叫原点,通常用“O”表示,像个小圆点,简简单单却意义重大。
在这个坐标系里,每一个点都可以用一对数字来表示,像是一个神秘的通行证!比如说,点A的坐标是(3, 2),这就像是在告诉你,走3步到右边,再走2步向上,你就能找到A了。
是不是有点像解谜游戏?想想看,如果把我们生活中的一些地方换成坐标,那我们的家、学校、朋友的住处都可以变得超级有趣!1.1 坐标的组成部分那么,坐标到底是由什么组成的呢?简单来说,坐标就是X和Y两个部分。
X代表横向的距离,Y代表纵向的距离。
就像打麻将时,横着走的那一排和竖着走的那一排,虽然看上去没什么关系,但其实它们结合起来,才有了更大的乐趣!而且,X轴和Y轴分别对应着不同的方向,生活中的一切似乎都可以在这两条轴上找到自己的位置。
你有没有想过,为什么有些点的坐标是正的,有些却是负的呢?其实,这就像我们的人生旅程,有时候顺风顺水,有时候却要逆风飞翔。
比如说,(3, 2)就意味着你要向右走3步,但却要往下走2步,这种上下起伏就像过山车一样刺激。
没错,生活就是这样,时而欢笑,时而波折,正负之间的变化才让我们的人生更加丰富多彩!2. 点的四个象限说到坐标,就不得不提到四个象限了。
这四个象限就像四个小世界,每个世界都有它独特的风景。
第一象限位于右上方,所有的坐标都是正数,简直是个阳光明媚的地方,适合开派对!第二象限在左上方,X是负的,Y是正的,像个爱喝咖啡的文艺青年,虽然有些忧伤,但也很有个性。
第三象限则是左下方,这里X和Y都是负数,仿佛在深夜的酒吧里,听着忧伤的旋律。
11.1平面内点的坐标

X
确定点的位置
点的坐标的确定方法
有了平面直角坐标 系,平面内的点就 可以用一对实数来 表示。例如:
P
y 点的纵坐标 N b (y坐标)
P (a,b)
横坐标写在前,
M
a
点的横坐标 (x坐标)
O
x
纵坐标写在后,
中间用逗号隔开
在方格图中建立平面直角坐标系 y
2 1
-3
-2
-1 O -1
1
2
3
x
注意事项:在画平面直角坐标系时, -2 一定要画x轴、y轴的正方向,即箭 头,标出原点O,单位长度要统一( -3 长度不统一的情况目前不要求)
x
D(-4,-2.5)
y
2
在平面直角坐标 系中找到表示 A(3,-2)的点.
1
-3
-2
-1 O -1 -2
-3
1
2
3
x
A
由坐标找点的方法: 先找到表示横坐标与纵坐标的点, 然后过这两点分别作x轴与y轴的垂线, 垂线的交点就是该坐标对应的点。
练习2:在直角坐标系中,画出下列各点: A(4,3), B(-2,y 3), C(-4,-1), 6 D(2,-2),E(3, 0 ), F ( 0 , -4 ) 5 B·
D D(2 , 0) (2 , -3)
y 5 4 3 2 1 -4 -3 -2 -1 O -1 -2 1
●C ● A
两点间的距离=
F F(2 , -4) (5 , -3)
x1 x2
2、平行于y轴的直线上 的点,其横坐标相同, 两点间的距离= y1 y2
2D3 4
●B
●
●
5 x
E
《平面直角坐标系》复习课件(共32张PPT)

特殊位置点的特殊坐标:
坐标轴上点P
(x,y)
连线平行于坐标轴 的点
点P(x,y)在各象限的
坐标特点
象限角平分线 上的点
x轴 y轴 原点 平行于 平行于y 第一 第二 第三 第四 一三象 二四象
x轴
轴
象限 象限 象限 象限 限
限
纵坐标相 横坐标相 x>0
(x,0) (0,y) (0,0) 同
.
6.点A(x,y),且x+y>0,
x 那0 么点A在第___象限 y
特殊点的坐标 y
(0,y)
在平面平直行角于坐x轴标的系直内线描上出(2,2),(的0,各2),点(2的,2)纵,(4坐,2)标,依相次连 接各点同,,从横中坐标你不发同现. 了什么?
1
-1 0 1 -1
在平面直角坐标系内描
出平(行-2于,3)y,轴的直线上的
x
1
2
.
C
3
4
5
1.点P的坐标是(2,-3),则点P在第 四象限.
2.若点P(x,y)的坐标满足xy﹥0,则点P
象限; 一或三
在第
若点P(x,y)的坐标满足xy﹤0,且在x轴上方,则点P
在第
象二限.
3.若点A的坐标是(-3,5),则它到x轴的距离是
,
到y轴的距离是
.
5
3
4.若点B在x轴上方,y轴右侧,并且到x轴、y轴距离分别是2、
1
-4 -3 -2 -1 0 -1 -2 -3
-4
A的横坐标为4
A的纵坐标为2
有序数对(4, 2)就叫做A的坐标
记作:(A ·4,2)
横坐轴 写在前面 1 2 3 4 5 x 横轴
七年级下数学第七章-平面直角坐标系知识点总结(1)

七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a 与b 组成的数对。
1、记作(a ,b );2、注意:a 、b 的先后顺序对位置的影响。
3、坐标平面上的任意一点P 的坐标,都和惟一的一对 有序实数对(b a ,) 一一对应;其中,a 为横坐标,b 为纵坐标坐标;4、x 轴上的点,纵坐标等于0;y 轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限;(二)平面直角坐标系 平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
3、各种特殊点的坐标特点。
象限:坐标轴上的点不属于任何象限 第一象限:x 〉0,y>0第二象限:x 〈0,y 〉0第三象限:x 〈0,y 〈0 第四象限:x 〉0,y<0横坐标轴上的点:(x ,0) 纵坐标轴上的点:(0,y)(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x 轴(或横轴)的直线上的点的纵坐标相同; 平行于y 轴(或纵轴)的直线上的点的横坐标相同。
a) 在与x 轴平行的直线上, 所有点的纵坐标相等;点A 、B 的纵坐标都等于m ;Xb) 在与y 轴平行的直线上,所有点的横坐标相等;点C 、D 的横坐标都等于n ;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同; 第二、四象限角平分线上的点的横纵坐标相反。
c) 若点P(n m ,)在第一、三象限的角平分线上,则n m =,即横、纵坐标相等; d) 若点P (n m ,)在第二、四象限的角平分线上,则n m-=,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x 轴对称的点的横坐标相同,纵坐标互为相反数 关于y 轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P ),(n m 关于x 轴的对称点为),(1n m P -,即横坐标不变,纵坐标互为相反数; f) 点P ),(n m 关于y 轴的对称点为),(2n m P -, 即纵坐标不变,横坐标互为相反数; g) 点P ),(n m 关于原点的对称点为),(3n m P --,即横、纵坐标都互为相反数;关于x 轴对称关于原点对称五、特殊位置点的特殊坐标: XXXXP X-六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:• 建立坐标系,选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; • 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;八 、点到坐标轴的距离:点到x 轴的距离=纵坐标的绝对值,点到y 轴的距离=横坐标的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同理可知,点B在数轴 上的坐标是 -3 ;点C在数 轴上的坐标是 2.5;点D在 数轴上坐标是 0 .
如何用数字表示每个棋子的位置?
-4
-3
-2
-1
帥 0
仕 1
相 馬 2 3
車 4
如何用数字表示每个棋子的位置?
9 8 7 車 象
士
将
6
5 馬
(4,6) 卒 車
馬
卒
4
3 2 1 0 1 2 3 仕 帥 4 仕
相
炮 5
6
7
8
在平面内,两条互垂直且有公共原点的数轴组 成平面直角坐标系,这个平面叫做坐标平面.
y 5
4 3 y轴(纵轴)
第二象限 2
1 -4 -3 -2 -1 O -1 -2
第一象限
x轴(横轴)
1 2 3 4 5 原点 x
第三象限 -3
-4
第四象限
注意:坐标轴(即x轴、y轴)上的点不属于任何象限
1 2 3
第四象限
1、点P(x,y)在第一象限 x> 0, y> 0。 2、点P(x,y)在第二象限 x<0, y>0。 3、点P(x,y)在第三象限
y 5
原点的坐标 为(0,0)
第二象限
4 3 2 1
第一象限
(-,+)
(+,+)
1 2 3
4 5 x
x<0,y<0。
4、点P(x,y)在第四象限
x> 0, y< 0。
3 2 1
· · G (4,2) ·
(3,4) H
第一象限
(+ ,+)
1 2 3
-6 -5 -4 -3 -2 -1
第三象限
(-,-) C (-6,-3)
D
· · (-3,-4)
-1 -2 -3 -4
o
4
5
6
X
第四象限
(+,-)
-5 -6
· · ( 4,-4) E
首
(5,-2) F
页 返
回
Байду номын сангаас
探究问题2:
(纵轴)
y
5
4 3
B B(- 4 , 1)
·
-3
2 1 -1
A点在x 轴上的坐标为3 A点在y 轴上的坐标为2 A点在平面直角坐标系中的坐 标为(3, 2),记作:A(3,2) A X轴上的坐标
·
写在前面
-4
-2
-1
0
1
2
3
4
5
x (横轴)
原点
-2 -3 -4
对于平面内任意一点P,过点P分别向x轴、y轴作 垂线, 垂足在x轴、y轴上对应的数 a, b分别叫做点P的 横坐标、纵坐标, 有序实数对(a,b)叫做点P的坐标.
-4
坐标是一对有序实数对。
F点在x轴上,它的纵坐标为0,任 何一个在x轴上的点的纵坐标都为0。 同样:任何一个在y轴上的点的横坐 标为0。
例2:在直角坐标系中,描出下列各点:A(4,3), B(-2,3),C(-4,-1),D(2,-2),E(0,-3)
y 5 4
B
3 2 1
A
-4
-3
-2
-1
0
-4 -3 -2 -1 O -1 -2 第三象限 -3 -4 -5
第四象限
(-,-)
(+,-)
注意:
x轴上的点的纵坐标 为0,表示为(x,0) y轴上的点的横坐标 为0,表示为(0,
y
6 5 A (-4,4)4
举 手 抢 答 坐 标
H (3,4)
B (-6,2)
3 2 1 -1 -2 -3 -4 -5 -6
y
b
P (a,b) ·
1 -2 -1O -1 1
a
x
例1:写出图中A、B、C、D、E、F各点的坐标。
y
5 4
( -2,1 )
3 2 1 0 -1 -2
C
-4 -3
·
-2 -1
D ( -4,- 3 )
·
-3
·B · F · · E
1 2 3 4 5
A
( 2, 3 )
( 3,2 ) ( 4,0 )
x
( 1,- 2 )
-6 -5 -4 -3 -2 -1
o
1
2
C (-6,-3)
D (-3,-4)
举 G (4,2) 手 抢 3 4 5 6 X 答 · 5,-2) 坐 F( 标 (4,-4) E
·
问题探究1:
各个象限中点的坐标的符 y 6 号特点是什么?
5 A (-4,4) 4
· (-,+)
B (-6,2) 第二象限
11.1
平面上点的坐标
(第一课时)
金湖中学 张新文
什么是数轴?
在直线上规定了原点、正方向、单位长度 就构成了数轴。
单位长度 原点 -3 -2 -1 0
·
1
2
3
4
数轴上点A表示的数是 1. 反过来,数1就是点A的 位置。我们说点1是点A在 数轴上的坐标。
数轴上的点与 实数之间存在着 一一对应的关系。
C
-1
-2 -3 -4
1
2
3
4
5
x
D
E
坐标平面 内的点与有序 实数一一对应
本节课我们学习了平面直角坐标系。 学习本节我们要掌握以下三方面的内容: 1、能够正确画出直角坐标系。 2、能在直角坐标系中,根据坐标找出点, 由点求出坐标。 3、掌握x轴,y轴上点的坐标的特点: x轴上的点的纵坐标为0,表示为(x,0) y轴上的点的横坐标为0,表示为(0,y) 作业:课本P5 练习 1、2. 课本P8 习题12.1 3.
再见!
11.1
平面上点的坐标
(第二课时)
天峰初中 李贤武
知识回顾: 1、平面直角坐标系: 平面上互相垂直且有公共原点 的两条数轴构成平面直角坐标系, y
5
简称为直角坐标系。 坐标原点 注意: 坐标轴上的点 不属于任何象限.
第二象限
4 3 2 1
第一象限
-4 -3 -2 -1 O -1 -2 第三象限 -3 -4 -5
1 2 3
4 5 x
第四象限
2、坐标: 在平面直角坐标系中,一对有序实数可以 确定一个点的位置;反之,任意一点的位置 都可以用一对有序实数来表示。这样的有序 实数对叫做点的坐标。 y
5
注意:
坐标轴上的点不 属于任何象限。
第二象限
4 3 2 1
第一象限
4 5 x
-4 -3 -2 -1 O -1 -2 第三象限 -3 -4 -5
(+ ,+) (-,+) (-,-) (+,-) 纵坐标为 0 横坐标为 0
练兵场:
1、点(-1,2)在( B ) A、第一象限;B、第二象限;C、第三象限;D、第四象限 2、若点(X,Y)在第四象限内,则( C ) A、X,Y同是正数 B、X,Y同是负数 C、X是正数,Y是负数 D、X是负数,Y是正数 3、横坐标是正数,纵坐标的绝对值是正数的点在( D ) A、第一、三象限 B、第二、四象限 C、第二、三象限 D、第一、四象限 4、若点P(a,b)在第二象限,则点Q(b,a)在( D ) A、第一象限;B、第二象限;C、第三象限;D、第四象限
0 在x轴上,点的纵坐标为_
在y轴上,点的横坐标为_ 0
y
6
·
(-6,0) C
-6 -5 -4 -3 -2 -1
2 1
·
5 4 3 1
L(0,4) ·
-1 -2 -3 -4 -5 -6
o
2 3
4
·
5 6
I 5,0) (
X
·
(0,-6) F
点的坐标的符号特点
第一象限
第二象限 第三象限 第四象限 在 x 轴上 在 y 轴上