高一数学专题1-数形结合思想含答案

合集下载

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.若,则的值为【答案】-1【解析】由集合相等的概念可知有元素,又,则,故,根据集合中元素的互异性知,故。

【考点】集合相等的概念及集合中元素的互异性。

2.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.3.设集合,,若, 则集合P的子集的个数为()A.2个B.4个C.6个D.8个【答案】B【解析】,集合的子集有:共4个。

故B正确。

【考点】1集合的运算,2集合的子集。

4.已知,(1)设集合,请用列举法表示集合B;(2)求和.【答案】(1);(2),【解析】(1)集合为以集合为定义域的函数的值域。

时,;时,;时,;时,。

可用例举法写出集合。

(2)根据交集和并集的定义可直接得出和。

试题解析:解:(1)B= 5分(2) 7分10分【考点】1函数的值域;1集合的运算。

5.设求 .【答案】.【解析】有并集定义得.【考点】并集概念.6.集合.(1)当时,求;(2)若是只有一个元素的集合,求实数的取值范围.【答案】(1)(2)m=3或m≥【解析】(1)两集合的交集即两集合的公共部分,所以应联立方程解方程组。

(2)要使是只有一个元素的集合,只需联立的方程只有一个根,消去y或x后整理出一元二次方程,当判别式等于0时,对称轴需在内,当判别式大于0时,函数的一个零点应在内。

试题解析:(1),所以。

(2)消去y整理可得。

因为是只有一个元素的集合,即此方程在只有一个根。

所以或解得m=3或m≥【考点】集合运算一元二次函数图像7.若集合,,则=()A.B.C.D.【答案】C【解析】由集合的交集运算性质可知,故选C.【考点】集合交集的运算.8.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.9.集合.(1)若A B=,求a的取值范围.(2)若A B=,求a的取值范围.【答案】(1)(2)【解析】(1)A B=时,集合A集合B没有公共点,所以时成立。

高一数学集合与常用逻辑用语试题答案及解析

高一数学集合与常用逻辑用语试题答案及解析

高一数学集合与常用逻辑用语试题答案及解析1.集合的元素个数是().A.59B.31C.30D.29【答案】C【解析】由2n-1<60,得n<,又∵n∈N*,∴满足不等式n<的正整数一共有30个.即集合M中一共有30个元素,可列为1,3,5,7,9,…,59,组成一个以a1=1,a30=59,n=30的等差数列.集合M中一共有30个元素。

【考点】集合问题2.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5}B.{1,2,3,4,5,6}C.{1,3,5}D.{3,5,6}【答案】A【解析】所求是两个集合的公共元素组成的集合,所以.【考点】集合的运算3.(本题满分12分)计算:(1)集合集合求和(2)【答案】(1);(2)【解析】(1)由集合的运算性质可得;(2)利用对数与指数的运算性质,以及公式化简可得试题解析:(1)(2)【考点】1.集合的运算性质;2.对数与指数的运算性质4.(本题满分12分)已知全集,,,(1)求;(2)若,求实数的取值范围.【答案】(1),(2)【解析】(1)首先求解集合A中函数的定义域得到集合A,A,B两集合的交集是由两集合的相同元素构成的集合,A,B并集是由两集合的所有元素构成的集合;(2)由已知得两集合的子集关系,从而得到两集合边界值的大小关系,解不等式求解的取值范围.试题解析:(1)(2)∵∴∴得∴实数的取值范围为【考点】1.集合的交并集运算;2.集合的子集关系5.含有三个实数的集合既可表示成,又可表示成,.【答案】-1【解析】由两集合相等可得【考点】集合相等与集合元素特征6.满足的集合A的个数是_______个.【答案】7【解析】符合条件的集合A可以为,,,,,,,共7个.【考点】集合间的关系.7.设全集集合则.【答案】【解析】集合M表示的是直线除去点(2,3)的所有点;集合P表示的是不在直线上的所有点,显然表示的是平面内除去点(2,3)的所有点,故.【考点】集合运算.8.(本小题满分14分)已知集合,.(1)求:,;(2)已知,若,求实数的取值集合【答案】(1);(2).【解析】(1)画数轴先求,再求.(2)画数轴分析可得关于关于的不等式,从而可求得的范围.试题解析:解:(1)(2)【考点】集合的运算.9.在①;②;③;④上述四个关系中,错误的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】,所以①错;,所以②错;③④正确.【考点】1.元素与集合的关系;2.集合与集合的关系.10.已知集合,,则A.或B.C.D.【答案】B【解析】由交集的定义可知,,故选B.【考点】集合的运算及表示.【易错点睛】本题主要考查集合的运算与集合的表示方法,属容易题.集合A中的代表元素用的字母为,集合B中的代表元素用的字母为,学生会误认为是两个不同类型的集合,选D,即对两个集合均为数集的含义不清楚导致错误.11.设全集是实数集.,.(1)当时,求和;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)由题意,求出集合,然后将代入就交集和并集即可;(2)若分和求出的取值范围,周求并集即可试题解析:(1)根据题意,由于,当时,,而,所以,,(2),若,则,若,则,,综上,【考点】集合的运算,子集12.(10分)已知,。

高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。

高一数学必修一经典题型举一反三——函数中的数学思想【解析版】

高一数学必修一经典题型举一反三——函数中的数学思想【解析版】

.高一数学必修一经典题型举一反三(新课标)突破 3 函数中的数学思想【考查角度 1 分类讨论思想】方法导入本章分类讨论思想主要用于含参型函数、分段函数的性质研究 第 1 步:明确分类的标准;步骤第 2 步:分类研究各种情形下函数的性质;第 3 步:得出正确的结论.反思应用分类讨论思想解决问题的关键是对分类标准的确定,分类要做到不重不漏.【例 1】(2019 秋 小店区校级期中)已知定义在 R 上的奇函数 f (x )),当 x >0 时,f (x ))=2x +3.(1)求 f (x ))的解析式;(2)若 f (a )<7,求实数 a 的取值范围.【思路分析】(1)根据 f (x )是定义在 R 上的奇函数,当 x >0 时,f (x )=2x +3.即可求解 x <0 的解析,可得结论;(2)根据 f (x ))的解析式,分类求解实数 a 的取值范围.【答案】解:(1)由题意,f (x )是定义在 R 上的奇函数,f (﹣x )=﹣f (x ),f (0)=0.当 x >0 时,f (x )=2x +3.那么:当 x <0,则﹣x >0,∴f (﹣x )=﹣2x +3.即﹣f (x )=﹣2x +3.∴f (x )=2x ﹣3, >故 f (x ))的解析式为: ,;, <(2)由 f (a )<7,当 a >0 时,可得 2a +3<7,∴0<a <2.当 a =0 时,可得 0<7 成立.当 a <0 时,可得 2a ﹣3<7,∴a <0.综上可得实数 a 的取值范围是(﹣∞,2)【点睛】本题考查了函数解析式的求法,以及分段函数不等式的解法,属于基础题.【练 1.1】已知函数 f (x )=x 2 (x ≠0).(1)判断 f (x )的奇偶性,并说明理由;(2)若 f (1)=2,试判断 f (x )在[2,+∞)上的单调性.【思路分析】(1)利用函数奇偶性的定义进行判断,要对 a 进行分类讨论.(2)由 f (1)=2,确定 a 的值,然后利用单调性的定义进行判断和证明.【答案】解:(1)当 a =0 时,f (x )=x 2,f (﹣x )=f (x ),函数是偶函数.当 a ≠0 时,f (x )=x 2(x ≠0,常数 a ∈R ),取 x =±1,得 f (﹣1)+f (1)=2≠0;f (﹣1)﹣f (1)=﹣2a ≠0,∴f (﹣1)≠﹣f (1),f (﹣1)≠f (1).∴函数 f (x )既不是奇函数也不是偶函数.(2)若 f (1)=2,即 1+a =2,解得 a =1,这时 f (x )=x 2 .任取 x 1,x 2∈[2,+∞),且 x 1<x 2,则 f (x 1)﹣f (x 2)()=(x 1﹣x 2)(x 1+x 2)=(x 1﹣x 2)[(x 1+x 2)],由于 x 1≥2,x 2≥2,且 x 1<x 2,∴x 1﹣x 2<0,x 1+x 2>, 所以 f (x 1)<f (x 2),故 f (x )在[2,+∞)上是单调递增函数.【点睛】本题主要考查函数奇偶性和单调性的应用,要熟练掌握函数奇偶性和单调性的应用.【练 1.2】(2019 春•龙凤区校级月考)已知二次函数 f (x )的图象过点, , , ,且最小值为 .(Ⅰ)求函数 f (x )的解析式;(Ⅱ)函数 g (x )=f (x )﹣x 2﹣(1+2m )x +1(m ∈R )在[2,+∞)上的最小值为﹣3,求实数 m 的值.g m , f f 【思路分析】(Ⅰ)根据题意,分析 f (x )的对称轴,设> ,将点(0,1)代入其解析式,解可得 a 的值,即可得答案;(Ⅱ)根据题意,求出 g (x )的解析式,分 m ≤2 与 m >2 两种情况讨论,结合函数的最小值求出 m 的值,综合即可得答案.【答案】解:(Ⅰ)由题意得:二次函数f (x )的图象过点 , , , ,则 f (x )的对称轴为对称轴,设 > ,又 f (x )的图象过点(0,1),代入得2x 2+x +1,,解得 a =2,故 f (x )=2x 2+x +1;(Ⅱ)由已知 g (x )=f (x )﹣x 2﹣(1+2m )x +1=x 2﹣2mx+2,对称轴为直线 x =m ,开口向上,分两种情况:①当 m ≤2 时,函数 g (x )在区间[2,+∞)单调递增,g (x )min =g (2)=6﹣4m =﹣3,得到 ,与 m<2 矛盾.②当 m >2 时,函数 (x )在区间[2, )单调递减,在区间[m +∞)单调递增,从而,得到 或 舍掉与 m >2 矛盾;综上所述: .【点睛】本题考查二次函数的性质,关键是求出该二次函数的解析式,属于基础题.【练 1.3】(2019 春•浉河区校级月考)已知函数 (x )是定义在 R 上的偶函数,且当 x ≤0 时,(x )=x 2+2x .(1)求函数 f (x )(x ∈R )的解析式;(2)若函数 g (x )=f (x )﹣2ax +1(x ∈[1,2]),求函数 g (x )的最小值 h (a )的表达式.【思路分析】(1)根据偶函数的性质进行转化求解即可.(2)求出 g (x )的表达式,结合一元二次函数最值性质进行求解即可.【答案】解:(1)∵f (x )是偶函数,∴若 x >0,则﹣x <0,则当﹣x <0 时,f (﹣x )=x 2﹣2x =f (x ),即当 x >0 时,f (x )=x 2﹣2x ..., 即 f (x ) .,>(2)当 x ∈[1,2]时,g (x )=f (x )﹣2ax +1=x 2﹣2x ﹣2ax +1=x 2﹣(2+2a )x +1,对称轴为 x =1+a ,若 1+a ≤1,即 a ≤0 时,g (x )在[1,2]上为增函数,则 g (x )的最小值为 h (a )=g (1)=﹣2a ,若 1+a ≥2,即 a ≥1 时,g (x )在[1,2]上为减函数,则 g (x )的最小值为 h (a )=g (2)=1﹣4a ,若 1<1+a <2,即 0<a <1 时,g (x )的最小值为 h (a )=g (1+a )=﹣a 2﹣2a ,,即 h (a ) ,< < . ,【点睛】本题主要考查函数解析式的求解,结合偶函数的性质以及一元二次函数函数单调性的性质是解决本题的关键.【考查角度 2 数形结合思想】方法导入在函数问题中,数形结合思想常用于解方程、解不等式、求函数的值域等问题 第 1 步:构造函数;步骤第 2 步:画出函数图象;第 3 步:借助函数图象直观求解.反思以形助数是解决函数问题的常见手段,画准图象是求解的关键 【例 2】(2019•铁岭模拟)设奇函数 f (x )的定义域为[﹣5,5],若当 x ∈[0,5]时,f (x )的图象如图,则不等式 f (x )≤0 的解集为 [﹣2,0]∪[2,5] .【思路分析】根据奇函数关于原点对称的性质即可得到结论.【答案】解:由图象可知:当 x >0 时,f (x )≤0 解得 2≤x ≤5,f (x )≥0 解得 0≤x ≤2;当 x <0 时,﹣x >0,因为 f (x )为奇函数,所以 f (x )≤0,【练2.2】对a,b∈R,记max{a,b},f||即﹣f(﹣x)≤0⇒f(﹣x)≥0⇒0≤﹣x≤2,解得﹣2≤x≤0.综上,不等式f(x)≤0的解集为{x|﹣2≤x≤0,或2≤x≤5}.故答案为:[﹣2,0]∪[2,5].【点睛】本题主要考查不等式的求解,根据奇函数的对称性是解决本题的关键.【练2.1】(2019秋•清流县校级期中)已知奇函数f(x)在x≥0时的图象如图所示,则不等式xf(x)<0的解集(﹣2,﹣1)∪(1,2)..【思路分析】由f(x)是奇函数得函数图象关于原点对称,由xf(x)<0可得x与f(x)符号相反,根据奇函数的对称性可求得结果【答案】解:∵xf(x)<0①当x>0时,f(x)<0,结合函数的图象可得,1<x<2,(2)x<0时,f(x)>0,根据奇函数的图象关于原点对称可得,﹣2<x<﹣1,∴不等式xf(x)<0的解集为(﹣2,﹣1)∪(1,2).故答案为:(﹣2,﹣1)∪(1,2).【点睛】由函数的奇偶性得出整个图象,分类讨论的思想得出函数值的正负,数形结合得出自变量的范围.,<函数(x)=max{|x+1|,x﹣2|}(x∈R)的最小值是.【思路分析】本题考查新定义函数的理解和解绝对值不等式的综合类问题.在解答时应先根据x+1|和|x﹣2|的大小关系,结合新定义给出函数f(x)的解析式,再通过画函数的图象即可获得问题的解答.【答案】解:由|x+1|≥|x﹣2|⇒(x+1)2≥(x﹣2)2⇒x,故f(x),<其图象如右,则.故答案为:.【点睛】本题考查新定义函数的理解和解绝对值不等式等问题,属于中档题.在解答过程当中充分考查了同学们的创新思维,培养了良好的数学素养.【练2.3】(2018•丰台区一模)函数y=f(x)是定义域为R的偶函数,当x≥0时,函数f(x)的图象是由一段抛物线和一条射线组成(如图所示).①当x∈[﹣1,1]时,y的取值范围是[1,2];②如果对任意x∈[a,b](b<0),都有y∈[﹣2,1],那么b的最大值是﹣2.【思路分析】①根据f(x)是偶函数,图象关于y轴对称,结合图象可得y的取值范围.②当x≥0时,设抛物线的方程为y=ax2+b x+c,求解解析式,根据f(x)是定义域为R的偶函数,可得x<0的解析式,令y=1,可得x对应的值,结合图象可得b的最大值.【答案】解:①根据f(x)是偶函数,图象关于y轴对称,当x∈[﹣1,1]时,值域为x∈[0,1]时相同,可得y的取值范围是[1,2].②当x≥0时,设抛物线的方程为f(x)=ax2+b x+c,图象过(0,1),(1,2),(3,﹣2),带入计算可得:a=﹣1,b=2,c=1,∴f(x)=﹣x2+2x+1,.当 x <0 时,﹣x >0.∴f (﹣x )=﹣x 2﹣2x +1即 f (x )=﹣x 2﹣2x +1.令 y =1,可得 1=﹣x 2﹣2x +1.解得:x =﹣2.结合图象可得 b 的最大值为﹣2.故答案为:[1,2];﹣2.【点睛】本题主要考查函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系,偶函数的图象特征.属于基础题.【考查角度 3 转化思想】方法导入在本章中,转化思想常用于求函数值,解决不等式恒成立或有解等问题 第 1 步:寻找转化的途径;步骤第 2 步:将所给的问题转化为函数性质问题;第 3 步:通过研究函数的性质使问题转化求解.转化的过程是一个探索的过程,抓住函数的内在联系,通过一步一步转化才能反思使得结果慢慢显现出来.【例 3】(2019 春•嘉兴期末)已知函数 f (x )=x 2+ax +2.(Ⅰ)当 a =3 时,解不等式 f (x )<0;(Ⅱ)当 x ∈[1,2]时,f (x )≥0 恒成立,求 a 的取值范围.【思路分析】(Ⅰ)当 a =3 时,利用二次不等式求解解不等式 f (x )<0 即可;(Ⅱ)当 x ∈[1,2]时,f (x )≥0 恒成立,推出 a 的表达式,利用函数的单调性求解表达式的最大值,即可得到 a 的取值范围.【答案】解:(Ⅰ)当 a =3 时,一元二次不等式 x 2+3x +2<0 的解为﹣2<x <﹣1(Ⅱ)当 x ∈[1,2]时,x 2+ax +2≥0 恒成立,即恒成立,令因,, 的最大值为故.【点睛】本题考查函数与方程的应用,考查转化思想以及函数的单调性的应用,考查计算能力.【练 3.1】(2019 春•哈尔滨期中)已知函数 f (x )=x 2+2x +a .(1)当a=2时,求不等式f(x)>1的解集(2)若对于任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【思路分析】(1)解一元二次不等式可得;(2)对于任意x∈[1,+∞),f(x)>0恒成立⇔﹣a<x2+2x=(x+1)2﹣1,然后转化为最小值可得.【答案】解:(1)a=2时,x2+2x+2>1⇒x2+2x+1>0⇒x≠﹣1,故不等式f(x)>1的解集为{x|x≠﹣1}(2)对于任意x∈[1,+∞),f(x)>0恒成立⇔﹣a<x2+2x=(x+1)2﹣1,∵x≥1,∴y=(x+1)﹣1为递增函数,∴x=1时,函数取得最小值3,∴﹣a<3,∴a>﹣3.【点睛】本题考查了函数恒成立问题,属中档题.【练3.2】已知定义在[﹣2,2]上的偶函数f(x)满足:当x∈[0,2]时,.(1)求函数f(x)的解析式;(2)设函数g(x)=ax﹣2﹣a(a>0),若对于任意的x1,x2∈[﹣2,2],都有g(x1)<f(x2)成立,求实数a的取值范围.【思路分析】(1)根据题意,设x∈[﹣2,0],则﹣x∈[0,2],由函数的解析式可得f(﹣x)的解析式,进而利用函数奇偶性的性质分析可得f(x)的表达式,综合即可得答案;(2)根据题意,求出函数f(x)的最小值与g(x)的最大值,分析可得f(x)min>g(x)max,解即可得答案.【答案】解:(1)根据题意,设x∈[﹣2,0],则﹣x∈[0,2],从而,因为f(x)定义x∈[﹣2,2]在偶函数,所以因此,,,,,(2)因为对任意x1,x2∈[﹣2,2],都有g(x1)<f(x2)成立,所以g(x)max<f(x)min又因为f(x)是定义在[﹣2,2]上的偶函数.所以f(x)在区间[﹣2,0]和区间[0,2]上的值域相同.当x∈[﹣2,0]时,.设,则,函数化为,,,则f(x)min=0又 g (x )max =g (2)=a ﹣2所以 a ﹣2<0 即 a <2,因此,a 的取值范围为 0<a <2.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及函数的恒成立问题,注意将恒成立问题转化为函数的最值问题.【练 3.3】(2019 秋•沈阳期中)已知定义在 R 上的函数 f (x ),对任意 a ,b ∈R ,都有 f (a +b )=f (a )+f (b ),当 x >0 时,f (x )<0;(1)判断 f (x )的奇偶性;(2)若 f (﹣kx 2)+f (kx ﹣2)>0 对任意的 x ∈R 恒成立,求实数 k 的取值范围.【思路分析】(1)先计算 f (0),再令 b =﹣a 得出 f (a )=﹣f (a ),结论得证;(2)判断 f (x )的单调性,根据函数性质和单调性列出恒等式求出 k 的范围.【答案】解:(1)令 a =b =0 可得 f (0)=2f (0),∴f (0)=0,令 b =﹣a 得 f (0)=f (a )+f (﹣a )=0,∴f (a )=﹣f (﹣a ),由 a 的任意选可知 f (x )=﹣f (x )恒成立,∴函数 f (x )在 R 上为奇函数.(2)设 x 1<x 2,则 f (x 2)=f (x 2﹣x 1+x 1)=f (x 2﹣x 1)+f (x 1),∵x 1<x 2,∴x 2﹣x 1>0,∴f (x 2﹣x 1)<0,∴f (x 2)﹣f (x 1)=f (x 2﹣x 1)<0,∴f (x )是 R 上的减函数.∵f (﹣kx 2)+f (kx ﹣2)>0 对任意的 x ∈R 恒成立,∴f (﹣kx 2+kx ﹣2)>f (0)对任意的 x ∈R 恒成立,∴﹣kx 2+kx ﹣2<0 对任意的 x ∈R 恒成立,当 k =0 时显然成立,当 k ≠0 时,得< < ,解得 0<k <8,综上所述 k 的范围为[0,8]【点睛】本题考查了抽象函数的奇偶性与单调性判断,函数恒成立问题,属于中档题.【趁热打铁】f 1.(2019 春•桂林期末)已知偶函数 f (x )在[0,+∞)上单调递减,f (2)=0,则满足不等式 f (x )>0的实数 x 的取值范围是 (﹣2,2) .【思路分析】可以根据该函数在[0,+∞)上单调递减,(2)=0,是偶函数,大体画出该函数图象的草图,结合图象可列出关于 x 的不等式.【答案】解:∵偶函数 f (x )在[0,+∞)上单调递减,且 f (2)=0,∴该函数在(﹣∞,0)上递增,且 f (﹣2)=0,∴可画出该函数的图象的草图如下:可见,当﹣2<x <2 时,f (x )>0.故答案为:(﹣2,2).【点睛】抽象函数的问题常采用数形结合的方法解决问题,本题作为填空题,采用数形结合思想来解,既快捷,有准确.2.已知函数 f (x )是定义在(﹣3,3)上的偶函数,当﹣3<x ≤0 时,f (x )的函数图象如图所示,则不等式 x •f (x )≥0 的解集为{x|﹣1≤x ≤0 或 1≤x <3} .【思路分析】结合函数的性质,函数的图象,对 x ≤0 和 x ≥0 进行讨论,分别求出不等式的解,最后求并集.【答案】解:当 x ≤0 时,由不等式 xf (x )≥0,可得 f (x )≤0,则﹣1≤x ≤0,∵函数 f (x )是定义在(﹣3,3)上的偶函数,∴x ≥0 时,当 0≤x ≤1 时,f (x )≤0,当 1≤x <3 时,f (x )≥0,∴当 x ≥0 时,由不等式 xf (x )≥0,可得 f (x )≥0,则 1≤x <3,f ,f (f f∴不等式 xf (x )≥0 的解集为:{x|﹣1≤x ≤0 或 1≤x <3}.故答案为:{x|﹣1≤x ≤0 或 1≤x <3}.【点睛】本题主要考查函数的奇偶性及应用,考查运用分类法解决不等式的能力,本题属于中档题.3.如图所示,函数 y =f (x )的图象由两条射线和三条线段组成,若∀x ∈R ,f (x )>f (x ﹣1),则正实数a 的取值范围为 (0, ) .< 【思路分析】由已知中的函数图象可得(4a )=a (﹣4a )=﹣a ,若∀x ∈R , x )>(x ﹣1),则 ,<解不等式可得正实数 a 的取值范围.【答案】解:由已知可得:a >0,且 f (4a )=a ,f (﹣4a )=﹣a ,若∀x ∈R ,f (x )>f (x ﹣1),则<,解得 a < ,<故正实数 a 的取值范围为:(0, ),故答案为:(0, )【点睛】本题考查的知识点是函数的图象,其中根据已知分析出不等式组,是解答的关键.4.(2019 春•香坊区校级期末)已知函数 f (x )=2x 2﹣kx +8.(1)若函数 g (x )=f (x )+2x 是偶函数,求 k 的值;(2)若函数 y =f (x )在[﹣1,2]上,f (x )≥2 恒成立,求 k 的取值范围.【思路分析】(1)利用函数的奇偶性,直接求解 k 的值即可.(2)利用函数恒成立,转化求解函数的最小值大于等于 2,求解即可.【答案】解:(1)函数 f (x )=2x 2﹣kx +8.函数 g (x )=2x 2﹣kx +8+2x 是偶函数,可得﹣k +2=0,解得 k =2;(2)函数y=2x2﹣kx+8在[﹣1,2]上,f(x)≥2恒成立,函数是二次函数,对称轴为x,当时,必有2+k+8≥2,解得k∈[﹣8,﹣4],当∈(﹣1,2]时,有:,解得k∈(﹣4,4],当∈(2,+∞)时,8﹣8k+8≥2,解得k,无解.综上所述,k的取值范围是:,.【点睛】本题考查函数的奇偶性,二次函数的最值的求法和不等式恒成立问题的解法,考查转化思想和分类讨论的思想,考查运算能力,属于中档题.5.(2019春•顺德区期末)设二次函数f(x)=x2+mx.(Ⅰ)若对任意实数m∈[0,1],f(x)>0恒成立,求实数x的取值范围;(Ⅱ)若存在x0∈[﹣3,4],使得f(x0)≤﹣4成立,求实数m的取值范围.【思路分析】(I)m的范围已知,要求x的范围,所以要把m当成自变量,把x当成参数来考虑;(II)f(x)是开口向上的二次函数,性质比较清楚,所以直接讨论对称轴的位置即可.【答案】(I)由题意,xm+x2>0对于m∈[0,1]恒成立,令g(m)=xm+x2.i.当x<0时,g(m)在[0,1]上单调递减,所以只需要g(1)=x+x2>0,解得x∈(﹣∞,﹣1)∪(0,+∞);ii.当x=0时,g(m)=0,所以不成立;iii.当x>0时,g(m)在[0,1]上单调递增,所以只需要g(0)=x2>0,解得x≠0.综上x∈(﹣∞,﹣1)∪(0,+∞).(II)二次函数f(x)开口向上,对称轴为x.i.当m>6时,<3,所以f(x)在区间[﹣3,4]上单调递增.存在x∈[﹣3,4],使得f(x0)≤﹣4,只需要f(﹣3)=9﹣3m≤﹣4,解得m,又m>6,所以m>6;ii.当﹣8≤m≤6时,﹣34,所以f(x)在区间[﹣3,4]上得最小值为f().存在x∈[﹣3,4],4,解得m≤﹣4或m≥4,又﹣8≤m≤6,所以m∈[﹣8,﹣4]使得f(x0)≤﹣4,只需要f()∪[4,6];iii.当m<﹣8时,>4,所以f(x)在区间[﹣3,4]上单调递减.存在x∈[﹣3,4],使得f(x)≤﹣4,00只需要f(4)=16+4m≤﹣4,解得m≤﹣5,又m<﹣8,所以m<﹣8.综上,m∈(﹣∞,﹣4]∪[4,+∞).【点睛】(I)一般来讲,已知范围得变量要作为自变量,要求范围得变量要作为参数;(II)分参也可以完成解答,比较两种方法,选用顺手的方法即可.6.(2019春•温州期末)设函数f(x)=mx2﹣2mx﹣3.(1)若m=l,解不等式f(x)>0:(2)若对一切实数x,f(x)<0恒成立,求实数m的取值范围.【思路分析】(1)将m=l,代入不等式f(x)>0,利用一元二次不等式求解即可;(2)若对一切实数x,f(x)<0恒成立,讨论含有m的不等式,求解不等式可得实数m的取值范围.【答案】解:函数f(x)=mx2﹣2mx﹣3.(1)若m=l,解不等式f(x)=x2﹣2x﹣3,f(x)>0:即:f(x)=x2﹣2x﹣3>0,即:(x﹣3)(x+1)>0,所以:此不等式的解集为:{x|x>3或x<﹣1};(2)对一切实数x,f(x)<0恒成立,讨论含有m的不等式,当m=0时,f(x)=﹣3<0,符合题意,当m≠0时,由题意:m<0,且4m2+12m<0,解得:﹣3<m<0,综上:﹣3<m≤0;故实数m的取值范围:{m|﹣3<m≤0}.【点睛】本题主要考查了函数恒成立问题的求解,一元二次不等式的解法,分类讨论及转化思想的应用,属于中档题.7.(2019秋•文昌校级期中)已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正常数),当x=0时,函数f(x)=g(x).(1)求a的值;(2)求函数f(x)+g(x)的单调递增区间.【思路分析】(1)由题意可得f(0)=g(0),解方程可得a;(2)讨论当x≥1时,当x<1时,去掉绝对值,结合二次函数的单调性,即可得到所求增区间.【答案】解:(1)由题意,f(0)=g(0),即|a|=1又a>0,所以a=1;(2)f(x)+g(x)=|x﹣1|+x2+2x+1,当x≥1时,f(x)+g(x)=x2+3x,它在[1,+∞)上单调递增;当x<1时,f(x)+g(x)=x2+x+2,它在[,1)上单调递增.则函数f(x)+g(x)的单调递增区间为[1,+∞)∪[,1)=[,+∞).【点睛】本题考查函数的单调区间的求法,注意运用分类讨论思想方法,以及二次函数的单调性,考查运算能力,属于中档题.。

【压轴卷】高一数学下期中试题含答案(1)

【压轴卷】高一数学下期中试题含答案(1)

【压轴卷】高一数学下期中试题含答案(1)一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.水平放置的ABC V 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .83.如图为某几何体的三视图,则该几何体的表面积为( )A .202π+B .203π+C .242π+D .243π+4.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 5.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .2B .32C 322D .226.设直线,a b 是空间中两条不同的直线,平面,αβ是空间中两个不同的平面,则下列说法正确的是( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥b ,b ∥α,则a ∥αC .若a ∥α,α∥β,则a ∥βD .若α∥β,a α⊂,则a ∥β7.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b8.正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+25 9.点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256π B .8π C .2516π D .254π 10.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC .2aD .22a 11.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1012.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成60︒角 ④DM 与BN 是异面直线以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4二、填空题13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ=l ,现有下列结论:①l ∥平面ABCD ;②l ⊥AC ;③直线l 与平面BCC 1B 1不垂直;④当x 变化时,l 不是定直线.其中不成立的结论是________.(写出所有不成立结论的序号)14.一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的表面上,则球O 的表面积为________15.如图,在四棱锥P ABCD -中,PA ⊥底面,,//,2,1ABCD AD AB AB DC AD DC AP AB ⊥====,若E 为棱PC 上一点,满足BE AC ⊥,则PE EC=__________.16.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.17.如图,在ABC V 中,AB BC ⊥,SA ⊥平面ABC ,DE 垂直平分SC ,且分别交AC ,SC 于点D ,E ,又SA AB =,SB BC =,则二面角E BD C --的大小为_______________.18.在棱长为1的正方体1111ABCD A B C D -中,M 是1BB 的中点,直线1D M 与平面ABCD 交于点N ,则线段AN 的长度为________19.在正方体1111ABCD A B C D -中,E 是棱1DD 的中点,则直线BE 和平面11ABB A 所成的角的正弦值为_____________.20.直线:l y x b =+与曲线2:1C y x =-有两个公共点,则b 的取值范围是______.三、解答题21.如图,梯形ABCD 中,AB ∥CD ,,E F 是线段AB 上的两点,且DE AB ⊥,CF AB ⊥,12AB =,5AD =,42BC =,4DE =.现将△ADE ,△CFB 分别沿DE ,CF 折起,使两点,A B 重合于点G ,得到多面体CDEFG (1)求证:平面DEG ⊥平面CFG ;(2)求多面体CDEFG 的体积22.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,平面PBD ⊥平面ABCD ,2AD =,25PD =,4AB PB ==,60BAD ∠=︒.(1)求证:AD PB ⊥;(2)E 是侧棱PC 上一点,记PE PCλ=,当PB ⊥平面ADE 时,求实数λ的值 23.已知点(3,3)M ,圆22:(1)(2)4C x y -+-=.(1)求过点M 且与圆C 相切的直线方程;(2)若直线40()ax y a -+=∈R 与圆C 相交于A ,B 两点,且弦AB 的长为23实数a 的值.24.已知圆22:(2)(3)4C x y -+-=外有一点()41-,,过点P 作直线l . (1)当直线l 与圆C 相切时,求直线l 的方程;(2)当直线l 的倾斜角为135︒时,求直线l 被圆C 所截得的弦长.25.(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形: ①直线l 在平面α内;②直线m 不在平面α内;③直线m 与平面α交于点A ;④直线l 不经过点A .(2)如图,在长方体1111ABCD A B C D -中,E 为棱1BB 的中点,F 为棱1CC 的三等分点,画出由1,,D E F 三点所确定的平面β与平面ABCD 的交线.(保留作图痕迹)26.如图所示,直角梯形ABCD 中,//AD BC ,,AD AB ⊥22,AB BC AD ===四边形EDCF 为矩形,2DE =,平面EDCF ⊥ABCD .(1)求证://DF 平面ABE ;(2)求二面角B EF D --二面角的正弦值;(3)在线段BE 上是否存在点P ,使得直线AP 与平面BEF 6存在,求出线段BP 的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=o,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积.【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=o,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果. 2.B解析:B【解析】【分析】依题意由111A B C △的面积为22114B C =,所以8BC =,2AC =,根据勾股定理即可求AB .【详解】依题意,因为111A B C △的面积为2 所以1111122sin 452AC B C ︒=⨯⋅=1112222B C ⨯⨯⨯,解得114B C =, 所以8BC =,2AC =,又因为AC BC ⊥, 由勾股定理得:22228268217AB AC BC =+=+==故选B .【点睛】本题考查直观图还原几何图形,属于简单题. 利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与x '轴平行且相等;二是与y 轴平行的线段仍然与y '轴平行且长度减半. 3.B解析:B【解析】该几何体是一个正方体与半圆柱的组合体,表面积为2215221122032S πππ=⨯+⨯⨯+⨯⨯=+,故选B . 4.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 5.B解析:B【解析】【分析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可.【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -, 所以圆心为()0,0.=.故P 的轨迹方程为2222x y m +=. 又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值.16==,故m =故选:B【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型. 6.D解析:D【解析】【分析】利用空间直线和平面的位置关系对每一个选项逐一分析判断得解.【详解】A. 若a ∥α,b ∥α,则a 与b 平行或异面或相交,所以该选项不正确;B. 若a ∥b ,b ∥α,则a ∥α或a α⊂,所以该选项不正确;C. 若a ∥α,α∥β,则a ∥β或a β⊂,所以该选项不正确;D. 若α∥β,a α⊂,则a ∥β,所以该选项正确.故选:D【点睛】本题主要考查空间直线平面位置关系的判断,意在考查学生对这些知识的理解掌握水平.7.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 8.A解析:A【解析】【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4, 所以1122,25,42EF BE C F BC ====所以所求截面的周长为2+5故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.9.D解析:D【解析】试题分析:根据题意知,ABC V 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S V 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =V ,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO V 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D.考点:球内接多面体,球的表面积.10.D解析:D【解析】【分析】设H ,I 分别为1CC 、11C D 边上的中点,由面面平行的性质可得F 落在线段HI 上,再求HI 的长度即可.【详解】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点,则ABEG 四点共面,且平面1//A BGE 平面1B HI ,又1//B F Q 面1A BE ,F ∴落在线段HI 上,Q 正方体1111ABCD A B C D -中的棱长为a ,1122HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是2a . 故选D .【点睛】本题考查了面面平行的性质及动点的轨迹问题,属中档题.11.D解析:D【解析】【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解.【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C , 当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =, 再由l 经过圆心时弦长最长为直径210r =,所以弦长AB 的取值范围是[]6,10.故选:D.【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.B解析:B【解析】【分析】把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确.∴正确命题的个数是2个.故选:B .【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.二、填空题13.④【解析】【详解】连接BDB1D1∵A1P=A1Q =x∴PQ∥B1D1∥BD∥EF 则PQ∥平面MEF 又平面MEF∩平面MPQ =l∴PQ∥ll∥EF∴l∥平面ABCD 故①成立;又EF⊥AC∴l⊥AC 故解析:④【解析】【详解】连接BD ,B 1D 1,∵A 1P =A 1Q =x ,∴PQ ∥B 1D 1∥BD ∥EF ,则PQ ∥平面MEF , 又平面MEF ∩平面MPQ =l ,∴PQ ∥l ,l ∥EF ,∴l ∥平面ABCD ,故①成立;又EF ⊥AC ,∴l ⊥AC ,故②成立;∵l ∥EF ∥BD ,故直线l 与平面BCC 1B 1不垂直,故③成立;当x 变化时,l 是过点M 且与直线EF 平行的定直线,故④不成立.即不成立的结论是④.14.【解析】【分析】设此直三棱柱两底面的中心分别为则球心为线段的中点利用勾股定理求出球的半径由此能求出球的表面积【详解】∵一个直三棱柱的每条棱长都是且每个顶点都在球的球面上∴设此直三棱柱两底面的中心分别 解析:21π【解析】【分析】设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,利用勾股定理求出球O 的半径2R ,由此能求出球O 的表面积.【详解】∵一个直三棱柱的每条棱长都是3,且每个顶点都在球O 的球面上,∴设此直三棱柱两底面的中心分别为12,O O ,则球心O 为线段12O O 的中点,设球O 的半径为R ,则2223232132324R ⎛⎫⎛⎫=+⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭∴球O 的表面积2S 4R 21ππ== .故答案为:21π.【点睛】本题考查球的表面积的求法,空间思维能力,考查转化化归思想、数形结合思想、属于中档题.15.【解析】【分析】过作交于连接根据可得平面通过解三角形求得的值也即求得的值【详解】过作交于连接根据可得平面故由于所以由于所以在直角三角形中所以而故根据前面证得可得【点睛】本小题主要考查空间点位置的确定 解析:13 【解析】 【分析】 过B 作BF AC ⊥,交AC 于F ,连接EF ,根据BE AC ⊥,可得AC ⊥平面BEF ,通过解三角形求得:AF FC 的值,也即求得PE EC 的值. 【详解】过B 作BF AC ⊥,交AC 于F ,连接EF ,根据BE AC ⊥,可得AC ⊥平面BEF ,故AC EF ⊥,由于PA AC ⊥,所以//EF PA .由于AD CD =,所以π4DAC BAC ∠=∠=.在直角三角形ABF 中,π1,4AB BAF =∠=,所以2222AF AB ==,而22AC =,故:1:3AF FC =.根据前面证得//EF PA ,可得::1:3PE EC AF FC ==.【点睛】本小题主要考查空间点位置的确定,考查线面垂直的证明,考查简单的解特殊角三角形的知识.属于基础题.16.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角 解析:5 【解析】 【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离.【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,151,,22AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得5BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题. 17.60°【解析】【分析】首先证得是二面角的平面角解直角三角形求得的大小【详解】由于是的中点所以由于所以平面所以由于平面所以而所以平面所以所以是二面角的平面角设则所以所以在中所以所以故答案为:【点睛】本 解析:60°【解析】【分析】首先证得EDC ∠是二面角E BD C --的平面角,解直角三角形求得EDC ∠的大小.【详解】由于SB BC =,E 是SC 的中点,所以SC BE ⊥,由于,SC DE DE BE E ⊥⋂=,所以SC ⊥平面BDE ,所以SC BD ⊥.由于SA ⊥平面ABC ,所以SA BD ⊥,而SA SC S ⋂=,所以BD ⊥平面SAC ,所以,BD DC BD DE ⊥⊥,所以EDC ∠是二面角E BD C --的平面角.设1SA AB ==,则SB BC ==2SC =,所以在Rt SAC ∆中,12SA SC =,所以30SCA ∠=o ,所以60EDC ∠=o . 故答案为:60o【点睛】 本小题主要考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题. 18.【解析】【分析】在平面中与的交点即为求出长即可求解【详解】连在正方体中所以四边形为矩形相交其交点为平面的交点是的中点为的中位线为中点正方体各棱长为1故答案为:【点睛】本题考查空间线面位置关系确定直线【解析】【分析】在平面11BB D D 中,1D M 与BD 的交点即为N ,求出BN 长,即可求解.【详解】连BD ,在正方体1111ABCD A B C D -中,11111,//,BB DD BB DD DD BD =⊥,所以四边形11BB D D 为矩形,1,BD D M 相交,其交点为1D M 平面ABCD 的交点N ,Q M 是1BB 的中点,111,//2BM DD BM DD ∴=, BM 为1DD N V 的中位线,B 为DN 中点,正方体各棱长为1,BN BD ∴==,1,135ABN AB BN ABN ==∠=o V ,2222cos AN AB BN AB BN ABN =+-⋅⋅∠2321252=+⨯⨯⨯=,5AN ∴=. 故答案为:5.【点睛】本题考查空间线面位置关系,确定直线与平面交点是解题的关键,意在考查直观想象能力,属于中档题.19.【解析】【分析】作出直线和平面所成的角解直角三角形求得线面角的正弦值【详解】设为的中点连接根据正方体的性质可知平面所以是直线和平面所成的角设正方体的边长为在中所以故答案为:【点睛】本小题主要考查线面解析:23【解析】【分析】作出直线BE 和平面11ABB A 所成的角,解直角三角形求得线面角的正弦值.【详解】设F 为1AA 的中点,连接,,EF EB BF ,根据正方体的性质可知EF ⊥平面11ABB A ,所以EBF ∠是直线BE 和平面11ABB A 所成的角.设正方体的边长为2,在Rt EBF ∆中2EF =,2222213BE =++=,所以2sin 3EF EBF BE ∠==. 故答案为:23【点睛】本小题主要考查线面角的求法,考查空间想象能力,属于基础题.20.【解析】【分析】由题意曲线表示以原点为圆心1为半径的半圆根据图形得出直线与半圆有两个公共点时抓住两个关键点一是直线与圆相切时二是直线过时分别求出的值即可确定的范围【详解】如图所示是个以原点为圆心1为 解析:2⎡⎣【解析】【分析】由题意,曲线2:1C y x =-表示以原点为圆心,1为半径的半圆,根据图形得出直线:l y x b =+与半圆有两个公共点时抓住两个关键点,一是直线:l y x b =+与圆相切时,二是直线:l y x b =+过()1,0A -时分别求出b 的值,即可确定b 的范围。

(考点精选)高一数学典型大题集合训练(含答案解析)

(考点精选)高一数学典型大题集合训练(含答案解析)


故答案为:.
由已知可得

,再由两角和的正切求解.
本题考查一元二次方程根与系数的关系的应用,考查两角和的正切,是基础题.
15. 【答案】 【解析】解:
______.

化切为弦,通分后利用两角差的正弦化简求值. 本题考查三角函数的化简求值,考查两角差的正弦,是基础题.
第 1页共 6页
16.设函数 【答案】


上恒成立
第 5页共 6页





由 得,



上递减, 在

上的最大值为

上的最小值为
所以实数 a的取值范围为

上递增. . .
【解析】
,当
时,可得
,可得
范围即可判断出函数 是否是有界函数.
由题意知,

上恒成立,可得
,亦即

化简整理,通过换元,利用导数研究函数的单调性即可得出. 本题考查了利用导数研究函数的单调性极值与最值、换元法、不等式的解法、有界函数的定义与性质,考查了 推理能力与计算能力,属于难题.
求 的值;

的图象向右平移个单位后,再将所得的图象上所有点的横坐标伸长为原来的 4倍,纵坐标
不变,得到函数
的图象,求

上的最值.
【答案】解: 函数
数,


为偶函
又函数
的图象相邻的两条对称轴间的距离为,

第 4页,共 6页
, ,



的图象向右平移个单位后,可得 的图象;
再将所得的图象上所有点的横坐标伸长为原来的 4倍,纵坐标不变,

高一数学知识讲学专题01 集合 集合间的关系 集合的运算(word档含答案解析)

高一数学知识讲学专题01 集合  集合间的关系  集合的运算(word档含答案解析)

专题一集合、集合与集合的关系、集合的运算知识精讲一知识结构图二.学法指导1.判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.同时还要注意集合中元素的互异性、无序性.2. 集合中的元素具有三个特性,求解与集合有关的字母参数值(范围)时,需借助集合中元素的互异性来检验所求参数是否符合要求.3.解答含有字母的元素与集合之间关系的问题时,要有分类讨论的意识.4.利用集合的关系求参数的范围问题,常涉及两个集合,其中一个为动集合(含参数),另一个为静集合(具体的),解答时常借助数轴来建立变量间的关系,需特别注意端点问题.5.求集合并集的两种基本方法:(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.6.求集合交集的方法为:(1).定义法,(2)数形结合法.(2).若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.三.知识点贯通知识点1 元素与集合相关概念(1)集合中元素的特性:确定性、互异性和无序性.例1.考察下列每组对象,能构成集合的是()①中国各地最美的乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A.③④B.②③④C.②③D.②④知识点二元素与集合的关系(1)属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.(2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.(3)常见的数集及表示符号例题2:已知集合A含有两个元素1和a2,若a∈A,求实数a的值.知识点三集合间的关系1.判断集合关系的方法.1观察法:一一列举观察.2元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.3数形结合法:利用数轴或Venn图.2.集合A中含有n个元素,则有(1)A的子集的个数有2n个.(2)A的非空子集的个数有2n-1个.(3)A的真子集的个数有2n-1个.(4)A的非空真子集的个数有2n-2个.3.空集是任何集合的子集,因此在解A⊆B(B≠∅)的含参数的问题时,要注意讨论A=∅和A≠∅两种情况,前者常被忽视,造成思考问题不全面.例题3 .已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.知识点四集合的运算1.由所有属于集合A或属于集合B的元素组成的集合叫A与B的并集,记作A∪B;符号表示为A∪B={x|x∈A或x∈B}2.并集的性质A∪B=B∪A,A∪A=A,A∪∅=A,A⊆A∪B.3.对于两个给定的集合A、B,由所有属于集合A且属于集合B的元素组成的集合叫A与B 的交集,记作A∩B。

高中数学难题(含答案)

高中数学难题(含答案)

东莞龙文教育高中数学试卷(24)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个项是符合题目要求的。

1.若集合M={-1,0,1},N={0,1,2},则M ∩N 等于 A .{0,1} B .{-1,0,1} C .{0,1,2} D .{-1,0,1,2} 2.i 是虚数单位1+i 3等于 A .i B .-i C .1+i D .1-i 3.若a ∈R ,则“a=1”是“|a|=1”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件4.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。

现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 A .6 B .8 C .10D .125.阅读右图所示的程序框图,运行相应的程序,输出的结果是 A .3 B .11 C .38 D .1236.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的 取值范围是 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)7.如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随 机取一个点Q ,则点Q 取自△ABE 内部的概率等于 A .14 B .13C . 12D . 238.已知函数f (x )=。

若f (a )+f (1)=0,则实数a 的值等于A .-3B .-1C .1D .39.若a ∈(0,2),且sin 2a+cos2a=14,则tana 的值等于A .22 B .33C .2D .310.若a>0,b>0,且函数f (x )=3242x ax bx --在x=1处有极值,则ab 的最大值等于A .2B .3C .6D .911.设圆锥曲线I 的两个焦点分别为F 1,F 2,若曲线I 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线I 的离心率等于 A .1322或B .223或C .122或D .2332或12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n+k 丨n∈Z},k=0,1,2,3,4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数形结合思想
一.作图、识图、用图技巧
(1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行.
(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.
(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究.
(4)利用基本函数图象的变换作图
①平移变换:
y =f (x )――→h >0,右移|h |个单位
h <0,左移|h |个单位
y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位
y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ),
y =f (x )――→0<A <1,纵坐标缩短到原来的A 倍
A >1,纵坐标伸长到原来的A 倍y =Af (x ).
③对称变换:
y =f (x )――→关于x 轴对称y =-f (x ),
y =f (x )――→关于y 轴对称y =f (-x ),
y =f (x )――→关于直线x =a 对称y =f (2a -x ),
y =f (x )――→关于原点对称
y =-f (-x ).
f (x )――→关于原点对称y =-f (-x ). 二、通法归纳与感悟
1.应用数形结合的思想应注意以下数与形的转化
(1)集合的运算及韦恩图;
(2)函数及其图像;
(3)方程(多指二元方程)及方程的曲线;
(4)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可;
(5)对于研究函数、方程或不等式(最值)的问题,可通过函数的图像求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用.
2.运用数形结合的思想分析解决问题时,应把握以下三个原则
(1)等价性原则
在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导.
(2)双向性原则
在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.
例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化.
(3)简单性原则
就是找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单,而不是去刻意追求代数问题运用几何方法,几何问题运用代数方法.
三、利用数形结合讨论函数零点、方程的解或图像的交点
利用数形结合求方程解应注意两点
(1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解.
(2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合.
1. (2013·长沙模拟)若f (x )+1=1f x +1
,当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是( )
A. ⎣⎢⎡⎭
⎪⎫0,12 B. ⎣⎢⎡⎭⎪⎫12,+∞ C. ⎣⎢⎡⎭⎪⎫0,13 D. ⎝ ⎛⎦
⎥⎤0,12 2. 若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]
时,f (x )=1-x 2,函数g (x )=⎩⎪⎨⎪⎧ lg x ,x >0,0,x =0,-1x ,x <0,则函数h (x )=
f (x )-
g (x )在区间[-5,5]内零点的个数是
( )
A .5
B .7
C .8
D .10 解析:C 3.已知函数()12+-=x x f ,
()kx x g =.若方程()()x g x f =有两学科网个不相等的实根,
则实数k 的取值范围是 (A )),(210(B )),(12
1(C )),(21(D )),(∞+2
4.(文)已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )
A .5
B .7
C .9
D .10
6.函数y =11-x
的图象与函数y =2sinπx (-2≤x ≤4)的图象所有交点的横坐标之和等于( ) A .2 B .4
C .6
D .8 二、利用数形结合解不等式或求参数
利用数形结合解不等式应注意的问题
解含参数的不等式时,由于涉及到参数,往往需要讨论,导致运算过程繁琐冗长.如果题设与几何图形有联系,那么利用数形结合的方法,问题将会顺利地得到解决.
7. (1)使log 2(-x )<x +1成立的x 的取值范围是_______.
(2)若不等式|x -2a |≥12
x +a -1对x ∈R 恒成立,则a 的取值范围是________. 8. 当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值
范围为
( )
A .(2,3]
B .[4,+∞)
C .(1,2]
D .[2,4)
5
9. (理)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧
a ,a -
b ≤1,b ,a -b >1,
设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )
A .(-∞,2]∪(-1,32)
B .(-∞,-2]∪(-1,-34)
C .(-1,14)∪(14,+∞)
D .(-1,-34)∪[14,+∞) 10. (理)(2015·安徽理,9)函数f (x )=ax +b x +c 2
的图象如图所示,则下列结论成立的是( )
A .a >0,b >0,c <0
B .a <0,b >0,c >0
C .a <0,b >0,c <0
D .a <0,b <0,c <0
11. (理)已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是( )
A .(-3,-π2)∪(0,1)∪(π2,3)
B .(-π2,-1)∪(0,1)∪(π2
,3) C .(-3,-1)∪(0,1)∪(1,3) D .(-3,-π2
)∪(0,1)∪(1,3) 13.(文)(2014·哈三中二模)对实数a 和b ,定义运算“*”:a *b =⎩
⎨⎧
a ,a -
b ≤1b ,a -b >1,设函数f (x )=(x 2+1)*(x +2),若函数y =f (x )-
c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是
( )
A .(2,4]∪(5,+∞)
B .(1,2]∪(4,5]
C .(-∞,1)∪(4,5]
D .[1,2]
三、利用数形结合求最值
利用数形结合求最值的方法步骤
第一步:分析数理特征,确定目标问题的几何意义.一般从图形结构、图形的几何意义分析代数式是否具有几何意义.
第二步:转化为几何问题.
第三步:解决几何问题.
第四步:回归代数问题.
第五步:回顾反思.应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:(1)比值——可考虑直线的斜率;
(2)二元一次式——可考虑直线的截距;(3)根式分式——可考虑点到直线的距离;(4)根式——可考虑两点间的距离.
14已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足
(a -c )·(b -c )=0,则|c |的最大值是 ( )
A .1
B .2 C. 2 D.22
15.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|
+AC →|AC →
|),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心
C .重心
D .垂心 16.对于任意x ∈R ,函数f (x )表示-x +3,32x +12
,x 2-4x +3 中的较大者,则f (x )的最小值是
( )
A .2
B .3
C .8
D .-1
17.(文)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎨⎧ g x +x +4,x <g x g x -x ,x ≥g x ,则f (x )的值域是( )
A .⎣⎢⎡⎦
⎥⎤-94,0∪(1,+∞) B .[0,+∞) C .⎣⎢⎡⎭⎪⎫-94,+∞ D .⎣⎢⎡⎦
⎥⎤-94,0∪(2,+∞)
18. (理)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( )
A .1
B .12
C .
52 D .22。

相关文档
最新文档