七年级数学去括号解方程
2024年北师大七年级数学上册5.2 第3课时 利用去括号解一元一次方程(课件)

路程是175 km 。 分析:等量关系:这艘船往返的路程相等,即
顺流速度_×__顺流时间_=__逆流速度_×__逆流时间
静水船速 + 水速
静水船速 - 水速
5(x + 5) = 7(x - 5) 解得 x = 30 5(x + 5) = 175
当堂小结 解一元一次方程 _去__括__号____ 移项 合并同类项 系数化为 1
讨论:比较上面两种解法,说说它们的区别.
练一练
1. 解方程:2(x+3)-5(1-x)=3(x-1). 解:去括号,得 2x+6-5+5x=3x-3.
移项,得 2x+5x-3x=5-6-3. 合并同类项,得 4x=-4. 方程两边同时除以 4,得x=-1.
思考交流 思考:两种解方程的方法,说出它们的区别,并与同 伴进行交流。
4. 解下列方程: (1) 6x =-2(3x-5) +10; (2) -2(x+5)=3(x-5+10 (2) -2x-10=3x-15-6
6x +6x=10+10
12x=20
x=
5 3
.
-2x-3x=-15-6+10 -5x=-11 x=151.
5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为 300 元/张和 400 元/张 的两种门票共 8 张,总费用为 2700 元.请问该协会 购买了这两种门票各多少张?
重点:正确用去括号法则解方程。 难点:去括号法则和乘法对加法的分配律的正确使用。
导入新课 去括号规律是什么?
去掉“+( )”,括号内各项的符号不变. 去掉“–( )”,括号内各项的符号改变.
+ (a - b)= a - b - (a - b)= -a + b
5.2解一元一次方程—去括号 课件 人教版(2024)七年级 数学上册

合并同类项,得 2x = -4, 系数化为 1,得 x = -2.
合并得: 6x 2 , 系数化 1 得: x 1 .
3
练习 6 关于 x 的方程 4x 3a 1 6x 2a 1的解与 5 x 3 4x 10 的解互为相反数.
(1)求 3a2 7a 1的值; (2)根据方程解的定义试说明关于 t 的方程 at 2t 有无数解.
某工厂采取节能措施,去年下半年与上半年相比,月平均用电量 减少2 000 kW·h(千瓦·时),全年的用电量为150 000 kW·h(千 瓦·时),这个工厂去年上半年每月平均用电多少度?
【思考】这个问题中的等量关系是什么? 上半年用电量 +下半年用电量 = 全年用电量
一台功率为1 kW的 电器1 h的用电量是
3 ∵y 是正整数,∴假设不成立,即乙同学没有可能拿到 100 分.
去括号解一 元一次方程
去括号 移项 合并同类项 系数化为1
去括号法则 等式性质1 乘法分配律 等式性质2
谢谢各位同学的观看
解: 2 x 1 4x 3
去括号,得 6 2x 4 3x , 去括号,可得: 2x 2 4x 3,
移项,得 2x 3x 6 4 , 移项,可得: 2x 4x 3 2,
合并同类项, 5x 10 , 系数化为 1,得 x 2 .
合并同类项,可得: 2x 1, 系数化为 1,可得: x 1
(2)去括号,得 3x-7x+7 = 3-2x-6.
移项,得 3x-7x+2x = 3-6-7.
合并同类项,得 -2x = -10.
系数化为1,得 x = 5.
一艘船从甲码头到乙码头顺流行驶,用了 2 h;从乙码头返回甲 码头逆流行驶,用了 2.5 h.已知水流的速度是 3 km/h,求船在 静水中的速度.
5.2解一元一次方程+——去括号与去分母+课件++2024-2025学年人教版数学七年级上册

(等式性质2)
巩 固 练 习
解方程:
解:整理,得
去分母(两边乘30),得 去括号,得
合并同类项,得 移项,得
合并同类项,得 系数化为1,得
(分数的基本性质)
(等式性质2) (去括号法则) (乘法分配律逆用) (等式性质1) (乘法分配律逆用)
解:整理,得
去括号,得 移项,得
合并同类项,得 系数化为1,得
(分数的基本性质)
(乘法分配律)
(分数的基本性质) (去括号法则) (等式性质1) (乘法分配律逆用) (等式性质2)
巩 固 练 习
解方程:
解:整理,得
去分母(两边乘30),得 去括号,得 移项,得
合并同类项,得 系数化为1,得
(分数的基本性质)
(等式性质2)
例 题 解 析
解方程:
找分母的最 小公倍数?
0.6和4的最小公倍数是12
直接去分母:两边同乘12
去分母(两边乘12),得
小 结 一
当解系数中分母含有小数的方程时:
(1)可将小数利用分数的基本性质 化成整数,然后再按照解方程的一 般步骤去解; (2)也可直接去分母.
解方程:
变 式 练 习
一级技工 8x-50 二级技工 10x+40
一天3名一级技工粉刷量 比= 8个房间粉刷面积少- 50m2
有一些相同的房间需要粉刷墙面.一天3名一级技工去
粉刷8个房间,结果其中有50m2墙面未未来来得得及及粉粉刷刷;同
样时间内5名二级技工粉刷了10个房间之外,还多粉
刷了另外40m2墙面.每名一级技工比二= 级技工一天多 粉+ 刷10m2墙面,求每个房间需要粉刷的墙面面积.
七年级数学人教版(上册)第1课时利用去括号解一元一次方程

(2)由 4(x-1)=2-3(x-2),得 4x-4=2-3x+6
.
3.解方程:2(x-2)-(1-3x)=x+3.
解:去括号,得 2x-4-1+3x=x+3
.
移项,得 2x+3x-x=3+4+1
.
合并同类项,得 4x=8 .
系数化为 1,得 x=2 .
4.解下列方程: (1)2(x+3)=5x. 解:去括号,得 2x+6=5x. 移项,得 2x-5x=-6. 合并同类项,得-3x=-6. 系数化为 1,得 x=2.
5 系数化为 1,得 y=2.
易错点 解方程去括号时,漏乘某些项或弄错符号 6.解方程:2(3-4x)=1-3(2x-1). 解:去括号,得 6-4x=1-6x-1.(第一步) 移项,得-4x+6x=1-1-6.(第二步) 合并同类项,得 2x=-6.(第三步) 系数化为 1,得 x=-3.(第四步)
11.若方程 12-3(x+1)=7-x 的解与关于 x 的方程 6-2(k-x) =2(x+3)的解相同,求 k 的值.
解:12-3(x+1)=7-x, 去括号,得 12-3x-3=7-x. 移项、合并同类项,得-2x=-2. 系数化为 1,得 x=1. 因为两个方程的解相同,
所以把 x=1 代入 6-2(k-x)=2(x+3),得 6-2(k-1)=2×(1+3),即 6-2(k-1)=8. 去括号,得 6-2k+2=8. 移项、合并同类项,得-2k=0.
Hale Waihona Puke 以上解答过程正确吗?若不正确,请指出错误的步骤,并给出 正确的解答过程.
解:不正确,第一步错误.正确的解答过程如下: 去括号,得 6-8x=1-6x+3. 移项,得-8x+6x=1+3-6. 合并同类项,得-2x=-2. 系数化为 1,得 x=1.
人教版七年级数学上册解一元一次方程(二)——去括号与去分母课件

3
5
解方程:
解: 去分母(方程两边乘15),得
15 − 5( − 1) = 105 − 3( + 3).
15 − 5 + 5 = 105 − 3 − 9.
去括号,得
移项,得
15 − 5 + 3 = 105 − 5 − 9.
合并同类项,得
系数化1,得
13 = 91.
= 7.
2 − 1
.
2 3 +
=3−
2
3
解:去分母(方程两边乘 6),得
−1
2 − 1
6 3 +
=6 3−
. 不漏乘
2
3
18 + 3( − 1) = 18 − 2(2 − 1).
去括号,得
18 + 3 − 3 = 18 − 4 + 2.
18 + 3 + 4 = 18 + 2 + 3.
2
3
3
2
1
− − 2 − = 1.
2 6
3
解法二: 去括号,得
去分母(两边同乘6),得
3 − − 12 − 2 = 6.
移项,得
合并同类项,得
系数化1,得
− − 2 = 6 − 3 + 12.
−3 = 15.
= −5.
课 堂 小 结
一、解一元一次方程的一般步骤:
去分母、去括号、移项、合并同类项、系数化1.
拓展练习
1
2
解方程:
1− − 3+
= 1.
2
3
3
2
1
人教七年级数学上册-解一元一次方程(二)---去括号与去分母(附习题)

(1)会通过去分母解一元一次方程.
(2)归纳解一元一次方程的一般步骤,体会解方程 中的化归思想.
推进新课 知识点1 去分母
数学小史料
英国伦敦博物馆保存着 一部极其珍贵的文物—— 纸草书.这是古代埃及人用 象形文字写在一种用纸莎草 压制成的草片上的著作,它于公元前1700年左右写成. 这部书中记载了许多有关数学的问题.
3.x为何值时,式子 的值相等?
3 4
4
3
1 2
x
1
8
与3 x 1
2
解:由题意得
3 4
4
3
1 2
x
1
8
3 2
x1
去括号,得 1 x 1 6 3 x 1
2
2
移项、合并同类项,得 –x = 8
系数化为1,得x = –8
课堂小结
6x+6(x-2 000)=150 000 去括号
6x+6x-12 000=150 000 移项
练习2 解下列方程 (1)2(x + 3)= 5x 解:去括号,得 2x + 6 = 5x.
移项,得 2x – 5x = –6. 合并同类项,得 –3x = –6. 系数化为1,得 x = 2.
(2)4x + 3(2x – 3)= 12 – ( x + 4) 解:去括号,得
4x + 6x – 9= 12 – x – 4 移项,得
一个数,它的三分之二,它的一半, 它的七分之一,它的全部,加起来总共是33, 求这个数. 分析:设这个数为x.
根据题意,得
2 x+ 1 x+ 1 x+x=33 327
方法1:合并同类项,得
97 x=33 42
系数化为1,得
初一解方程去括号练习题

初一解方程去括号练习题解方程是数学中非常重要的一项基础技能,它能帮助我们解决许多实际问题。
在初一阶段,解方程去括号是一个重要的部分。
本文将为你提供一些初一解方程去括号的练习题,帮助你巩固这一知识点。
练习题一:1. 将以下方程去括号并解出x的值:3(x + 4) = 15解析:我们需要先将括号里面的式子乘以括号前面的系数,然后再解方程。
首先,我们将括号里面的式子乘以3,得到3x + 12 = 15。
然后,我们将方程两边减去12,得到3x = 3。
最后,我们将方程两边除以3,得到x = 1。
练习题二:2. 将以下方程去括号并解出x的值:2(x - 3) + 5 = 11解析:同样地,我们需要先将括号里面的式子乘以括号前面的系数,然后再解方程。
首先,我们将括号里面的式子乘以2,得到2x - 6 + 5 = 11。
然后,我们将方程简化为2x - 1 = 11。
最后,我们将方程两边加上1,得到2x = 12。
然后,我们将方程两边除以2,得到x = 6。
练习题三:3. 将以下方程去括号并解出x的值:4(x - 2) + 3(x + 1) = 25解析:这一题有两组括号,我们需要分别对它们进行乘法运算,然后再解方程。
首先,我们将第一组括号里面的式子乘以4,得到4x - 8。
接下来,我们将第二组括号里面的式子乘以3,得到3x + 3。
现在,我们的方程变为4x - 8 + 3x + 3 = 25。
然后,我们将方程简化为7x - 5 = 25。
最后,我们将方程两边加上5,得到7x = 30。
然后,我们将方程两边除以7,得到x = 4.2857(保留四位小数)。
通过以上三个练习题,我们可以看到解方程去括号的基本步骤:将括号里面的式子乘以括号前面的系数,然后再按照数学运算的规律进行简化,最后解出未知数的值。
这个过程虽然简单,但需要我们仔细思考和运算,确保每一步都是正确的。
解方程去括号是初一解方程的一个重要环节,它帮助我们理解了括号的使用以及解方程中的基础原理。
人教版七年级数学上册3.利用去括号解一元一次方程课件

(2)3x-7( x-1)=3-2( x+3).
解:去括号,得
3 x-7 x+7=3-2 x-6.
移项,得
3 x-7 x+2 x=3-6-7.
合并同类项,得
-2x=-10.
系数化为1,得
x=5.
通过以上解方程的过程,你能总结出解含 有括号的一元一次方程的一般步骤吗?
去括号
移项 合并同类项
解:(1) 原式=-b;(2) 原式=-2a+3b.
去括号法则: 去掉“+ ( )”,括号内各项的符号不变. 去掉“– ( )”,括号内各项的符号改变.
用三个字母a,b,c表示去括号前后的变化规律: a + (b + c) = a + b + c
a -(b + c) = a -b - c
讲授新课
合并同类项 12x=162000
系数化为1 x=13500
方程中有带括号的 式子时,去括号是 常用的化简步骤.
例1 解下列方程:
(1)2x-( x+10)=5x+2( x-1);
解:去括号,得
2x-x-10=5x+2x-2.
移项,得
2x-x-5x-2x=-2+10.
合并同类项,得 6x=8.
系数化为1,得
方法总结:对于此类阶梯收费的题目,需要弄清楚 各阶段的收费标准,以及各节点的费用.然后根据缴 纳费用的金额,判断其处于哪个阶段,然后列方程 求解即可.
练一练
3. 某羽毛球协会组织一些会员到现场观看羽毛球比赛. 已知该协会购买了价格分别为300元/张和400元/张的 两种门票共8张,总费用为2700元.请问该协会购买 了这两种门票各多少张?
依题意,有(575+25)t=(575-25)(4.6-t). 解得t=2.2. 则(575+25)t=600×2.2=1 320. 答:这架飞机最远能飞出1 320 km就应返回.