(完整)对数函数知识点总结,推荐文档

合集下载

高一必修一《对数函数》知识点

高一必修一《对数函数》知识点

高一必修一《对数函数》学问点高一必修一《对数函数》学问点数学是探讨数量、结构、改变、空间以及信息等概念的一门学科,下面是整理的高一必修一《对数函数》学问点,希望对大家有帮助!1.对数(1)对数的定义:假如ab=N(a0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:ab=NlogaN=b(a0,a≠1,N0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①loga(MN)=logaM+logaN.②loga(M/N)=logaM-logaN.③logaMn=nlogaM.(M0,N0,a0,a≠1)④对数换底公式:logbN=(logab/logaN)(a0,a≠1,b0,b≠1,N0).2.对数函数(1)对数函数的定义函数y=logax(a0,a≠1)叫做对数函数,其中x是自变量,函数的`定义域是(0,+∞).留意:真数式子没根号那就只要求真数式大于零,假如有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个一般对数式里a0,或=1 的时候是会有相应b的值的。

但是,依据对数定义: logaa=1;假如a=1或=0那么logaa就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)其次,依据定义运算公式:loga M^n = nloga M 假如a0,那么这个等式两边就不会成立(比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16(2)对数函数的性质:①定义域:(0,+∞).②值域:R.③过点(1,0),即当x=1时,y=0.④当a1时,在(0,+∞)上是增函数;当0。

对数的知识点归纳总结

对数的知识点归纳总结

对数的知识点归纳总结一、对数的基本概念1. 对数的定义对数是指数函数的逆运算。

给定正实数a(a≠1)和正实数x,如果等式a^y=x成立,那么数y就是以a为底,x的对数,记作y=log_a(x)。

其中,a被称为对数的底,x被称为真数,y被称为对数。

对数的值可以是实数,也可以是复数。

2. 基本性质(1)对数的底为正实数且不等于1。

(2)对数的真数为正实数。

(3)对数的值可以是实数,也可以是复数。

(4)对数函数为单调增函数。

二、对数的性质1. 对数的运算性质(1)对数的乘法性质:log_a(m) + log_a(n) = log_a(mn)(2)对数的除法性质:log_a(m) - log_a(n) = log_a(m/n)(3)对数的幂运算性质:log_a(m^n) = n*log_a(m)(4)对数的换底公式:log_a(b) = log_c(b) / log_c(a)2. 对数的性质(1)log_a(a) = 1(2)log_a(1) = 0(3)log_a(m) = -log_a(1/m)(4)log_a(a^x)=x(5)a^log_a(x) = x3. 对数的常用对数和自然对数常用对数是以10为底的对数,记作log(x),常用于科学计算。

自然对数是以自然数e为底的对数,记作ln(x),在微积分和概率论中有着广泛的应用。

三、对数的应用1. 对数在科学计算中的应用对数在科学计算中有着广泛的应用,特别是在大数据处理和模型拟合中。

通过对数据取对数,可以将呈指数增长或减小的数据转化为线性增长或减小的数据,方便进行线性回归分析或模型拟合。

2. 对数在工程学中的应用对数在工程学中有着重要的应用,特别是在电路设计、信号处理和控制系统中。

对数可用于描述电压、信号和控制变量的倍增和倍减关系,方便工程师进行设计和分析。

3. 对数在经济学中的应用对数在经济学中有着广泛的应用,特别是在复利计算和经济增长模型中。

对数可用于描述资金的复利增长和经济指标的增长趋势,方便经济学家进行分析和预测。

对数函数及其性质知识点总结讲义

对数函数及其性质知识点总结讲义

对数函数及其性质相关知识点总结:1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N.a叫做对数的底数,N叫做真数.2. 对数与指数间的关系3.对数的基本性质(1)负数和零没有对数. (2)log a1=0(a>0,a≠1). (3)log a a=1(a>0,a≠1).10.对数的基本运算性质(1)log a(M·N)=log a M+log a N. (2)log a MN=log a M-log a N. (3)log a M n=n logaM(n∈R).4.换底公式(1)log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1,b>0).(2)logba=1log aa5.对数函数的定义一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).6.对数函数的图象和性质7.反函数对数函数y=log a x(a>0且a≠1)和指数函数y=a x(a>0且a≠1)互为反函数.基础练习:1.将下列指数式与对数式互化:(1)2-2=14; (2)102=100; (3)e a=16; (4)64-13=14;2. 若log3x=3,则x=_________ 3.计算:(1)log216=_________; (2)log381=_________; (3)2log62+log69=__________4.(1)log 29log 23=________. (2)log 23?log 34?log 48=________________5. 设a =log 310,b =log 37,则3a -b =_________.6.若某对数函数的图象过点(4,2),则该对数函数的解析式为______________.7.(1)如图2-2-1是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是______________(2)函数y =lg(x +1)的图象大致是( ) 4. 求下列各式中的x 的值:(1)log 8x =-23;(2)log x 27=34;8.已知函数f (x )=1+log 2x ,则f (12)的值为__________.9. 在同一坐标系中,函数y =log 3x 与y =log 13x 的图象之间的关系是_______________10. 已知函数f (x )=⎩⎨⎧3x(x ≤0),log 2x (x >0),那么f (f (18))的值为___________.例题精析:例1.求下列各式中的x 值:(1)log 3x =3; (2)log x 4=2; (3)log 28=x ; (4)lg(ln x )=0. 变式突破:求下列各式中的x 的值:(1)log 8x =-23; (2)log x 27=34; (3)log 2(log 5x )=0;(4)log 3(lg x )=1.例2.计算下列各式的值:(1)2log 510+; (2)12lg 3249-43lg 8+lg 245 (3)lg 25+23lg 8+lg 5×lg 20+(lg 2)2.变式突破:计算下列各式的值:(1)312log34; (2)32+log 35; (3)71-log 75;(4)412(log 29-log 25).例3.求下列函数的定义域:(1)y=lg(2-x); (2)y=1log3(3x-2); (3)y=log(2x-1)(-4x+8).变式突破:求下列函数的定义域:(1)y=log12(2-x); (2)y=1log2(x+2); (3)1−log2.例4.比较下列各组中两个值的大小:(1)ln ,ln 2; (2),(a>0,且a≠1);(3),; (4)log3π,logπ3.变式突破:若a=,b=log26,c=,则a,b,c的大小关系为________.例5.解对数不等式(1)解不等式log2(x+1)>log2(1-x);(2)若log a23<1,求实数a的取值范围.变式突破:解不等式:(1)log3(2x+1)>log3(3-x).(2)若log a2>1,求实数a的取值范围.课后作业:1. 已知log x16=2,则x等于___________.2. 方程2log3x=14的解是__________.3. 有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x,则x=10;④若e=ln x,则x=e2.其中正确的是_____________.4.函数y=log a(x+2)+1的图象过定点___________.5. 设a=log310,b=log37,则3a-b=( )6. 若log12a=-2,logb9=2,c=log327,则a+b+c等于___________.7.. 设3x=4y=36,则2x+1y=___________.。

对数函数总结

对数函数总结

对数函数总结对数函数是高中数学中的重要概念之一,它在各种科学与工程领域中都有广泛应用。

本文将对对数函数进行详细的总结,并介绍其定义、性质以及应用。

一、定义对数函数是指函数y = logₐ(x),其中a是一个正实数且不等于1,x 和y是实数。

对数函数可以看作是指数函数y = aˣ的反函数。

对数函数y = logₐ(x)的定义域是正实数集合,值域是实数集合。

二、常用对数函数2. 通用对数:y = log₁₀(x),其中a = 10。

3. 二进制对数:y = log₂(x),其中a = 2三、性质1. 对数函数的图像:通用对数函数y = log₁₀(x)的图像是一条上升的曲线,自然对数函数和二进制对数函数也具有相似的性质。

2.对数函数的定义域:对数函数的定义域是正实数集合,即x>0。

3.对数函数的值域:对数函数的值域是所有的实数集合,即(-∞,+∞)。

4.对数函数的基本性质:对数函数满足以下基本性质:(1)对数函数的对称性:logₐ(aˣ) = x;(2)对数函数的换底公式:logₐ(x) = logᵦ(x)/logᵦ(a),其中a、b 是正实数且不等于1;(3)对数函数的推广:logₐ(m·n) = logₐ(m) + logₐ(n),logₐ(m/n) = logₐ(m) - logₐ(n),logₐ(mˣ) = x·logₐ(m),其中a、m、n是正实数且不等于1五、对数函数的应用对数函数在各种科学与工程领域中都有广泛应用,主要包括以下几个方面:1.声音与音乐:声音的强度、功率以及音乐的音量等常用以对数函数作为数学模型。

2.生物学与医学:生物学中的激素浓度、细胞的增殖和死亡速率等可以使用对数函数进行建模。

此外,医学中的药物浓度、毒性等也可以通过对数函数进行分析。

3.经济学与金融学:经济学中的利润增长、利息的计算等可以使用对数函数进行建模。

金融学中的复利计算、收益率的估计等也可以通过对数函数进行分析。

函数对数知识点归纳总结

函数对数知识点归纳总结

函数对数知识点归纳总结一、对数的概念对数的概念最早出现在17世纪,是为了简化数值计算而引入的。

对数可以将指数运算转化为乘法运算,因此在一些计算中能够简化问题。

对数的定义并不复杂,但在初学阶段可能会感到陌生。

下面是对数的一些基本概念:1. 对数定义:如果b^a = x,那么我们说a是以b为底x的对数,记为log_b(x)。

其中,b称为底数,a 称为指数,x称为真数。

2. 对数的特点:(1)对数的底数是一个正实数,且不等于1;(2)对数的真数是一个正实数;(3)对数的指数可以是任意实数。

3. 对数的性质:对数具有许多性质,这些性质在实际计算中非常有用。

一些常见的对数性质包括:(1)对数的乘积性质:log_b(mn) = log_b(m) + log_b(n);(2)对数的商性质:log_b(m/n) = log_b(m) - log_b(n);(3)对数的幂性质:log_b(m^p) = p*log_b(m)。

二、常见对数常见对数是以10为底的对数,通常用log(x)表示,其中x是一个正实数。

当我们在实际计算中遇到对数时,常见对数是最常见的一种。

常见对数的性质和使用方法都非常重要,下面是对常见对数的一些总结:1. 常见对数的性质:常见对数以10为底,因此有一些特殊的性质:(1)log(1) = 0;(2)log(10) = 1;(3)log(10^n) = n。

2. 常见对数的计算:在实际计算中,我们常常需要计算常见对数。

计算常见对数的方法是通过对数表或计算器来进行。

如果使用对数表,需要找到对应的真数和对数值,然后进行相应的转换。

如果使用计算器,则直接输入真数,计算器会给出对应的对数值。

三、自然对数自然对数是以e为底的对数,通常用ln(x)表示,其中x是一个正实数。

自然对数在一些数学和物理问题中被广泛使用,因此了解自然对数的性质和计算方法是非常重要的。

下面是对自然对数的一些总结:1. 自然对数的性质:自然对数以e为底,因此有一些特殊的性质:(1)ln(e) = 1;(2)ln(e^x) = x;(3)ln(1) = 0。

高一对数函数知识点的梳理总结

高一对数函数知识点的梳理总结

高一对数函数知识点的梳理总结1.对数的定义对数函数是指数函数的反函数。

对于正实数a和大于0且不等于1的实数b,对数函数记作 y = logb(x),其中b为对数的底数,x 为输入值,y为输出值。

对数函数满足以下性质:- 对数函数的定义域为定义底数为b的对数的所有正实数;- 对数函数的值域为实数集;- 对数函数的图像为一个单调递增的曲线。

2.对数函数的性质2.1.对数函数的基本性质- logb(1) = 0,对于任意底数b;- logb(b) = 1,对于任意底数b;- logb(bx) = x,对于任意底数b和实数x。

2.2.对数函数的运算法则- logb(xy) = logbx + logby,对于任意底数b和正实数x、y;- logb(x/y) = logbx - logby,对于任意底数b和正实数x、y;- logb(xn) = n·logbx,对于任意底数b、正实数x和整数n。

2.3.对数函数的性质- 对数函数的图像在正半轴上存在一水平渐近线y = 0,在y轴上存在一竖直渐近线x = 0;- 对数函数在定义域内是严格单调递增的;- 对数函数的值域为整个实数集。

3.对数函数的应用对数函数在实际应用中具有广泛的作用,主要包括以下方面:3.1.科学计数法科学计数法主要用于表示十进制数过大或过小的情况,通过对数函数的运算,可以将一个数转化成一个常数与10的幂的乘积。

3.2.解决指数方程和指数不等式对于指数方程和指数不等式,可以利用对数函数的特性将其转化成对数方程和对数不等式,从而便于求解。

3.3.数据处理和模型拟合对数函数可以用于处理数据和拟合模型,尤其在处理呈指数增长或衰减的数据时,对数函数能够更好地描述数据的趋势和变化规律。

4.总结对数函数是一种重要的数学函数,具有丰富的性质和广泛的应用。

通过对对数函数的定义、性质和应用进行梳理,我们能够更好地理解和应用对数函数,提高解决数学问题的能力。

《对数函数的性质》知识清单

《对数函数的性质》知识清单

《对数函数的性质》知识清单一、对数函数的定义一般地,函数\(y =\log_{a}x\)(\(a > 0\),且\(a \neq 1\))叫做对数函数,其中\(x\)是自变量,函数的定义域是\((0, +\infty)\)。

需要注意的是,对数函数的底数\(a\)的取值范围是\(a > 0\)且\(a \neq 1\)。

当\(a = 1\)时,\(\log_{1}x\)无意义;当\(a < 0\)时,在实数范围内,对数函数的表达式没有意义。

二、对数函数的图像1、当\(a > 1\)时对数函数\(y =\log_{a}x\)的图像是一条过点\((1, 0)\),且位于\(y\)轴右侧,呈上升趋势的曲线。

随着\(x\)的值不断增大,函数值\(y\)也不断增大,增长速度逐渐变慢。

2、当\(0 < a < 1\)时对数函数\(y =\log_{a}x\)的图像同样过点\((1, 0)\),位于\(y\)轴右侧,但呈下降趋势。

随着\(x\)的值不断增大,函数值\(y\)不断减小,且减小速度逐渐变慢。

三、对数函数的性质1、定义域对数函数\(y =\log_{a}x\)的定义域是\((0, +\infty)\),这是因为负数和零在对数运算中没有定义。

2、值域当\(a > 1\)时,值域为\(R\);当\(0 < a < 1\)时,值域也为\(R\)。

3、单调性当\(a > 1\)时,函数在定义域上单调递增;当\(0 < a < 1\)时,函数在定义域上单调递减。

4、过定点对数函数的图像都过定点\((1, 0)\)。

因为\(\log_{a}1 =0\),无论\(a\)的值是多少。

5、奇偶性对数函数是非奇非偶函数。

6、函数值的变化当\(a > 1\)时:\(x > 1\),则\(\log_{a}x > 0\);\(0 < x < 1\),则\(\log_{a}x < 0\)。

当\(0 < a < 1\)时:\(x > 1\),则\(\log_{a}x < 0\);\(0 < x < 1\),则\(\log_{a}x > 0\)。

对数知识点总结

对数知识点总结

对数知识点总结一、对数的基本概念定义:对数是指数函数的逆运算。

给定正实数a(a≠1)和正实数x,如果等式a^y=x成立,那么数y就是以a为底,x的对数,记作y=log_a(x)。

其中,a被称为对数的底,x被称为真数,y被称为对数。

对数的底和真数:对数的底必须为正实数且不等于1,真数必须为正实数。

对数的值:对数的值可以是实数,也可以是复数。

二、对数的性质对数函数为单调增函数。

常用的对数:以10为底的对数称为常用对数,记作lgN;以无理数e(e=2.71828…)为底的对数称为自然对数,记作lnN。

三、对数的运算规则对数的乘法规则:log_a(MN) = log_a(M) + log_a(N),其中M、N 为正实数,a为正实数且a≠1。

对数的除法规则:log_a(M/N) =log_a(M) - log_a(N),其中M、N为正实数,a为正实数且a≠1。

对数的幂次规则:log_a(M^p) = p * log_a(M),其中M为正实数,a为正实数且a≠1,p为任意实数。

对数的换底公式:log_b(M) /log_b(a) = log_a(M),其中M为正实数,a、b为正实数且a≠1,b≠1。

四、对数的应用对数在各个领域都有广泛的应用,包括统计学、金融、化学反应、数据压缩、声学和地震学、科学计量、货币贬值、人口增长、生物学、天文学、网络和社交媒体以及电路分析等。

对数可以帮助处理广泛的数据范围、计算复利、描述化学反应速率与反应物浓度的关系、压缩数据、表示声音的强度等。

以上是对数的基本知识点总结,涵盖了定义、性质、运算规则以及应用等方面。

希望这些信息能够帮助你更好地理解和掌握对数知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档