我国精密超精密加工技术发展展望

合集下载

我国精密超精密加工技术发展展望

我国精密超精密加工技术发展展望

我国超精密加工技术发展展望朱锟鹏,李科选,姜丽丽,叶冬森中国科学院先进制造研究所精密制造实验室超精密加工技术就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行超精密微量切削,以获得极高形状精度和表面光洁度的零件加工过程。

超精密加工技术对于提高产品的性能、成本和质量具有重要的意义,已经成为高精尖产品制造中不可缺少的加工手段。

1983年日本Taniguchi 教授提出,并于2000年由McKeown 教授更新的20世纪40年代以来加工精度的发展情况,如图1所示。

可以看出,精密与超精密加工技术以不断提高加工精度和表面质量为目标,在不同的发展阶段具有不同的定义,并没有严格的分界线。

目前超精密加工技术已经发展成为一门综合多学科的高新技术,涉及材料、加工设备、电子、计算机、检测和工作环境等各个方面,在高技术领域和军用工业以及民用工业中都有广泛应用,已成为衡量一个国家先进制造技术水平的重要指标之一。

加工方法与设备1001010.10.010.0010.00011940196019802000年度加工精度P /μm图1 20世纪40年代后加工精度的发展多年以来,美国、英国和日本等工业发达国家均十分重视精密/超精密加工技术的研究,取得了长足的发展,达到了较高的水平。

美国国家实验室曾于1983~1984 年研制了两台大型金刚石超精密车床,目前仍然是世界公认的最高水平的大型超精密机床。

英国也较早从事超精密加工技术的研究,是迄今为止第二个能制造大型超精密机床的国家。

日本曾设定专门的研究机构从事精密/超精密加工技术的研究,目前在中小型精密机床的生产上,已基本与美国并驾齐驱。

我国的超精密加工技术自20世纪90年代以来取得了较快的发展,出现了具有世界水平的超精密机床和部件,如北京航空精密机械研究所、国防科技大学研制的非球曲面超精密复合加工系统和北京机床研究所研制的纳米数控车床等。

然而我国虽然在超精密加工技术上取得了一定的进步,但与国际领先水平相比还有很大差距。

超精密加工技术的发展与展望

超精密加工技术的发展与展望

精密与特种加工技术结课论文题目:超精密加工技术的发展与展望指导教师:沈浩学院:机电工程学院专业:机械工程姓名:司皇腾学号: 152085201020超精密加工技术的发展与展望摘要:超精密加工是多种技术综合的一种加工技术,是获得高形状精度、表面精度和表面完整性的必要手段。

根据当前国内外超精密加工技术的发展状况,对超精密切削、磨削、研磨以及超精密特种加工及复合加工技术进行综述,简单地对超精密加工的发展趋势进行预测。

精密加工技术发展方向是:向高精度、高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展。

本世纪的精密加工发展到超精密加工历程比较复杂且难度大,目前超精密加工日趋成熟,已形成系列,它包括超精密切削、超精密磨削、超精密研磨、超精密特种加工等。

在不久的将来,精密加工也必将实现精密化、智能化、自动化、高效信息化、柔性化、集成化。

创新思想及先进制造模式的提出也必将为精密与超精密技术发展提供策略。

环保也是机械制造业发展的必然趋势。

关键词:加工精度;超精密加工技术;超精密特种加工;纳米技术;复合加工【引言】精密加工和超精密加工代表了加工精度发展的不同阶段,往往我们一提到超精密这个词,就会觉得它很神秘,但同任何复杂的高新技术一样,经过一段时间的熟悉和掌握,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是这样。

实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。

超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。

通常按加工精度划分,可将机械加工分为一般加工、精密加工、超精密加工。

在不同的历史阶段,不同的科学技术水平下,对超精密加工有不同的定义,由于生产技术的不断发展,划分的界限不断变化。

过去的超精密加工对今天来说可能已经是普通加工了,所以对其划分的界限是相对的,而且在具体数值上至今没有确切的界限。

精密和超精密加工现状与发展趋势.doc

精密和超精密加工现状与发展趋势.doc

精密和超精密加工现状与发展趋势核心提示:当前精密和超精密加工精度从微米到亚微米,乃至纳米,在汽车、家电、IT 电子信息高技术领域和军用、民用工业有广泛应用。

同时,精密和超精密加工技术的发展也促进了机械、模具、液压、电子、半导体、光学、传感器和测量技术及金属加工工业的发展。

一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1呵,表面粗糙度为RaO.1~O.O1 g的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。

a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2 个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1 g,最好可到Ra0.025 g,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液, 工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra w 0.025n v加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工, 也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

简析超精密机械加工的未来发展趋势

简析超精密机械加工的未来发展趋势
简析超精密机械加工的未来 发展趋势
2023-11-06
目 录
• 引言 • 超精密机械加工技术概述 • 超精密机械加工发展现状 • 超精密机械加工的未来发展趋势 • 未来发展展望与建议 • 结论与参考文献
01
引言
研究背景与意义
01
制造业的快速发展
随着全球制造业的快速发展,超精密机械加工技术在航空航天、电子
提升知识产权保护意识
建立健全知识产权保护机制,鼓励企业申请专利,保护核心技术 和创新成果。
加强产学研合作,推动产业发展
建立产业联盟
通过政府引导,建立超精密机 械加工产业联盟,促进企业间 的交流与合作,推动产业链的
完善和发展。
加强校企合作
鼓励企业与高校、职业院校建立 合作关系,共同培养专业人才, 提高技术水平。
建立创新奖励机制,鼓励员工开展技术创新和发 明创造活动,提高企业的技术实力和创新能力。
06
结论与参考文献
结论
超精密机械加工技 术将不断升级
随着科技的不断进步,超精密机 械加工技术将继续升级,包括加 工精度、效率、可靠性和稳定性 的提升。
智能化和自动化将 成为主流
未来超精密机械加工将更加依赖 于智能化和自动化技术,减少人 工干预,提高加工质量和效率。
根据应用领域不同,超精密机械加工可以分为航空航天、医疗器械、光学仪器、电子设备等领域。
03
超精密机械加工发展现状
国际发展现状
1. 技术迭代
01
国际上,超精密机械加工技术正在不断升级,从传统的机械加
工向更先进的激光加工、纳米加工等方向发展。
2. 高精度、高效率
02
国际研究者正在追求更高的精度和效率,以满足更复杂和精细

2024年精密机械加工市场发展现状

2024年精密机械加工市场发展现状

2024年精密机械加工市场发展现状简介精密机械加工是一种高精度、高复杂度的机械加工方式,广泛应用于航空航天、汽车制造、电子设备等行业。

随着科技的发展和市场需求的增加,精密机械加工市场逐渐壮大。

本文将对精密机械加工市场的发展现状进行分析和讨论。

市场规模与增长趋势近年来,精密机械加工市场规模呈现出快速增长的趋势。

随着经济的发展和技术的进步,精密机械加工在各个行业的应用越来越广泛。

根据市场调研数据显示,精密机械加工市场的年均增长率超过10%。

航空航天行业航空航天行业是精密机械加工市场的主要应用领域之一。

随着民航业的发展和航天技术的进步,对于精密机械加工的需求不断增加。

航空航天行业的市场规模占据了整个精密机械加工市场的一大部分,并且呈现出持续增长的趋势。

汽车制造行业汽车制造行业也是精密机械加工市场的重要应用领域。

随着汽车市场的不断扩大和消费者对汽车品质的要求提高,对于精密机械加工的需求也在增加。

汽车制造行业对于高精度、高质量的零部件的需求量大,这促进了精密机械加工市场的发展。

电子设备行业电子设备行业是精密机械加工市场的另一个重要应用领域。

随着电子设备的普及和更新换代速度的加快,对于精密机械加工的需求也不断增加。

电子设备行业对于高精度、高可靠性的零部件的需求量大,这给精密机械加工市场带来了更多的机遇。

市场竞争格局与主要参与者精密机械加工市场竞争激烈,存在着众多的参与者。

主要的参与者包括大型企业、中小型企业以及个体加工工坊。

大型企业大型企业在精密机械加工市场占据着主导地位。

这些企业通常拥有先进的加工设备、丰富的资源和技术实力。

它们具有规模经济的优势,能够以更低的成本生产高质量的产品,因此在市场中具有竞争优势。

中小型企业中小型企业在精密机械加工市场中也扮演着重要的角色。

这些企业通常灵活、迅速地满足市场的需求,能够提供个性化的定制服务。

尽管中小型企业面临着一些挑战,例如资金不足和技术瓶颈,但它们通过不断努力和创新,不断扩大自己在市场中的份额。

超精密加工技术在未来机械领域的发展前景概述

超精密加工技术在未来机械领域的发展前景概述

超精密加工技术在未来机械领域的发展前景概述超精密加工技术在未来机械领域的发展前景[前言]近二十年以来机械制造业正以迅猛的发展步伐向精密加工、超精密加工发展,在未来的发展过程中精密加工、超精密加工将成为在国际竞争、市场竞争中取胜的关键技术。

现代制造业之所发要致力于提高加工精度,其主要原因在于提高产品的性能和质量,提高其质量的稳定性和性能的可靠性,促进产品的小型化、功能性强,零件互换性好,产品的装配、调试生产率高,并促进制造装配自动化。

随着制造业的发展,现在的精密机械加工正在从微米、亚微米级工艺发展,在今后的加工中,普通机械加工、精密加工与超精密加工精度可分别达到1μm、0.01μm、0.001μm(即1nm),而且超精密加工正在向原子级加工精度逼进(0.1nm)。

随着极限加工精度的不断提高,为科学技术的发展和进步创造了条件,也为机械冷加工提供了良好的物质手段。

关键词超精密加工发展趋势发展策略后续研发一、引言我们一提到超精密这个词语,就觉得它比较神秘,但跟任何其他复杂的高新技术一样,经过一段时间的熟悉、适应,都会被大众所了解,也就不再是所谓的高科技了,超精密加工也是如此。

实际上,如果拥有超精密的加工设备,并且在其它相关技术和工艺上能匹配,经过一段时间的实践之后,就能很好地掌握它,但这需要一个过程。

超精密加工领域集成了很多IT、机械以及电气控制方面的技术,设备方面的操作和使用也非常复杂,所以,只有在对它有很深的理解之后才能把它用好。

二、正文超精密加工当前是指被加工零件的尺寸和形状精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,目前正在向纳米级加工技术发展。

超精密加工技术在国际上处于领先地位的国家是美国、英国和日本。

美国是开展超精密加工技术研究最早的国家,也是迄今处于领先地位的国家。

英国的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,是当今世界上精密工程的研究中心之一。

超精密加工技术的发展现状与趋势

超精密加工技术的发展现状与趋势

行业综述超精密加工技术的发展现状与趋势北京机床研究所精密机电有限公司(100102) 贺大兴 盛伯浩 在全球技术竞争日益激烈的今天,超精密加工作为机械制造业中极具竞争力的技术之一,目前已受到许多国家的关注。

超精密加工技术是尖端技术产品发展不可缺少的关键手段,它不仅适于国防应用,而且可以大量应用于高端民用产品中,例如惯导仪表的关键部件、核聚变用的透镜与反射镜、大型天文望远镜透镜、大规模集成电路的基片、计算机磁盘基底及复印机磁鼓、现代光学仪器设备的非球面器件、高清晰液晶及背投显示产品等。

超精密加工技术促进了机械、计算机、电子、光学等技术的发展,从某种意义上来说,超精密加工技术担负着支持最新科学技术进步的重要使命,也是衡量一个国家制造技术水平的重要标志[1]。

超精密加工是一个相对的概念,它是相对于精密加工而言的。

当前普遍认为超精密加工是指加工精度高于0.1μm,加工表面粗糙度小于R a0.02μm 的加工方法。

超精密加工通常包括超精密切削(车削、铣削、刻划等)、超精密磨削、超精密研磨和抛光等,另外广义的超微细加工、纳米级以及原子级的加工等也属于超精密加工的范畴。

1 超精密加工技术的发展现状商业化的超精密加工技术应用可以追溯到上一世纪60年代美国,由于军事领域精密元件的需求,促使这一技术迅速发展。

到80~90年代,由于激光在各领域的广泛应用,各种类型的金刚石车床和镜面铣削机床不断出现,超精密加工技术在许多国家相继发展,除美国以外,英国、德国、前苏联、法国、日本、荷兰等许多国家都发展了这一技术,它的应用领域也不局限于军事领域,扩展到大量需求的民用领域。

到90年代中后期,超精密加工技术的多种配套技术包括工艺技术进入成熟期,定型的超精密设备逐渐增加,开始出现专业化制造的特点。

国际上从事超精密开发应用的公司以及机构经历了市场筛选和优势重组的阶段(例如新的Precitech公司合并了Pneumo超精密公司、Moore Nanotechnology Sys2 tem的形成等),众多分散的小的超精密单位逐步淡出,具有优势的典型企业和机构的进一步突显。

精密加工和超精密加工的发展趋势和技术前沿

精密加工和超精密加工的发展趋势和技术前沿

精密加工和超精密加工的发展趋势和技术前沿1.向高精度、高效率方向发展随着科学技术的不断进步,对精度、效率、质量的要求愈来愈高,超精密加工技术就是要向加工精度的极限冲刺,应该说,这种极限是无限的,当前的目标是向纳米级进军,而现状是处于亚微米级水平。

图0-13表示了超精密加工理论基础和应用技术的发展,提出了量子技术、量子能量的利用,并将和太空技术联系起来。

2.向大型化、微型化方向发展由于航天航空等技术的发展,大型光电子器件要求大型超精密加工设备,如美国研制的加工直径为~4m的大型光学器件超精密加工机床。

由于微型机械、集成电路的发展,超精密加工技术向微型化发展,如微型传感器,微型驱动元件和动力装置、微型航空航天器件等。

3.向加工检测一体化发展由于超精密加工的精度很高,必须发展相应的检测技术才能适应其要求;同时,采用加工和检测独立进行的方法可能由于安装等误差而不能实现,因此,要采用在位检测方法,使加工检测一体化。

4.在线检测与误差补偿超精密加工的精度很高,影响因素多且复杂,进行在线检测、工况监控以确保加工质量及其稳定性是十分必要的。

由于超精密加工的精度很高,加工设备本身的精度有时很难满足要求,就要采用在线检测和误差补偿的方法来提高精度,保证加工质量的要求。

5.新型超精密加工方法的机理加工机理的研究是新技术的生长点,超精密加工机理涉及微观世界和物质内部结构,所利用的能源包括机、光、电、声、热、化、磁、原子等,十分广泛。

不仅可以采用分离去除加工,而且可以采用分层堆积加工方法;既可采取单独加工方法,更可采用复合加工方法。

加工机理的研究往往具有突破性。

6.新材料的研究新材料包括新的工具材料(切削、磨削)和被加工材料。

精密加工和超精密加工的被加工材料对其加工质量的影响极大,其化学成分、力学机械性能均有严格要求,亟待研究。

当前,精密加工和超精密加工在我国急需要研究的是实用化,将一些成熟或比较成熟的精密加工和超精密加工技术推广到实际中去,以提高加工技术的水平,使生产的机械产品质量更好、生产率更高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国超精密加工技术发展展望
朱锟鹏,李科选,姜丽丽,叶冬森
中国科学院先进制造研究所精密制造实验室
超精密加工技术就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行超精密微量切削,以获得极高形状精度和表面光洁度的零件加工过程。

超精密加工技术对于提高产品的性能、成本和质量具有重要的意义,已经成为高精尖产品制造中不可缺少的加工手段。

1983年日本Taniguchi 教授提出,并于2000年由McKeown 教授更新的20世纪40年代以来加工精度的发展情况,如图1所示。

可以看出,精密与超精密加工技术以不断提高加工精度和表面质量为目标,在不同的发展阶段具有不同的定义,并没有严格的分界线。

目前超精密加工技术已经发展成为一门综合多学科的高新技术,涉及材料、加工设备、电子、计算机、检测和工作环境等各个方面,在高技术领域和军用工业以及民用工业中都有广泛应用,已成为衡量一个国家先进制造技术水平的重要指标之一。

加工方法与设备
100
10
10.10.010.001
0.00011940196019802000年度加工精度P /μm
图1 20世纪40年代后加工精度的发展
多年以来,美国、英国和日本等工业发达国家均十分重视精密/超精密加工技术的研究,取得了长足的发展,达到了较高的水平。

美国国家实验室曾于1983~1984 年研制了两台大型金刚石超精密车床,目前仍然是世界公认的最高水平的大型超精密机床。

英国也较早从事超精密加工技术的研究,是迄今为止第二个能制造大型超精密机床的国家。

日本曾设定专门的研究机构从事精密/超精
密加工技术的研究,目前在中小型精密机床的生产上,已基本与美国并驾齐驱。

我国的超精密加工技术自20世纪90年代以来取得了较快的发展,出现了具有世界水平的超精密机床和部件,如北京航空精密机械研究所、国防科技大学研制的非球曲面超精密复合加工系统和北京机床研究所研制的纳米数控车床等。

然而我国虽然在超精密加工技术上取得了一定的进步,但与国际领先水平相比还有很大差距。

目前我国机床质量有待提高,加工工艺的开发不足,并且研究力量分散,不能形成产品系列和产业化等,还不足以满足我国超精密加工的需要。

当前超精密加工技术主要有:超精密机床制造技术、切削加工技术、磨削加工技术、抛光加工技术和特种加工技术等。

其中超精密机床是实现超精密加工的首要条件,在超精密机床中,主轴及驱动装置、精密导轨及床身和机床的稳定性是保证超精密机床质量的关键。

另外,金刚石刀具和超精密切削的力学机理,在线检测与误差补偿,加工过程的动态特性和热稳定性是超精密加工技术发展的核心技术。

同时需要加强超精密加工与自动化、信息技术的结合,实现精密零部件的智能化制造。

超精密加工技术是现代机械制造业最主要的发展方向之一,是整个制造技术的核心,已成为在国际竞争中取得成功的关键技术,需站在国家长远发展战略高度予以充分重视,投入足够人力、物力和精力,系统性地开展研究,它将产生的经济效益与社会效益是不可低估的。

随着我国在《国家中长期科学和技术发展规划纲要(2006-2020年)》的任务部署、国家“高档数控机床”科技重大专项、即将出台的“航空发动机”科技重大专项以及“十二五”“智能制造”专项规划的相继执行,相信我国的精密与高端制造业已进入了更快速、更健康地发展阶段。

相关文档
最新文档