以太网交换机交换方式学习资料讲解

合集下载

4.以太网及交换机的工作原理

4.以太网及交换机的工作原理
IEEE 802系列标准中只制定了一种LLC子层标准,屏蔽不同MAC子层之 802系列标准中只制定了一种LLC子层标准,屏蔽不同MAC子层之 间的差异
局域网标准( ):IEEE802标准集 局域网标准( 续):IEEE802标准集
•IEEE802.1------局域网体系结构、寻址、网络互连与网络管理 •IEEE802.2-------逻辑链路控制(LLC)子层的功能与服务 •IEEE802.3-------以太网 CSMA/CD访问控制方法和物理层技术规范 •IEEE802.4-------令牌总线网 Token-Bus •IEEE802.5-------令牌环网 Token-Ring •IEEE802.6-------城域网 •IEEE802.7-------宽带局域网 •IEEE802.8-------光纤技术 FDDI •IEEE802.9-------综合数据话音网络 •IEEE802.10------网络安全与保密 •IEEE802.11------无线局域网 •IEEE802.12------需求优先 •IEEE802.13 ------(未使用) •IEEE802.14 ------电缆调制解调器 •IEEE802.15 ------无线个人网 •IEEE802.16 ------宽带无线接入 •IEEE802.17 ------可靠个人接入技术
交换机的工作原理 mac地址表的形成过程 mac地址表的形成过程 数据帧的转发/ 数据帧的转发/过滤
地址学习
MAC地址表 地址表 初始的MAC地 初始的MAC地 址表为空 E0: E1: E2: E3:
主机A: 主机 : 00-D0-F8-00-11-11
E0
E1
主机B: 主机 : 00-D0-F8-00-22-22

《以太网交换基础》课件

《以太网交换基础》课件


复杂性

云计算
《以太网交换基础》PPT
课件
网络交换技术是现代计算机网络的核心,本课件将详细介绍以太网交换的基
础知识、原理和应用。
以太网交换基础介绍
了解计算机网络的基本概念和传输介质,掌握以太网交换的定义和作用。
以太网交换的原理和概念
1
MAC 地址
2
帧转发和过滤
3
无碰撞传输
了解 MAC 地址的作用和
掌握交换器利用 MAC 地
介绍交换器的管理接口,
讲解交换器的基本配置,
探索交换器的监控功能和
如控制台端口、Web 管理
如端口速度和双工模式。
故障排除方法,如端口监
界面和远程管理。
控和链路聚合的故障排查。
以太网交换的优缺点和应用
优点
缺点
应用场景

高速数据传输

网络安全性

企业局域网

低成本

广播风暴

数据中心

灵活性和可扩展性
10/100 交换机
高速交换机
软件定义网络(SDN)
回顾以太网交换器从最初的
介绍10GbE、40GbE和
展望SDN对以太网交换技术
10/100Mbps到后来的千兆交
100GbE等高速以太网交换技
的前景和变革。
换技术的演进。
术的发展。
以太网交换器的配置和管理
1
交换器管理接口
2
交换器配置
换器如何通
结构,理解以太网数据帧
址表进行帧转发和过滤的
过隔离链路和广播域实现
和帧头中的源 MAC 和目
过程。

以太网交换机基础知识必看内容

以太网交换机基础知识必看内容
随着市场的推动,以太网的发展越来越迅速,应用也越来越广泛。下面简单列一下以太网的发展历程:
70年代初,以太网产生;
1929年,DEC、Intel、Xerox成立联盟,推出DIX以太网规范;
1980年,IEEE成立了802.3工作组;
1983年,第一个IEEE802.3标准通过并正式发布
通过80年代的应用,10Mb/s以太网基本发展成熟
2.2.3
80年代中期,以太网非常流行,IEEE担心它将使用完所有的DSAP和SSAP编码,所以就定义了一种新的帧格式。这种帧格式称为以太网子网访问协议,有时候也称为以太网SNAP。这种格式的帧报头以“AA”取代DSAP和SSAP。在DSAP和SSAP字段中出现“AA”时,帧是一个以太网SNAP帧。这时,第3层协议将在OUI(Organizational unique identifier,组织唯一标识)字段后的类型字段中表示。QUI是一个6位的十六进制数,它可以唯一地标识一个组织。IEEE对QUI进行赋值。
1990年,基于双绞线介质的10BASE-T标准和IEEE 802.1D网桥标准发布
90年代,LAN交换机出现,逐步淘汰共享式网桥
1992年,出现了100Mb/s快速以太网
通过100BASE-T标准(IEEE802.3u)
全双工以太网(IEEE97)
千兆以太网开始迅速发展(96)
1000Mb/s千兆以太网标准问世(IEEE802.3z/ab)
IS-IS路由协议
BGP
Border Gateway Protocol
边界网关协议
IGMP
Internet Group Management Protocol
Internet组管理协议
IGMP Snooping

以太网交换机交换方式学习资料讲解

以太网交换机交换方式学习资料讲解

以太网交换机交换方式学习以太网交换机交换方式学习在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。

AD:在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。

在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。

交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。

交换机拥有一条很高带宽的背部总线和内部交换矩阵。

交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC(网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。

交换机在同一时刻可进行多个端口对之间的数据传输。

每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。

当节点A向节点D发送数据时。

节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。

和HUB的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于2×10Mbps=20Mbps,而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出 10Mbps。

HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。

以太网交换机基础培训胶片

以太网交换机基础培训胶片
更节能环保:以太网交换机将采用更节能环保的设计,如降低功耗、减少辐射等,以 降低对环境的影响。
感谢您的观看
汇报人:
帧。
交换机是一种网络设备,用于连接多个网络设备,实现数据交换。
交换机的工作原理是基于MAC地址的,即根据MAC地址来转发数据包。
交换机通过学习MAC地址,建立MAC地址表,实现数据包的快速转发。
交换机还可以实现VLAN(虚拟局域网)功能,将网络划分为多个虚拟局域网,提高网络安全 性和网络性能。
接收数据:以太网交换机从网络接 口接收数据帧
以太网交换机基础培 训胶片
汇报人:
目录
以太网交换机概述
以太网交换机的工作 原理
以太网交换机的性能 指标
以太网交换机的配置 和管理
以太网交换机的故障 排除和维护
以太网交换机的发展 趋势和未来展望
以太网交换机概述
定义:以太网交换机是一种用于连接多个以太网设 备的网络设备,可以实现以太网设备的互连互通。
分类:根据端 口数量、传输 速率、功能等 可以分为多种
类型
应用场景:企 业网络、数据 中心、校园网、
家庭网络等
应用领域:金 融、教育、医 疗、政府、企
业等
应用特点:高 速、稳定、安
全、可扩展
智能化:以太网交换机将更加智能化,能够自动识别和配置网络设备 高速化:以太网交换机将支持更高的传输速率,以满足大数据时代的需求 虚拟化:以太网交换机将支持虚拟化技术,实现网络资源的灵活分配和管理 绿色化:以太网交换机将更加注重节能环保,降低能耗和碳排放
以太网交换机的工 作原理
以太网协议是局域网中最常用的协议之一,它定义了数据传输的规则和方式。 以太网协议分为两个部分:物理层和数据链路层。 物理层定义了数据传输的物理介质和接口,如双绞线、光纤等。 数据链路层定义了数据传输的逻辑链路和帧格式,如MAC地址、帧校验等。 以太网交换机的工作原理是基于以太网协议的,它通过MAC地址来识别和转发数据

以太网交换机工作原理讲义

以太网交换机工作原理讲义
– 引导文件 – 系统映像文件 – 厂商配置文件
? 交换机软件版本升级就是对这三类文件的更新 ? 方法就是用新的文件覆盖旧的文件。
引导文件
? 引导文件
– 是指引导交换机初始化等的文件,即我们通常说的ROM文件 – 在机架式交换机上通常为boot.rom一份文件 – 在盒式交换机上通常为boot.rom和config.rom两份文件。 – ROM文件保存在FLASH中 – 文件名固定为boot.rom和config.rom。
交换机数据转发
1
44
3
? 交换机A在接收到数据帧后,执行以下操作: – 交换机A学习源MAC地址和端口号
– 交换机A查看MAC地址表,根据MAC地址表中的条目, 单播转发数据到端口1
? 主机11,收到数据帧
交换机数据转发原理 12-10
AA 端口3
A
端口1
端口2
分割冲突域
?为了提高传输效率,分割冲突域
冲突域1
冲突域2
......
冲突域3
交换机背板交换矩阵结构
?交换机的每个端口访问 另一个端口时,都有一条 专有的线路,不会产生冲 突。
冲突域与广播域
?广播域指接收同样广播消息的节点的集合,如:在该集合中的任 何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被 认为是该广播帧的一部分
单工、半双工与全双工
? 单工 – 只有一个信道,传输方向只能是单向的
例如:寻呼机
? 半双工
A
例如B:对讲机
– 只有一个信道,在同一时刻,只能是单向传输
? 全双工
A
例如:电话 B
– 双信道,同时可以有双向数据传输
A
B
冲突与冲突域

学时以太网交换机工作原理

学时以太网交换机工作原理

链路聚合技术
定义
链路聚合(Link Aggregation)是一种网络技术,可以将多个物理链路捆绑在一起,形成一个逻辑 上的单一链路,以提高链路的带宽和可靠性。
优点
可以提高网络的带宽和可靠性,实现负载均衡和故障转移。
配置
通过配置聚合组(AGGREGATION GROUP),将多个端口绑定在一起,实现链路聚合。
帧通过。
交换机的性能优化
04
VLAN技术
定义
VLAN(Virtual Local Area Network)即虚拟局域网,是一种通过将局 域网内的设备逻辑地划分成不同的网段,从而实现虚拟工作组的技术。
优点
可以限制广播域的范围,提高网络安全性,简化网络管理, 提高网络性能。
配置
通过配置VLAN ID和名称,将交换机上的端口划分到不同 的VLAN中。
01
汇聚层交换机主要负责将接入 层交换机汇聚起来,提供高速 、可靠的数据传输,同时对网 络流量进行控制和管理。
02
汇聚层交换机具有较高的端口 密度和扩展能力,能够满足大 规模网络的需求,并提供丰富 的路由和安全功能。
03
汇聚层交换机通常采用三层交 换技术,实现路由和交换的集 成。
交换机在核心层的应用
通过交换机的命令行接口进行配置和 维护。
SNMP
使用SNMP协议对交换机进行远程监 控和管理。
TFTP/FTP
使用TFTP或FTP协议上传和下载交换 机的配置文件。
升级软件
定期升级交换机的软件版本,以获得 最新的功能和修复漏洞。
常见故障处理案例
端口故障
检查端口连接是否正常,端 口配置是否正确,端口是否
学时以太网交换机工作 原理

以太网交换机交换方法

以太网交换机交换方法

以太网交换机交换方法
以太网交换机的交换方法主要有存储转发和剪辑转发两种。

1. 存储转发:当交换机接收到一个数据帧时,会先将整个数据帧保存在接收缓冲区中,并进行CRC校验等处理。

然后,交换机会解析数据帧的目的MAC地址,查询交换表中的目的MAC地址对应的端口,并将数据帧转发到目标端口。

这种交换方法的优点是能够避免传输错误的数据帧,并具有较低的时延。

2. 剪辑转发:当交换机接收到一个数据帧时,会立即开始转发该数据帧,而不等待整个数据帧接收完毕。

它会读取数据帧的目的MAC地址,并进行快速判定,确定数据帧应转发到哪个端口。

这种交换方法的优点是能够更快速地转发数据帧,但由于还未对数据帧进行完整性校验,可能会导致错误数据帧的传输。

两种交换方法各有优劣,存储转发适用于对数据完整性要求较高的场景,而剪辑转发适用于对实时性要求较高的场景。

在实际使用中,交换机会根据不同的配置和需求选择合适的交换方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以太网交换机交换方
式学习
以太网交换机交换方式学习
在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。

AD
在实际使用时,以太网交换机一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。

在实际使用时,一般并不需要通信双方同时既发送又接收,像打印机这类的单向传送设备,半双工甚至单工就能胜任,也无需倒向。

交换机可以“学习”MAC地址,并把其存放在内部地址表中,通过在数据帧的
始发者和目标接收者之间建立临时的交换路径,使数据帧直接由源地址到达目的地址。

交换机拥有一条很高带宽的背部总线和内部交换矩阵。

交换机的所有的端口都挂接在这条背部总线上,控制电路收到数据包以后,处理端口会查找内存中的地址对照表以确定目的MAC网卡的硬件地址)的NIC(网卡)挂接在哪个端口上,通过内部交换矩阵迅速将数据包传送到目的端口,目的MAC若不存在才广播到所有的端口,接收端口回应后交换机会“学习”新的地址,并把它添加入内部地址表中。

交换机在同一时刻可进行多个端口对之间的数据传输。

每一端口都可视为独立的网段,连接在其上的网络设备独自享有全部的带宽,无须同其他设备竞争使用。

当节点A向节点D发送数据时。

节点B可同时向节点C发送数据,而且这两个传输都享有网络的全部带宽,都有着自己的虚拟连接。


HUB的一点小区别假使这里使用的是10Mbps的以太网交换机,那么该交换机这时的总流通量就等于 2 X
10Mbps=20Mbps而使用10Mbps的共享式HUB时,一个HUB的总流通量也不会超出10Mbps。

HUB集线器就是一种共享设备,HUB本身不能识别目的地址,当同一局域网内的A主机给B主机传输数
据时,数据包在以HUB为架构的网络上是以广播方式传输的,由每一台终端通过验证数据包头的地址信息来确定是否接收。

也就是说,在这种工作方式下,同一时刻网络上只能传输一组数据帧的通讯,如果发生碰撞还得重试。

这种方式就是共享网络带宽
从广义上来看,交换机分为两种:广域网交换机和局域网交换机。

广域网交换机主要应用于电信领域,提供通信用的基础平台。

局域网交换机则应用于局域网络,用于连接终端设备,如PC机及网络打印机等。

从传输介质和传输速度上可分为以太网交换机、快速以太网交换机、千兆以太网交换机、FDDI交换机、ATM交换机和令牌环交换机等。

从规模应用上又可分为企业级交换机、部门级交换机和工作组交换机等。

各厂商划分的尺度并不是完全一致的,一般来讲,企业级交换机都是机架式,部门级交换机可以是机架式
(插槽数较少),也可以是固定配置式,而工作组级交换机为固定配置式(功能较为简单)。

另一方面,从应用的规模来看,作为骨干交换机时,支持500个信息点以上大型企业应用的交换机为企业
级交换机,支持300个信息点以下中型企业的交换机为部门级交换机,而支持100个信息点以内的交换机
为工作组级交换机。

交换机的主要功能包括物理编址、网络拓扑结构、错误校验、帧序列以及流控。

目前交换机还具备了一些
新的功能,如对VLAN(虚拟局域网)的支持、对链路汇聚的支持,甚至有的还具有防火墙的功能。

交换机除了能够连接同种类型的网络之外,还可以在不同类型的网络(如以太网和快速以太网)之间起到互连作用。

如今许多交换机都能够提供支持快速以太网或FDDI等的高速连接端口,用于连接网络中的其它
交换机或者为带宽占用量大的关键服务器提供附加带宽。

FDDI(Fiber Distributed Data Interface ,光纤分布式数据接口)指由ANSI X3T9.5定义的局域网标准,
规定了使用光纤电缆100-Mbps的令牌传递网络,其最大传输距离可达到2公里。

FDD I使用双环结构来提供冗余。

与CDDI和FDD I II相对一般来说,交换机的每个端口都用来连接一个独立的网段,但是有时为了提供更快的接入速度,我们可以把一些重要的网络计算机直接连接到交换机的端口上。

这样,网络的关键服务器和重要用户就拥有更快的接入速度,支持更大的信息流量。

交换机的交换方式:
交换机通过以下三种方式进行交换
1. 直通式:
直通方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。

它在输入端口检测到一个数据
包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输岀端口,在输入与输岀交叉处接通,把数据包直通到相应的端口,实现交换功能。

由于不需要存储,延迟非常小、交换非常快,这是它的优点。

它的缺点是,因为数据包内容并没有被以太
网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力。

由于没有缓存,不能将具有不同速率的输入/输岀端口直接接通,而且容易丢包。

2. 存储转发:
存储转发方式是计算机网络领域应用最为广泛的方式。

它把输入端口的数据包先存储起来,然后进行
CRC循环冗余码校验)检查,在对错误包处理后才取岀数据包的目的地址,通过查找表转换成输岀端口送岀包。

正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错
误检测,有效地改善网络性能。

尤其重要的是它可以支持不同速度的端口间的转换,保持高速端口与低速端口间的协同工作。

3. 碎片隔离:
这是介于前两者之间的一种解决方案。

它检查数据包的长度是否够64个字节,如果小于64字节,说明是
假包,则丢弃该包;如果大于64字节,则发送该包。

这种方式也不提供数据校验。

它的数据处理速度比存储转发方式快,但比直通式慢。

以太网交换机的应用如果你的以太网络上拥有大量的用户、繁忙的应用程序和各式各样的服务器,而且你
还未对网络结构做岀任何调整,那么整个网络的性能可能会非常低。

解决方法之一是在以太网上添加一个
10/100Mbps的交换机。

它不仅可以处理10Mbps的常规以太网数据流,而且还可以支持100Mbps的快速以太网连接。

如果网络的
利用率超过了40%并且碰撞率大于10%交换机可以帮你解决一点问题。

带有100Mbps快速以太网和10Mbps以太网端口的交换机可以全双工方式运行,可以建立起专用的20Mbps 到200Mbps连接。

相关文档
最新文档