专题五 高考中的圆锥曲线问题

专题五 高考中的圆锥曲线问题
专题五 高考中的圆锥曲线问题

专题五 高考中的圆锥曲线问题

1. 已知F 1、F 2为椭圆x 225+y 2

9

=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |

=_______.

2. 设AB 为过抛物线y 2=2px (p >0)的焦点的弦,则|AB |的最小值为 ( )

A.p

2 B .p C .2p D .无法确定

3. 若双曲线x 2a 2-y 2

3

=1的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则该双曲线的实轴长为

( ) A .1 B .2 C .3 D .6

4. 在抛物线y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是

( ) A .(-2,1) B .(1,2) C .(2,1) D .(-1,2)

5. 设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OA →·OB →

等于( )

A.34 B .-34 C .3 D .-3

题型一 圆锥曲线中的范围、最值问题

1

(浙江改编)如图所示,在直角坐标系xOy 中,点P (1,1

2

)

到抛物线C :y 2=2px (p >0)的准线的距离为5

4

.点M (t,1)是C 上的

定点,A ,B 是C 上的两动点,且线段AB 的中点Q (m ,n )在直线 OM 上.

(1)求曲线C 的方程及t 的值;

(2)记d =|AB |

1+4m 2

,求d 的最大值.

思维升华 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用均值不等式、函数的单调性或三角函数的有界性等求最值.

已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足

∠AMB =2θ,|AM →

|·|

BM →

|cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.

(1)求|AM →|+|BM →

|的值,并写出曲线C 的方程; (2)求△APQ 面积的最大值.

题型二 圆锥曲线中的定点、定值问题

2(福建)如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;

(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明:以PQ为直径的圆恒过y轴上某定点.

思维升华求定点及定值问题常见的方法有两种:

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

(江西)椭圆C:x2

a2+y2

b2=1(a>b>0)的离心率e=

3

2,a

+b=3.

(1)求椭圆C的方程;

(2)如图所示,A、B、D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,

直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.

题型三圆锥曲线中的探索性问题

例3(广东)

在平面直角坐标系xOy中,已知椭圆C:x2

a2+y2

b2=1(a>b>0)的离心率e=

2

3,且椭圆C上的点到点

Q(0,2)的距离的最大值为3.

(1)求椭圆C的方程.

(2)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、

B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

思维升华(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.

(2)反证法与验证法也是求解存在性问题常用的方法.

已知椭圆C 1、抛物线C 2的焦点均在x 轴上,C 1的中

心和C 2的顶点均为原点O

(1)求C 1,C 2的标准方程;

(2)是否存在直线l 满足条件:①过C 2的焦点F ;②与C 1交于不同的两点M ,N ,且满足OM →⊥ON →

?若存在,求出直线l 的方程;若不存在,说明理由.

题型四 直线、圆及圆锥曲线的交汇问题

例4

(浙江)

如图,点P (0,-1)是椭圆C 1:x 2

a 2+y 2

b

2=1(a >b >0) 的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,

l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .

(1)求椭圆C 1的方程;

(2)求△ABD 面积取最大值时直线l 1的方程.

思维升华 对直线、圆及圆锥曲线的交汇问题,要认真审题,学会将问题拆分成基本问题,然后综合利用数形结合思想、化归与转化思想、方程的思想等来解决问题,这样可以渐渐增强自己解决综合问题的能力.

(重庆) 如图,椭圆的中心为原点O,长轴在x轴上,

离心率e=

2

2,过左焦点F1作x轴的垂线交椭圆于A,A′两点,|AA′|=4.

(1)求该椭圆的标准方程;

(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P′,过P,P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P′Q,求圆Q的标准方程.

高分演练

1. 已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.

(1)求椭圆C 的方程;

(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,

求出直线l 的方程;若不存在,说明理由.l 不存在.

2. 如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为3

2

,x 轴被曲

线C 2:y =x 2-b 截得的线段长等于C 1的长半轴长. (1)求C 1,C 2的方程;

(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,两直线MA ,MB 分别与C 1相交于点D ,E . ①证明:MD ⊥ME ;

②记△MAB ,△MDE 的面积分别为S 1,S 2.问:是否存在直线l ,使得S 1S 2=17

32

?请说明理由.

3. 如图,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于

A 、

B 两点,O 为坐标原点,OA →+OB →

=(-4,-12). (1)求直线l 的方程和抛物线C 的方程;

(2)若抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.

4. 如图,椭圆长轴的端点为A ,B ,O 为椭圆的中心,F 为椭圆

的右焦点,且AF →·FB →=1,|OF →

|=1. (1)求椭圆的标准方程;

(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使点F 恰为△PQM 的垂心,若存在,求出直线l 的方程;若不存在,请说明理由.

5. 在平面直角坐标系xOy 中,已知椭圆x 29+y 2

5

=1的左,右顶点分别为A ,B ,右焦点为F .设过点T (t ,m )

的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0. (1)设动点P 满足:|PF |2-|PB |2=4,求点P 的轨迹;

(2)设x 1=2,x 2=1

3

,求点T 的坐标;

(3)设t =9,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).

6. (上海)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.

(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积. (2)设斜率为1的直线l 交C 1于P 、Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ .

(3)设椭圆C 2:4x 2+y 2=1.若M 、N 分别是C 1、C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.

圆锥曲线高考专题

圆锥曲线综合训练 1.(17课标1)已知F 为抛物线C :2 4y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D 、E 两点,则+||||AB DE 的最小值为( ) A.16 B.14 C.12 D.10 2.(17课标3)已知椭圆C :22 221x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线 段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ) A B C D . 13 3.(17课标2)若双曲线()2222:10,0x y C a b a b -=>>的一条渐近线被圆()2 224x y -+=所 截得的弦长为2,则C 的离心率为 ( ) A.2 4.(16)设O 为坐标原点,P 是以F 为焦点的抛物线2 2(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( ) A 3B 23C 2 D1 5.(16XX )已知双曲线2 224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( ) A 22443=1y x - B 223 44=1y x -C 2224=1x y b -D 2 224=11x y - 6.(16全国I )已知方程x 2m 2+n –y 2 3m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则

n 的取值围是( ) A(–1,3) B(–1,3) C(0,3) D(0,3) 7.(16全国I )以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=,|DE|=C 的焦点到准线的距离为( ) A2 B4 C6 D8 8.(16全国II )圆已知12,F F 是双曲线22 22:1x y E a b -=的左,右焦点,点M 在E 上,1MF 与 x 轴垂直,211 sin 3 MF F ∠=,则E 的离心率为( ) 3 2 9.(16全国III )已知O 为坐标原点,F 是椭圆C :22 221(0)x y a b a b +=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( ) A 13B 12C 23D 3 4 10.(16) 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n –y 2 =1(n >0)的焦点重合,e 1,e 2 分别为C 1,C 2的离心率,则( ) A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m 1 D .m

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

(江苏)高考数学 压轴大题突破练 圆锥曲线

中档大题规范练——圆锥曲线 1.已知中心在原点的双曲线C 的右焦点为(2,0),实半轴长为 3. (1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 的左支交于A ,B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l0与y 轴交于M(0,b),求b 的取值范围. 解 (1)设双曲线方程为x2a2-y2b2=1 (a>0,b>0), 由已知,得a =3,c =2,b2=c2-a2=1, 故双曲线方程为x23-y2=1. (2)设A(xA ,yA),B(xB ,yB), 将y =kx +2代入x23-y2=1, 得(1-3k2)x2-62kx -9=0. 由题意,知????? 1-3k2≠0,Δ=36(1-k2)>0,xA +xB =62k 1-3k2 <0,xAxB =-91-3k2>0, 解得330)的焦点 为F2,设椭圆C1与抛物线C2的一个交点为P(x0,y0),PF1=73. (1)求椭圆C1的标准方程及抛物线C2的标准方程; (2)直线x =m 与椭圆C1在第一象限的交点为Q ,若存在过点A(4,0)的直线l 与椭圆C1相交于不同的两点M ,N ,使得36AQ2=35AM·AN ,求出直线l 的方程.

2020高考专题复习—圆锥曲线

一、2020年高考虽然推迟,但是一定要坚持多练习,加油! 二、高考分析 1、分值、题型、难度设置 圆锥曲线是高中数学的重要内容之一,分值约占14﹪,即20分左右,题型一般为二小一大,例如,2005年高考为一道选择题,一道填空题一道解答题。小题基础灵活,解答题一般在中等以上,一般具有较高的区分度。 考试内容:椭圆、双曲线、抛物线的定义,标准方程,简单的几何性质,椭圆的参数方程。 主要题型:(1)定义及简单几何性质的灵活运用;(2)求曲线方程(含指定圆锥曲线方程及轨迹方程);(3)直线与圆锥曲线的位置关系问题(交点、弦长、中点弦及斜率、对称问题),确定参数的取值范围;(4)在导数、不等式、函数、向量等知识网络交汇点上的问题。 2、命题方向 解析几何内容多,范围广,综合度高,其特点是:数形结合,形象思维,规律性强,运算量大,综合性好。主要考察运算能力,逻辑思维能力,以及分析问题和解决问题的综合能力。 涉及函数、方程、不等式、三角、向量和导数等方面的内容,以及数形结合、分类讨论、等价转化等数学思想方法。 要注意一些立意新,角度好,有创意的题目,特别要关注在向量和解析几何交汇点上的命题趋势,两者通过坐标自然融合,既考查基

础知识、基本方法,又平淡之中见功夫,强化区分功能,突出对能力的考查,从不同的思维层次上考察能力,有较好的思维价值。 三、 专题复习 2.1考查直线和圆锥曲线方程等有关基础知识和基本方法,要特别重视圆锥曲线定义的灵活应用,反映思维品质。 例1.1)如图,在正方体ABCD D C B A -111的侧 面1AB 内有 动点P 到直线AB 与直线11C B 距离相等,则动点P 所在的曲线的形状为: ( ) 1 11 A B 1 (A) (B) 1A B 1 A 1 B (C) B A B 1 (D) 分析:本题主要考查抛物线定义,线面垂直关系及点到直线的距离等概念,情景新,角度好,有创意,考查基础知识和基本方法。 ∵11C B ⊥面1AB ,1PB ∴即为点P 到直线11C B 的距离,故动点P 的轨迹应为过B B 1中点的抛物线,又点1A 显然在此抛物线上,故选C 。 2)已知F 1、F 2是双曲线)0,0(122 22>>=-b a b y a x 的两焦点,以线段F 1F 2为边作 正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+ B .13- C . 2 1 3+ D .13+ 2.2 求曲线的方程,考查坐标法的思想和方法,从不同思维层次上反映数学能力。

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

【试卷】高三圆锥曲线专题测试题及答案

高三圆锥曲线专题测试题 一、选择题 1.椭圆222312x y +=的两焦点之间的距离为( ) A. C. 2.椭圆2 214 x y +=的两个焦点为12F F ,,过1F 作垂直于x 轴的直线与椭圆相交,一个 交点为P ,则2PF =( ) C.72 D.4 3.双曲线22 22 1124x y m m -=+-的焦距是( ) A.8 B.4 C. D.与m 有关 4.焦点为(06),且与双曲线2 212x y -=有相同的渐近线的双曲线方程是( ) A.22 11224 x y -= B.22 12412y x -= C.2212412 x y -= D.22 11224 y x -= 5.抛物线的焦点在x 轴上,抛物线上的点(3)P m -,到焦点的距离为5,则抛物线的标准方程为( ) A.24y x = B.28y x = C.24y x =- D.28y x =- 6.焦点在直线34120x y --=上的抛物线的标准方程为( ) A.216y x = 或 212x y =- B. 216y x =或 216x y = C. 216y x =或212x y = D.212y x =-或216x y = 7.椭圆22 213x y m m +=-的一个焦点为(01), ,则m 等于( ) A.1 B.2-或1 D.53 8.若椭圆的短轴为AB ,它的一个焦点为1F ,则满足1ABF △为等边三角形的椭圆的离心率是( ) A.14 B.12 9.以双曲线22312x y -+=的焦点为顶点,顶点为焦点的椭圆的方程是( )

A.22 11612 x y += B.22 1164x y += C.22 11216 x y += D.22 1416 x y += 10.经过双曲线228y x -=-的右焦点且斜率为2的直线被双曲线截得的线段的长是( ) C. D.11.一个动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则动圆必过定点( ) A.(02), B.(02)-, C.(20), D.(40), 12.已知抛物线24x y =的焦点F 和点(18)A P -,,为抛物线上一点,则PA PF +的最小值是( ) A.16 B.12 C.9 D.6 三、填空题 13.已知椭圆22 14924x y +=上一点P 与椭圆的两个焦点12F F ,连线的夹角为直角,则 12PF PF =· . 14.已知双曲线的渐近线方程为34 y x =±,则双曲线的离心率为 . 15.圆锥曲线内容体现出解析几何的本质是 . 16.当以椭圆上一点和椭圆两焦点为顶点的三角形的面积的最大值为1时,椭圆长轴的最小值为 . 三、解答题 17.若椭圆的对称轴在坐标轴上,两焦点与两短轴的端点恰好是正方形的四个 1,求椭圆的方程.

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高中数学圆锥曲线压轴题集锦2

高中数学圆锥曲线压轴题集锦2 一.解答题(共60小题) 1.如图,F1(﹣c,0),F2(c,0)分别是双曲线C:=1(a,b>0)的左,右焦点,过点F2作x轴的垂线交双曲线的上半部分于点P,过点F1作直线PF1的垂线交直线l:x=﹣ 于点Q. (1)若点P的坐标为(4,6),求双曲线C的方程及点P处的切线方程; (2)证明:直线PQ与双曲线C只有一个交点; (3)若过l:x=﹣上任一点M作双曲线C:=1(a,b>0)的两条切线,切点分别为T1,T2,问:直线T1T2是否过定点,若过定点,请求出该定点;否则,请说明理由. 2.已知曲线C1:+=1(a>b>0,x≥0)和曲线C2:x2+y2=r2(x≥0)都过点A(0,﹣1),且曲线C1所在的圆锥曲线的离心率为 (1)求曲线C1,C2的方程 (2)设点B,C分别在曲线C1,C2上,k1,k2分别为直线AB,AC的斜率,当k2=4k1时, ①直线BC是否经过定点?请说明理由 ②设E(0,1),求||?||的最大值.

3.已知B(﹣1,0),C(1,0),P是平面上一动点,且满足||?||=?. (1)求点P(x,y)的轨迹C对应的方程. (2)如果点A(m,2)在曲线C上,过点A作曲线C的两条弦AD和AE,且AD⊥AE,问直线DE是否过定点?若过定点,求出该定点坐标;若不过定点,请说明理由. 4.已知F1、F2为椭圆C:的左,右焦点,M为椭圆上的动点,且? 的最大值为1,最小值为﹣2. (1)求椭圆C的方程; (2)过点作不与y轴垂直的直线l交该椭圆于M,N两点,A为椭圆的左顶点.试判断∠MAN是否为直角,并说明理由. 5.已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点. (Ⅰ)求圆C的方程; (Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l 的方程. 6.过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l. (Ⅰ)若k1>0,k2>0,证明:; (Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程. 7.如图,椭圆C:经过点P(1,),离心率e=,直线l的方程为x=4. (1)求椭圆C的方程; (2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,

圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题 、选择题: 2. (2006全国 II )已知△ ABC 的顶点 B 、C 在椭圆 x 3 2+y 2 =1上,顶点 A 是椭圆的一个焦点,且椭圆的另外一个焦点 3 在 BC 边上,则△ ABC 的周长是 ( A )2 3 (B ) 二、填空题: 1 设点 A 1, ,则求该椭圆的标准方程为 1. (2006 全国 II )已知双曲线 a 2 b 2 (C )54 A)5 3 x 2 y 2 4 1的一条渐近线方程为 y = 3x ,则双曲线的离心率为( (D)3 2 C) 4 3 D)12 3. (2006全国卷 I )抛物线 y x 2 上的点到直线 4x 3y 0距离的最小值是( A . 4 3 .3 4.( 2006 广东高考卷) 已知双曲线 3x 2 y 2 9 ,则双曲线右支上的点 P 到右焦点的距离与点 P 到右准线的距离之比等 于( ) 22 A. 2 B. C. 2 D. 4 5. 2006 辽宁卷)方程 2x 2 5x 0 的两个根可分别作为( A.一椭圆和一双曲线的 离心率 B.两抛物线的离心率 6. 2006 辽宁卷)曲线 10 m 2 y 6m 2 1(m 6) 与曲线 x 5m 2 y 1(5 m 9) 的( ) 9m 7. 8. (A )焦距相等 (B ) 离心率相等 (C )焦点相同 (D )准线相同 2 2 x 2006 安徽高考卷)若抛物线 y 2 2 px 的焦点 与椭圆 6 A . 2 .4 1的右焦点重合,则 p 的值为( 22 2006 辽宁卷)直线 y 2k 与曲线 y 2 18k 2 x (k R,且k 0) 的公共点的个数为( (A)1 (B)2 (C)3 (D)4 9. (2006 全国卷 I )双曲线 mx 2 1的虚轴长是实轴长的 2 倍,则 m 10. (2006 上海卷 )已知在平面直角坐标系 xOy 中的一个椭圆, 它的中心在原点, 左焦点为 F ( 3,0) , 右顶点为 D (2,0) ,

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线2 2 1x y -=右支上的一个动点,若P 到 直线10x y -+=的距离大于c恒成立,则c的最大值为_ __ 2 __________。 2、(2013年江苏高考)双曲线19162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(122 22>>=+b a b y a x , 右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d = ,则椭圆C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C :y x 42 =的焦点为F,定 点)0, 22(A ,若射线FA 与抛物线C 相交于点M,与抛物线C的准线相交于点N,则FM :MN = 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0)x y a b a b -=>的离心率等于2, 它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线 22 14x y m -= 的渐近线方程为2y x =±,则m = ▲ 7、(盐城市 高三第三次模拟考试)若抛物线2 8y x =的焦点F 与双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线\F(x 2 ,a 2 )-\F(y2 ,b 2 )=1(a >0,b >0)的渐近线方程 为y =±\R(,3)x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线 2 2 15 x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线2 2 2 (0)x y a a -=>的右焦点与抛物线2 4y x =的焦点重合,则a = ▲ . Y

江苏高考圆锥曲线专题

第10讲 圆锥曲线 历年高考分析: 回顾2009~20XX 年的高考题,在填空题中主要考查了椭圆的离心率和定义的运用,在解答题中2010、2011、20XX 年连续三年考查了直线与椭圆的综合问题,难度较高.在近四年的圆锥曲线的考查中抛物线和双曲线的考查较少且难度很小,这与考试说明中A 级要求相符合. 预测在20XX 年的高考题中: (1)填空题依然是以考查圆锥曲线的几何性质为主,三种圆锥曲线都有可能涉及. (2)在解答题中可能会出现圆、直线、椭圆的综合问题,难度较高,还有可能涉及简单的轨迹方程的求解. 题型分类: (1)圆锥曲线的几何性质,如a ,b ,c ,p 的几何性质以及离心率的值或范围的求解; (2)解答题中简单的直线与椭圆位置关系问题; (3)以椭圆为背景考查直线方程、圆的方程以及直线和圆的几何特征的综合问题; (4)综合出现多字母等式的化简,这类问题难度较高. 例1:若椭圆x 25+y 2m =1的离心率e =10 5,则m 的值是________. 解析:当m >5时,105=m -5m ,解得m =253;当m <5时,105=5-m 5 ,解得m =3. 答案:3或253 例2:若抛物线y 2=2x 上的一点M 到坐标原点O 的距离为3,则M 到该抛物线焦点的距离为________. 解析:设M 的坐标为(x ,±2x )(x >0),则x 2+2x =3,解得x =1,所求距离为1+12=3 2. 例3:双曲线2x 2-y 2+6=0上一个点P 到一个焦点的距离为4,则它到另一个焦点的距离为________. 解析:双曲线方程化为y 26-x 2 3=1.设P 到另一焦点的距离为d ,则由|4-d |=26得d =4+26,或d =4-26(舍去). 例4:(2012·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2m -y 2 m 2+4=1的离心率为5,则m 的值为________. 解析:由题意得m >0,∴a =m ,b =m 2+4, ∴c = m 2+m +4,由 e =c a =5得m 2+m +4m =5,解得m =2. 例5:已知椭圆()22 2210x y a b a b += >>的离心率32e =,连接椭圆的四个顶点得到的菱形的面积为4,则椭圆 的方程为 . 例 6:在平面直角坐标系xOy 中,椭圆1:C ()22 2210x y a b a b += >>的左、右焦点分别为1F 、2F ,其中2F 也

高考圆锥曲线压轴题型汇总

高考圆锥曲线压轴题型汇总

————————————————————————————————作者:————————————————————————————————日期:

高考圆锥曲线压轴题型总结 直线与圆锥曲线相交,一般采取设而不求,利用韦达定理,在这里我将这个问题分成了三种类型,其中第一种类型的变式比较多。而方程思想,函数思想在这里也用得多,两种思想可以提供简单的思路,简单的说就是只需考虑未知数个数和条件个数,。使用韦达定理时需注意成立的条件。 题型4有关定点,定值问题。将与之无关的参数提取出来,再对其系数进行处理。 (湖北卷)设A 、B 是椭圆 λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (Ⅰ)确定λ的取值范围,并求直线AB 的方程; (Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (I )解法1:依题意,可设直线AB 的方程为 λ=++-=2 23,3)1(y x x k y 代入,整理得 .0)3()3(2)3(222=--+--+λk x k k x k ① 设是方程则212211,),,(),,(x x y x B y x A ①的两个不同的根, 0])3(3)3([422>--+=?∴k k λ ② ) 3,1(.3) 3(2221N k k k x x 由且+-= +是线段AB 的中点,得 .3)3(,1222 1+=-∴=+k k k x x 解得k=-1,代入②得,λ>12,即λ的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设则有),,(),,(2211y x B y x A .0))(())((33, 3212121212 2222121=+-++-??????=+=+y y y y x x x x y x y x λλ 依题意, . ) (3,2 12121y y x x k x x AB ++- =∴≠ . 04),1(3). ,12(.12313,)3,1(.1,6,2,)3,1(222121=-+--=-+∞∴=+?>-==+=+∴y x x y AB N k y y x x AB N AB 即的方程为直线的取值范围是在椭圆内又由从而的中点是λλΘ

圆锥曲线高考题汇编[带详细解析]

第八章 圆锥曲线方程 ●考点阐释 圆锥曲线是解析几何的重点容,这部分容的特点是: (1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用. (2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等容,体现了对各种能力的综合要求. (3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题 1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( ) 2.(2003京春理,7)椭圆?? ?=+=? ? sin 3cos 54y x (?为参数)的焦点坐标为( ) A.(0,0),(0,-8) B.(0,0),(-8,0) C.(0,0),(0,8) D.(0,0),(8,0) 3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.(2002全国文,7)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( ) A.-1 B.1 C.5 D. - 5 5.(2002全国文,11)设θ∈(0, 4 π ),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值围为( ) A.(0, 2 1 ) B.( 22 ,21) C.( 2,2 2 ) D.( 2,+∞) 6.(2002文,10)已知椭圆222253n y m x +和双曲线22 2 232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x =± y 2 15 B.y =± x 2 15

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

挑战高考数学压轴题库之圆锥曲线与方程

一、圆锥曲线中的定值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率 为m,证明2m-k为定值. y2 b2= 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由. y2 b2= 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证 y2=1(a>0)的右焦点为F,点A,B分别在 C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程;

|NF| 定值,并求此定值. 二、圆锥曲线中的最值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标; (ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. y2 b2=1(a>b>0)的左、右焦 y2 b2=1的左、右焦点分 (Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形AP B Q面积的最小值.

高考专题-:圆锥曲线题型方法归纳

高考二轮小专题:圆锥曲线题型归纳 1基础知识: 1.直线与圆的方程; 2.椭圆、双曲线、抛物线的定义与标准方程公式; 3.椭圆、双曲线、抛物线的几何性质等相关知识:、、、、、渐近线。 4. 常用结论,特征三角形性质。 2基本方法: 1.待定系数法:求所设直线方程中的系数,求标准方程中的待定系数、、、、等等; 2.齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3.韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4.点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5.距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 3基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 4.专题知识特点 ⑴用代数的方法研究解决几何问题,重点是用数形结合的思想把几何问题转化为代数问题. ⑵解题思路比较简单,概念公式较多,规律性较强,但运算过程往往比较复杂,对运算能力、恒等变形 能力及综合运用各种数学知识和方法的能力要求较高. 5.专题高考地位 本专题是高中数学的核心内容之一,在历年高考试题中均占有举足轻重的地位,问题总量除包括倒数第1(2)题的压轴题外,还至少包括2~3道小题. 本专题内容在高考题中所占的分值是20多分,占总分值的15%左右. ⑴圆锥曲线中的定义、离心率、焦点三角形、焦半径、通径等知识点是填空题和选择题中的高档试题,难度不高,但方法比较灵活. ⑵直线与圆锥曲线的位置关系容易和平面向量、数列、不等式综合,涉及存在性问题、定值问题、定点问题、求参数问题. ⑶求曲线的轨迹方程是解析几何一个基本问题,是历年来高考的一大热点. ⑷圆锥曲线(包括直线与圆)和函数、数列、不等式、三角、平面向量等知识联系密切.直线与圆锥曲线中的存在性问题、定值问题渐成考试定势. ⑸数形结合思想本身就是解析几何的灵魂,在高考解析几何题中的运用更为常见;分类讨论思想主要体现在解答

(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习 一、椭圆方程. 1. 椭圆的第一定义: 为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+πφ 2.椭圆的方程形式: ①椭圆的标准方程: i. 中心在原点,焦点在x 轴上: ) 0(12 22 2φφb a b y a x =+ . ii. 中心在原点,焦点在y 轴上: )0(12 22 2φφb a b x a y =+ . ②一般方程:)0,0(12 2 φφB A By Ax =+.③椭圆的参数方程: 2 22 2+ b y a x ?? ?==θ θsin cos b y a x (一象限θ应是属于20π θππ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2 2 21,2b a c c F F -==.⑤准线:c a x 2 ±=或 c a y 2±=.⑥离心率:)10(ππe a c e =.⑦焦半径: i. 设),(00y x P 为椭圆 )0(12 22 2φφb a b y a x =+ 上的一点,21,F F 为左、右焦点,则: 证明:由椭圆第二定义可知:)0()(),0()(0002 200201φπx a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起 来为“左加右减”. ii.设),(00y x P 为椭圆 )0(12 22 2φφb a a y b x =+ 上的一点,21,F F 为上、下焦点,则: ⑧通径:垂直于x 轴且过焦点的弦叫做通径: 2 22b d a =;坐标:22(,),(,)b b c c a a - 4.共离心率的椭圆系的方程:椭圆)0(12 22 2φφb a b y a x =+的离心率是)(22b a c a c e -== ,方程 t t b y a x (2 22 2=+是大于0的参数,)0φφb a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆: 12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为 2 tan 2θ b (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . 1020 ,PF a ex PF a ex =+=-1020 ,PF a ey PF a ey =+=-asin α,)α)

相关文档
最新文档