不确定关系测不准关系的表述和含义

合集下载

测不准关系

测不准关系

南京师范大学泰州学院毕业论文(设计)( 2012 届)题目:院(系、部):专业:姓名:学号指导教师:南京师范大学泰州学院教务处制目录1.引言 (5)2、测不准关系的理论背景 (5)2.1 粒子的波动性 (5)2.2波的粒子性 (6)3.测不准关系式的简要导出 (7)3.1 由电子的单缝衍射导出测不准关系 (7)3.2由量子力学中的特例导出测不准关系式 (7)3.3由量子力学中的算符的对易关系导出测不准关系式 (7)3.4、由量子理论的基本假定直接导出测不准关系式。

(7)4 对测不准关系的认同与争议 (9)4.1对测不准关系的争议 (9)4.1.1统计解释与非统计解释 (9)4.1.2某些力学量测不准的原因是什么 (9)4.1.3关于名称和译名的争议 (10)4.2对有争议问题的讨论 (10)4.2.1关于统计解释和非统计解释 (10)4.2.2某些力学量测不准的原因 (11)4.2.3关于uncertainty和indeteminacy的译名问题 (11)5 测不准关系的应用 (11)5.1无限深势阱问题 (12)5.2 线性谐振子问题 (13)5.3 氢原子问题 (15)结语 (16)谢辞 (17)参考文献 (17)摘要测不准关系是量子力学的一个基本原理,表明一个微观粒子的某些成对的物理量不可能同时具有确定的数值,例如位置与动量、时间和能量。

它反映了自然界的客观规律, 反映了微观粒子的波粒二象性的基本属性。

本文主要介绍了测不准关系的理论背景,导出模式以及对测不准关系的认同与争议,重点讨论了测不准关系在量子力学上的应用。

通过无限深势阱、线性谐振子、氢原子等几个模型问题的基态能量的求解,证明了测不准关系在物理量大小估算问题上具有的应用意义和价值.关键词:测不准关系;量子力学;估算AbstractThe uncertainty relation is a fundamental principle of quantum mechanics. It showed that the value of a microscopic particle having certain pairs of physical quantities is not possible to determine, such as position and momentum, time and energy. It reflects the objective laws of nature, reflecting the basic properties of micro-particle wave-particle duality.This paper focuses on the application of uncertainty relation on quantum mechanics. Firstly, we make a detailed investigation regarding the theoretical background, export mode, and the recognition and controversy of uncertainty relation. Basing on the solution of several model problems such as the infinite potential well, linear harmonic oscillator, hydrogen atom ground state energy, it is necessary to be figured out that Uncertainty relation in the meaning and value on the physical size of the estimation problem.Keywords: Uncertainty relation ;quantum mechanics;estimation1.引 言测不准关系又名“测不准原理”、“不确定关系”,由海森伯在1927 年率先提出, 经历了大半个世纪争论,近30年来才逐渐取得一致, 成为量子力学的重要内容。

不确定关系

不确定关系
2
海森堡认为,微观粒子既不是经典的粒子,也不是经典 的波;当人们用宏观仪器观测微观粒子时,就会发生观测 仪器对微观粒子行为的干扰,使人们无法准确掌握微观粒 子的原来面貌;而这种干扰是无法控制和避免的,就像盲 人想知道雪花的形状和构造。通过仔细分析,海森堡得出 电子坐标的不确定程度Δx和动量的不确定程度Δp遵从: Δx·Δp~h;同样,能量和时间这种正则共轭物理量也遵从 测不准关系,海森堡认为“这种不确定性,正是量子力学 中出现统计关系的根本原因”。
3.2 不确定关系
一、不确定关系的表达式 二、不确定关系的含义 三、不确定关系应用举例
1
一、不确定关系的表达式
1927年,海森堡在论文《量子论中运动学和动力学的 可观测内容》中,提出了著名的“测不准原理”。为了 说明他的测不准原理,海森堡设计了一个理想实验:用 一个γ射线显微镜观测一个电子。由于显微镜的分辨率 受光波波长的限制,为了精确确定电子的位置,应该使 用波长短的光,而波长越短,光子的动量越大,根据康 普顿散射,引起电子动量的变化就越大。因此电子的位 置愈准确,就愈难确定电子的动量。反之亦然。
14
*微观粒子和宏观物体特性之比较
动规律用牛顿力学描述
连续可测的运动轨道 有运动轨迹可以分辨
可处于任意能量状态, 即能量可以连续变化
测不准关系不表现出实际意义
解:电子的动量为
p mv 9.11031 200 1.81028 kg.m.s1
动量的不确定范围为
p 0.01% p 1.81032 kg.m.s1
由不确定关系,得电子位置的不确定范围
x
h
4px

6.63 1034
4 1.81032
s m
1010 m / s

量子力学中的测不准原理

量子力学中的测不准原理

量子力学中的测不准原理量子力学是描述微观世界行为的物理学理论,它揭示了微观粒子的奇特行为和测量的困难性。

量子力学中的测不准原理(Uncertainty Principle)是这一理论的核心概念之一,由德国物理学家海森堡于1927年提出。

测不准原理表明,在一些不确定性方面,我们无法同时准确地测量一个粒子的位置和动量。

本文将详细介绍测不准原理的原理、应用和意义。

测不准原理的核心概念是对于两个物理量的测量,我们无法同时获得它们的准确值。

测不准原理最常见的形式是海森堡不确定关系,它描述了位置和动量的关系。

根据这个关系,我们越精确地测量一个粒子的位置,就越无法确定它的动量,反之亦然。

具体来说,如果我们试图测量一个粒子的位置,我们会对其动量产生扰动,从而无法准确获得动量值。

同样地,如果我们试图测量一个粒子的动量,我们会对其位置产生扰动,导致无法准确测量位置。

测不准原理的表述可以用数学方程来描述。

对于一个粒子的位置和动量,分别用x和p表示,海森堡不确定原理可以通过以下的不等式表示:Δx · Δp ≥ ħ/2其中,Δx表示位置的不确定度,Δp表示动量的不确定度,ħ为普朗克常量的约化取值。

这个不等式表明了测不准原理所揭示的物理限制。

它告诉我们,对于一个量子粒子,我们永远无法同时获得其位置和动量的准确值,只能获得它们的不确定度的乘积。

测不准原理的意义非常深远。

首先,它打破了牛顿经典物理学中对于测量的常识。

在经典物理学中,我们通常认为,只要我们使用更加精确的仪器和更加精细的实验方法,就能准确地测量粒子的位置和动量。

但是测不准原理告诉我们,这种认识在量子力学的背景下是不适用的。

其次,测不准原理也揭示了测量的困难性。

在经典物理学中,测量对于科学研究来说是一项基本且简单的任务。

然而,在量子力学中,由于测不准原理的限制,我们无法同时获得一个粒子的位置和动量的准确值,这给实验设计和数据分析带来了很大的挑战。

另外,测不准原理还与量子系统的本质有关。

量子力学中的测不准关系

量子力学中的测不准关系

量子力学中的测不准关系量子力学是研究微观世界的基本物理理论,它描述了微观粒子的行为和性质。

而测不准关系是量子力学中的一个重要概念,它揭示了在测量某个物理量时的固有不确定性。

本文将介绍测不准关系的基本原理、相关数学表达式以及其在现实世界中的应用。

测不准关系的基本原理可以追溯到1927年由维尔纳·海森堡所提出的海森堡不确定性原理。

该原理指出,在任何时刻,无法同时准确测量一个粒子的位置和动量。

这意味着,如果我们试图确定粒子的位置,那么它的动量就将变得模糊不清;反之,如果我们试图确定其动量,其位置也将变得不确定。

换句话说,存在一个固有的不确定度,限制了我们在同一时间测量多个相关物理量的精确性。

测不准关系可以用数学表达式来描述。

以位置(x)和动量(p)的测量为例,海森堡不确定性原理给出了以下数学关系:Δx × Δp ≥ ħ/2其中,Δx代表位置的不确定度,Δp代表动量的不确定度,ħ是普朗克常量的约化值。

这个关系的意义是,位置和动量的不确定度的乘积不能小于普朗克常量的一半。

这说明了在微观尺度上,我们无法同时精确测量位置和动量。

值得一提的是,测不准关系并不是由于观测方法或仪器的限制,而是与量子粒子的本质有关。

这是因为在测量时,我们必须使用光子或其他粒子与被测系统相互作用,而这种相互作用必然会对被测系统的状态产生不可忽视的影响。

因此,测不准关系实际上揭示了微观粒子的固有性质。

测不准关系在实际应用中具有重要意义。

首先,它对于狭义相对论与量子力学的统一提供了重要的线索。

狭义相对论描述了高速运动下的物体,量子力学描述了微观尺度的物体。

然而,这两个理论之间的矛盾问题一直困扰着物理学家。

通过引入测不准关系,我们可以看到,测量的不确定性与时空观念的相对性密切相关,这为两个理论的统一提供了可能性。

其次,测不准关系在量子信息科学、量子计算和量子通信等领域也有广泛应用。

在量子计算中,信息的存储和处理是通过量子比特来实现的。

大学物理,量子物理基础21-05 测不准关系

大学物理,量子物理基础21-05  测不准关系
7.3 106 m/s
υ 与υ 在数量级上相当,因此原子中电子就 不能当作经典粒子处理,即不能用位置和动量来 描述原子中电子的运动。
13
21.5
测不准关系
第21章 量子物理基础
由坐标——动量的不确定关系 还可以推导出相应的
能量与时间的不确定关系:
x px 2
p E 2m p E p p m x x t
1927年,海森伯发现,上述不确定的各种范围之间 存在着一定的关系,而且物理量的不确定性受到了普朗 克常量的限制。这一关系叫不确定关系。
2
21.5
测不准关系
用电子衍射说明不确定关系
电子通过狭缝时的 位置的不确定量: x a
第21章 量子物理基础 x p px py

Px
电子通过狭缝后, 要到达屏上不同的点, 具有 x 方向动量 Px,
动量的不确定范围:
32
31
1
p 0.01% p 1.8 10 kg m s
位置的不确定范围:
1
h 6.63 1034 2 x m 3.7 10 m 32 p 1.8 10
11
21.5
测不准关系
第21章 量子物理基础
例: 电视显象管中电子的加速电压为9kV , 电子枪的枪口的直径为 0.01 ㎝ 。试求: 电子射出电子枪后的横向速度的不确定量。 解: 电子横向位置的不确定量:
21.5
测不准关系
第21章 量子物理基础
21.5 不 确 定 关 系
1
21.5
测不准关系
引入
第21章 量子物理基础
经典力学中,宏观粒子的运动具有决定性的规律。 物体的位置、动量以及所在力场的性质确定后,物体以 后的运动状态就可确定,因此可以用轨道来描述粒子的 运动。原则上说可同时用确定的坐标与确定的动量来描 述宏观物体的运动。 但微观粒子,具有显著的波动性,粒子以一定的概 率在空间各处出现。我们不能用经典的方法来描述微观 粒子,以致于它的某些成对物理量(如位置坐标和动量、 时间和能量等)不可能同时具有确定的量值。

量子力学中的不确定性原理与测不准关系

量子力学中的不确定性原理与测不准关系

量子力学中的不确定性原理与测不准关系量子力学是描述微观世界的一门物理学理论,它与经典力学有着本质的不同。

在量子力学中,不确定性原理和测不准关系是两个重要的概念,它们揭示了微观粒子的本质和测量的局限性。

本文将从不确定性原理和测不准关系的定义、物理背景和实际应用等方面进行探讨。

不确定性原理是量子力学的核心概念之一,由德国物理学家海森堡于1927年提出。

它表明,在量子力学中,无法同时准确测量一个粒子的位置和动量。

换句话说,我们无法同时知道一个粒子的位置和速度,只能通过测量其中一个属性来获得信息。

这与经典力学中的观念不同,经典力学认为粒子的位置和速度是同时确定的。

不确定性原理的数学表达方式是海森堡不等式,即ΔxΔp ≥ h/4π,其中Δx表示位置的不确定度,Δp表示动量的不确定度,h为普朗克常数。

该不等式表明,位置和动量的不确定度的乘积不小于一个常数。

这意味着,我们无法将位置和动量的不确定度同时降到零,存在一种固有的测量局限性。

不确定性原理的物理背景可以从波粒二象性理论来解释。

根据波粒二象性理论,微观粒子既可以表现出粒子性,也可以表现出波动性。

当我们试图测量粒子的位置时,我们必须使用光子或其他粒子与待测粒子相互作用,这种相互作用会使待测粒子的位置发生扰动。

同样地,当我们试图测量粒子的动量时,我们必须使用波长足够小的粒子来进行测量,这样才能准确测量动量。

这种测量的过程会导致动量的不确定度增大。

因此,不确定性原理可以看作是波粒二象性理论的一个直接推论。

测不准关系是不确定性原理的一种具体应用。

它描述了在量子力学中,两个不可观测量的测量结果之间存在的一种固有的关系。

以位置和动量为例,根据测不准关系,我们无法同时准确测量一个粒子的位置和动量。

这是因为位置和动量是量子力学中的共轭变量,它们之间存在一种固定的关系。

当我们试图减小位置的不确定度时,动量的不确定度必然增大,反之亦然。

这意味着,我们无法完全确定一个粒子的位置和动量,只能通过测量其中一个属性来获得信息。

不确定关系浅析

不确定关系浅析

y受到了干扰才使它们变得不确定了。

在罗伯逊和邓文基等人的证明方法中,完全是从量子力学的基本假定出发的。

这表明测不准关系的成立,仅仅是由微观粒子本身固有的特性所决定的。

4.1.3关于名称和译名的争议海森堡的名著《量子论的物理原理》于1930年同时用英文和德文出版,在德文版中他用unbestimm theit一词(表示不确定的性质),这相当于英文的indeterm Inacy【9】,而在英文版中他用的词是uncertainty。

由于英文版的内容较详细,且传播广,影响大,所以国际上多数人采用uncertainty一词。

在关于量子理论基本解释的长期争论中,名词的使用也相应地出现了分歧。

例如,德布罗意(deBroglie)和玻姆(Bohm)都曾用indeterminacy一词来表明他们对量子理论的基本解释方面的意见。

而在我国关于名词的使用方面与国外并不一致,可能是由于在我国关于量子理论解释的争论尚未普遍展开。

1975年科学出版社出版的(英汉物理学名词)中,将indeterminacy和uncertainty两个词都译成“测不准”。

在此前后的绝大多数文献中也都采用这一词。

1997年科学出版社出版的(物理学名词)中, 将uncertainty 一词改译成“不确定性”,并将indeterminacy 删去,此后有些国内的文献已将“测不准”改为“不确定性”。

但也有一些文献或著作中仍然沿用“测不准”一词,表明我国有些物理学家对这一名词译法的改动持保留意见,也有人提议“测不准”与“不确定”二词并用。

4.2对有争议问题的讨论4.2.1关于统计解释与非统计解释的争论这一争论的焦点之一就是单个粒子是否有波动性的问题。

微观粒子具有波动性,早在1927年已被戴维孙( Davison)与革末( Germer)的著名实验所证实。

遗憾的是,这类实验的结果一般都只能说明大量粒子的统计行为呈现波动性,而不能直接说明单个粒子的行为也呈现波动性,于是有些人认为单个粒子不具有波动性,从而也就认为测不准关系只对粒子系综成立,不适用于单个粒子体系。

不确定度与误差

不确定度与误差

误差与不确定度在定义上的区别:误差定义是测量值与真值之差,是一个确定值,但真值是一个理想的概念,真值的传统定义为:当某量能被完善地确定并能而且已经排除了所有测量上的期限时,通过测量所得到的量值.真值虽然客观存在,但通过测量却得不出,(因为测量过程中总会有不完善之处,因此一般情况下不能计算误差,只有少数情况下,可以用准确度足够高的实际值来作为量的约定真值,即对明确的量赋予的值,有时叫最佳估计值、约定值或参考值,这时才能计算误差。

)误差也就无法知道.而误差加前缀的名词如标准误差,极限误差等其值是可以估算的,但它们表示的是测量结果的不确定性,与误差定义并不一致。

测量不确定度是测量结果带有的一个参数,用以表征合理赋予被测量值的分散性,它是被测量真值在某一个量值范围内的一个评定。

显然,不确定度表述的是可观测量-—测量结果及其变化,而误差表述的是不可知量——真值与误差,所以,从定义上看不确定度比误差科学合理。

误差理论与不确定度原理在分类上的区别以往计算误差时,首先要分清该项误差属于随机误差还是系统误差。

随机误差是在同一量的多次测量中以不可预知的方式变化测量误差分量。

电表轴承的摩擦力变动、螺旋测微计测力在一定范围内随机变化、操作读数时在一定范围内变动的视差影响、数字仪表末位取整数时的随机舍入过程等,都会产生一定的随机误差分量.VIM93中随机误差的定义为:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差.(重复性条件包括:相同的测量程序;相同的观测者;在相同的条件下使用相同的测量仪器;相同地点;在短时间内重复测量)。

随机误差分量是测量误差的一部分,其大小和符号虽然不知道,但在同一量的多次测量中,它们的分布常常满足一定的统计规律.系统误差:在同一被测量的多次测量过程中,保持恒定或以可预知方式变化的测量误差分量称为系统误差,简称系差。

系统误差包括已定系统误差和未定系统误差。

已定系统误差是指符号和绝对值已经确定的误差分量.测量中应尽量消除已定系统误差,或对测量结果进行修正,得到已修正结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不确定关系(测不准关系)的表述和含义摘要:介绍了测不准关系的一些不同的表述和证明方法,对其中关于这一原理的认同和有争议的问题进行了比较与分析。

关键词:测不准关系;不确定度;量子理论;统计解释引言测不准关系是由量子力学基茌原理导出的一个重要推论,它是量子力学的一个基本原理,表明一个微观粒子的某些成对的物理量不可能同时具有确定的数值,例如位置与动量、时间和能量。

它反映了自然界的客观规律, 反映了微观粒子的波粒二象性的基本属性它在量子力学中占有重要的地位。

量子力学诞生至今约有80年了,作为一门基础理论已经相当成熟,在指导人类文明进步和学科发展方面发挥着重要的作用;但是,对量子力学基本理论的解释却一直存在着不同意见的争论,关于测不准关系的理解问题是争论的焦点之一。

本文对其中一些主要的有争议问题进行简要的介绍,并加以讨论。

1 几种主要的表述和证明方法测不准关系是海森堡在1927年提出的,他设想一种使用波长很短的γ射线的显微镜来最大限度地精确测定电子的位置,这种测量,依靠的是光子被电子的散射[康普顿(compt)散射。

海森堡在题为“关于最子理论的动力学和力学的直观内容”的论文中说[1]:“当测定‘电子’位置的瞬间,也正是光产被电子散射的瞬问,电子的动量产生一个不连续的改变。

当所用的光的波长越小,即位置测定得越精确,这一改变就越大。

因此,在知道电子位置的瞬间,它的动量只能了解到对应于那一不连续改变的大小的程度。

于是,位置测定得越精确,动量就知道得越不精确,反之亦然。

在这种情况下,我们看到方程pq—qp=-ih的一种直接的物理解释。

这就是在文献中第一次出现的关于测不准关系的表述。

1929年,罗伯逊(Robertson)[2]在一篇短文中首次证明:两个厄密算符的标准偏差之积绝不会小于它们的对易子的平均的绝对值之半。

证明如下:设A和B是任意的两个厄密算符,C是它们的对易子,令A1=A一<A>,B1=B一<B>,A和B 的标准偏差分别为△A=<A12>1/2和△B=<B12>1/2。

定义D=A1+iλB1,其中λ为一实数,可得:O≤<D+D>=λ2(△B)2一λ<C>+(△A)2由于这个关于△的二次多项式的判别式不能大于零,因而有△A△B≥l<C>1/2或△A△B≥l<AB一BA>1/2对于A=q(坐标)和Bp(动量),罗伯逊得到c=ih/2π目从△p△q=h/4π(与海森堡的结果一致)。

这一证明方法已被大多数现代的量子力学教科书所采用[3]此后测不准关系逐渐被绝大多数物理学家所认同。

但是,关于它的真正涵义和进一步的理解。

以及它在量子力学中的地位,却一直存在着不同意见的争论。

在各类文献中提出过许多种对测不准关系的证明方法。

其中在教科书中介绍较多的一种是“单缝衍射法”[4],即设想一个由等速的电子流通过单缝的衍射实验,由光的单缝衍射公式可以推出电子的位置分布范围(△x)与同一方向的动量分布范围(△Px,)之间的关系为:△x?△Px,=h (2)近来邓文基[5]等人提出了关于测不准关系的一种严格数学证明,这一方法只利用了力学量算符的厄密性和希尔伯特状态矢量模的非负性。

简单的证明不仅揭示了测不准关系的某些经常被忽视的特征,而且还可以直接给出最小不确定态的充要条件。

2 几个有争议的问题测不准关系的每一种证明方法实际上代表着一种理解。

从这些不同的理解中大体可以归纳出以下几方面的问题。

2.1 统计解释与非统计解释测不准关系中所说的“测定得精确”和“不精确”是指对一个粒子的单次测量结果,还是指对一个粒子系综各成员的测量结果的统计分布?或者是对一个粒子的多次测量结果的统计分布?首先,从海森堡提出的各种论据来看,他的论点是把这些测不准量解释为属于一个粒子单次测量的结果,而不是作为测量粒子系综各成员的位置或动量时所得结果的统计分布。

并认为测不准关系给出了在单次测量中对耐个力学量同时进行测量所可能达到的精确度的限制。

雅默把这种来源于海森堡的思想实验的关于测不准关系的“同时测量”的解释称为“非统计解释”[6]。

“单缝衍射”实验的证明方法则可以理解为:测不准关系只对电子系综成立。

而不适用于单个电子。

在(2)式中△x是电子流中大量电子的位置分布,而△p。

是大量电子的动量分布,它们都不能代表单个电子的位置或动量的不确定度。

(2)式表明的是,电子流中电子的位置分布越集中,则动量分布就越分散;反之,电子的动量分布越集中,则位置分布就越分散,这种以对大量粒子测量的统计平均偏差为基础的解释被称为“统计解释”。

[6](又称“系综解释”)。

罗伯逊对于测不准关系的证明,则是根据量子力学的基本假设严格导出的,并被多数物理学家认同这种证明实际上可以说明:测不准关系对子电子系综是成立的,对于单个电子多次测量的结果也适用,但对于单个电子一次测量的结果是不适用的。

对此我们在后面还要进一步说明。

在测不准关系提出后的二十多年晕,非统计解释一直占着统治地位,并被大多数教科书所采用。

直到20世纪50年代以后,马根瑙等人才对测不准关系的非统计解释进行了一系列的批评,明确指出只应当限于在多次测量的统计意义上理解测不准关系。

马根瑙说过,将测不准关系里的不确定度归于单次测量的性质,“这是如同把温度归之于一个分子那样的蠢话[7]。

实际上,在量子力学的发展过程中,统计解释和非统计解释的争论由来已久。

1927年的索尔维会议上,爱因斯坦(所支持的一种“纯统计观点“(即认为:“量子理论对于仟何单个过程是什么也没有说的,它只给出关于一个相对说来无限多个基元过程的集合的知识”),其本质就是一种统计解释的观点。

1936年爱闪斯坦义说,根据波恩对于量子力学的统计性解释,“山函数所描述的无论如何不能是单个系统的状态;它所涉及的是许多个系统,从统计力学的意义来说,就是系综[8]。

雅默则认为,统计解释与非统计解释之间并没有不可逾越的鸿沟,并提出一种方法,证明后者是前者的一个逻辑结论[6]。

2.2 某些力学量“测不准”的原因是什么?从海森堡最初提出测不准关系的各种论据来看,他的论点是把“测不准”的原因归结为“在单次测量中被测量的微观系统所受到的不可控制的扰动”。

这样的看法实际上认定,系统在被测量之前,各种力学量都是有确定值的,只是在测量时受到了干扰才使它们变得不确定了。

在罗伯逊和邓文基等人的证明方法中,完全是从量子力学的基本假定出发的。

这表明测不准关系的成立,仅仅是由微观粒子本身固有的特性所决定的。

2.3 关于名称和译名的争议在关于量子理论基本解释的长期争论中,名词的使用也相应的出现了分歧。

我国关于名词的使用方面与国外并不一致,可能是由于在我国关于量子理论解释的争论尚未普遍展开。

1975年科学出版社出版的《英汉物理学名词》中,将indetem inacy 和uncertainty 两个词都译成测不准。

1997年科学出版社出版的《物理学名词》中,将uncertainty一词改为不确定性,并将indetem inacy删去,此后有些国内的文献已将测不准改为不确定性。

但也有一些文献或着作中仍然沿用测不准一词,表明我国有些物理学家对这一名词译法的改动保留意见,也有人提议测不准与不确定二词并用。

3 对有争议问题的讨论3.1关于统计解释和非统计解释这一争论的焦点之一就是单个粒子是否有波动性的问题。

微观粒子具有波动性,早在1927年已被戴维孙与革末的着名实验所证实。

遗憾的是,这类实验结果一般都只能说明大量粒子的统计行为呈现波动性,而不能直接说明单个粒子的行为也呈现波动性。

但是我们如果能从一些已有的实验结果或经过大量事实证明的量子力学公式,通过间接的方法,还是可以说明单个粒子的行为也是呈现波动性的。

例如:(1)在电子衍射实验中,如果使电子流极其微弱,电子几乎是一个一个的通过仪器,只要时间足够长,则底板上仍将出现衍射图样,在电子或中子的双缝衍射中,只要创造条件,使得在任何时刻最多只能有一个粒子处于狭缝与屏幕之间,经过一定的时间后也能在屏幕上清楚地显示出干涉的条纹,从而说明单个粒子可以自己和自己干涉,也有波动性,这也是关于量子力学基本解释问题研究的一个重要的新进展。

(2)如果测不准关系对于单个粒子不适用,就可以认为单个电子能够同时具有完全确定的位置与动量值,这就会导出一些与实验事实相悖的结果。

3.2 某些力学量测不准的原因这方面争论的焦点是某些力学量测不准的原因是由于微观粒子本身的特性还是由于测量中的干扰,在量子力学中所说的测不准应当是指在某一状态中一个力学量F没有确定值的意思。

一个力学量F是否有确定值完全取决于体系所处的状态,是否F的本征态,而不是由于测量中的干扰。

可见,测不准关系成立,完全是由微观粒子本身固有的特性所决定的,并不是由于人为的测量造成的。

为了证明其完全不必借助于测量时体系受到的干扰来说明。

3.3 关于uncertainty和indeteminacy的译名问题这两个英文词的原意可能并没有原则的差别。

在我国早期的书刊中,绝大多数都采用测不准一词,这可能是出于对海森堡的尊重。

在1996年我国公布的《物理学名词》,将测不准改为不确定性。

这是因为测不准一词并不是最恰当的选择。

用测不准来表述力学量在某一状态中没有确定值这一事实,很容易产生误解。

因为测不准似乎更强调测量的作用,因为测而不准,如果我们不去测,他就准了。

这样的理解显然不符合测不准关系的正确含义。

此外,在其他的几种译名中,不确定度是较恰当的,由于uncertainty是个名词。

不确定通常用作形容词,有事也可作为名词,但其意义不是很明确。

而不确定性和不确定度两者都是名词,他们都可以表示力学量的性质。

而前者更适合于用来表示不易直接用数字表示的性质,后者则更适合于用来表示可以用数字来度量的性质。

因此不确定度关系是一种最恰当的选择。

但当前“测不准”仍是大家最熟悉的译名。

参考文献[1]HEISENBERG W。

Ober den anschaulichen Inhalt der quantentheoretischen Kinematik and Mechanik[J]。

Z。

Physik。

1927,43:172-198[2]RORERTSON H P。

The uncertainty principle[J]Phys Rev,1929,34:163-164[3]王正行。

量子力学[M]。

北京:北京大学出版社。

2003。

20。

[4]谢有畅,邵美成。

结构化学[M]北京:北京大学出版社。

1979。

10-12[5]邓文基,许运华,刘平。

测不准关系和最小不确定态[J]物理学报,2003,52(12):2961-2964[6]JAMMER M。

相关文档
最新文档