小学五年级上册数学奥数知识点讲解第13课《面积计算》试题附答案
【奥数专项】精编苏教版小学数学五年级上册三角形面积计算思维拓展(试题)含答案与解析

三角形面积计算思维拓展(试题)一.选择题(共8小题)1.如图,梯形ABCD中共有()对面积相等的三角形A.2B.3C.4D.52.如图,E是梯形ABCD下底BC的中点,则图中与阴影部分面积相等的三角形共有()A.1个B.2个C.3个D.4个3.如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为()A.0.5 cm2B.1 cm2C.2 cm2D.4 cm24.如图所示,在长方形ABCD中,△ABE、△ADF和四边形AECF的面积都相等,且BE =8,则EC的长为()A.2B.3C.4D.55.如图,梯形的上底是6厘米,下底是18厘米,高是6厘米。
甲三角形的面积比乙三角形的面积大()平方厘米。
A.24B.36C.48D.726.如图所示,AD=DC,AE=BE,那么三角形ABC的面积是三角形ADE面积的()倍.A.6B.5C.4D.37.已知甲的面积是4,乙的面积是8,那么,梯形的面积是()A.19B.16C.18D.208.如图:BD=DC AE=EF=FC,S△ABC=120cm2.则S△ADF=()cm2A.30cm2B.60cm2C.40cm2D.20cm2二.填空题(共10小题)9.在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC 的面积等于平方厘米。
10.如图,已知CD=5厘米,DE=7厘米,EF=15厘米,FG=6厘米,线段AB将图形分成两部分,左边部分面积是38平方厘米,右边部分面积是65平方厘米,那么三角形ADG的面积是平方厘米。
11.如图,DE平行BC,且AD=2,AB=5,AE=4,AC的长是。
12.在正方形ABCD中(如图),E是BC边的中点,AE与BD相交于F点,三角形BEF 的面积为1平方厘米,那么正方形ABCD面积是平方厘米。
13.如图四边形ABCD是梯形,四边形ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米。
五年级奥数题:图形与面积含详细答案

.翔迪学校五年级专题强化:图形与面积年级班姓名得分一、填空题3. 下图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是______平方厘米.4. 下图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是______平方厘米.5. 在ABC∆的面积是18平方厘米,则四边形AEDC的面积=,BEBD2∆中,DCAE=,已知ABC等于______平方厘米.6. 下图是边长为4厘米的正方形,AE=5厘米、OB是______厘米.7. 如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE是______厘米.9. 如下图,正方形ABCD的边长为12, P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是______.10. 下图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD 的面积是______平方厘米.二、解答题11. 图中正六边形ABCDEF 的面积是54.PF AP 2=,BQ CQ 2=,求阴影四边形CEPQ 的面积.12. 如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13. 一个周长是56厘米的大长方形,按图35中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是: 2:1:=B A ,2:1:=C B .而在(2)中相应的比例是3:1:=''B A ,3:1:=''C B .又知,长方形D '的宽减去D 的宽所得到的差,与D '的长减去在D 的长所得到的差之比为1:3.求大长方形的面积.14. 如图,已知5=CD ,7=DE ,15=EF ,6=FG .直线AB 将图形分成两部分,左边部分面积是38,右边部分面积是65.那么三角形ADG 面积是______.五年级奥数题:图形与面积一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是_________厘米.2.(3分)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是_________.3.(3分)如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是_________平方厘米.4.(3分)(2014•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米.5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于_________平方厘米.6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是_________厘米.7.(3分)如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE 是_________厘米.8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是_________.9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是_________.10.(3分)图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是_________平方厘米.二、解答题(共4小题,满分0分)11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是:A:B=1:2,B:C=1:2.而在(2)中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.14.(2012•武汉模拟)如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是_________.2010年五年级奥数题:图形与面积(B)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是170厘米.2.(3分)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是25.+3+4=+7=,+3.(3分)如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是 6.5平方厘米.左上右上,右中右下,左中右中3+×4.(3分)(2014•长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是24平方厘米.××5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC的面积等于12平方厘米.×=12×6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是 3.2厘米.ABE==7.(3分)如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE 是 3.2厘米.8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是243.9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是60.×AP+×AD+AD+AP+××12+10.(3分)图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是4平方厘米.二、解答题(共4小题,满分0分)11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.12.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是:A:B=1:2,B:C=1:2.而在(2)中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.,的宽是大长方形宽的的长是×的长是×=x=××:==,于是=,14.(2012•武汉模拟)如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是40.S=(。
五年级奥数-面积计算专题

第9讲面积计算一、知识要点对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
有些图形可以根据“容斥问题“的原理来解答。
在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
二、精讲精练【例题1】如图所示,求图中阴影部分的面积。
【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)答:阴影部分的面积是107平方厘米。
解法二:以等腰三角形底的中点为中心点。
把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。
(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)答:阴影部分的面积是107平方厘米。
练习1:1.如图所示,求阴影部分的面积(单位:厘米)2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。
求红蓝两张三角形纸片面积之和是多少?【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。
【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。
如图所示。
3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。
把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。
五年级奥数题图形与面积含详细标准答案

五年级奥数题:图形与面积一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是_________厘米.2.(3分)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是_________.3.(3分)如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是_________平方厘米.4.(3分)(2014?长沙模拟)如图的两个正方形,边长分别为8厘米和4厘米,那么阴影部分的面积是_________平方厘米.5.(3分)在△ABC中,BD=2DC,AE=BE,已知△ABC的面积是18平方厘米,则四边形AEDC 的面积等于_________平方厘米.6.(3分)如图是边长为4厘米的正方形,AE=5厘米、OB是_________ 厘米.7.(3分)如图正方形ABCD的边长是4厘米,CG是3厘米,长方形DEFG的长DG是5厘米,那么它的宽DE是_________厘米.8.(3分)如图,一个矩形被分成10个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是_________.9.(3分)如图,正方形ABCD的边长为12,P是边AB上的任意一点,M、N、I、H分别是边BC、AD上的三等分点,E、F、G是边CD上的四等分点,图中阴影部分的面积是_________.10.(3分)图中的长方形的长和宽分别是6厘米和4厘米,阴影部分的总面积是10平方厘米,四边形ABCD的面积是_________平方厘米.二、解答题(共4小题,满分0分)11.图中正六边形ABCDEF的面积是54.AP=2PF,CQ=2BQ,求阴影四边形CEPQ的面积.2 / 1012.如图,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形面积是多少平方厘米.13.一个周长是56厘米的大长方形,按图中(1)与(2)所示意那样,划分为四个小长方形.在(1)中小长方形面积的比是:A:B=1:2,B:C=1:2.而在(2)中相应的比例是A':B'=1:3,B':C'=1:3.又知,长方形D'的宽减去D的宽所得到的差,与D'的长减去在D的长所得到的差之比为1:3.求大长方形的面积.14.(2012?武汉模拟)如图,已知CD=5,DE=7,EF=15,FG=6,直线AB将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG的面积是_________.3 / 102010年五年级奥数题:图形与面积(B)参考答案与试题解析一、填空题(共10小题,每小题3分,满分30分)1.(3分)如图是由16个同样大小的正方形组成的,如果这个图形的面积是400平方厘米,那么它的周长是170厘米.考点:巧算周长.分析:要求该图形的周长,先求出每个小正方形的面积,根据正方形的面积公式,得出小正方形的边长,然后先算出该图形的外周的长,因为内、外的长相等,再乘2即可得出结论.解答:解:400÷16=25(平方厘米),因为5×5=25(平方厘米),所以每个小正方形的边长为5厘米,周长为:(5×4+5×4+5×3+5×2+5×3+5)×2,=85×2,=170(厘米);答:它的周长是170厘米.点评:此类题解答的关键是先求出每个小正方形的面积,根据正方形的面积公式,得出小正方形的边长,进而算出该图形的外周的长,因为内、外的长相等,再乘2即可得出结论.2.(3分)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一小方格的面积是1.那么7,2,1三个数字所占的面积之和是25.考点:组合图形的面积.分析:此题需要进行图形分解:“7”分成一个长方形、一个等腰直角三角形、一个平行四边形;“2”分成一个梯形、一个平行四边形、一个长方形;“1”分成一个梯形和两个长方形.然后进行图形转换,依据题目条件即可求出结果.解答:解:“7”所占的面积和=+3+4=,“2”所占的面积和=3+4+3=10,“1”所占的面积和=+7=,++10=25.那么7,2,1三个数字所占的面积之和=故答案为:25.点评:此题关键是进行图形分解和转换.3.(3分)如图中每一小方格的面积都是1平方厘米,那么用粗线围成的图形面积是6.5平方厘米.4 / 10组合图形的面积考由图可以观察出:大正方形的面积减粗线以外的图形面积即为粗线围成的图形面积分析(平方厘米解:大正方形的面积4=1解答=9.53++5×左中3个,左上,右上,右中,右下,,右中,共有粗线以外的图形面积为:整格有(平方厘米);(平方厘米);﹣所以粗线围成的图形面积为169.5=6.5 6.5平方厘米.答:粗线围成的图形面积是 6.5.故此题答案为:此题关键是对图形进行合理地割补.点评:平方厘米,那么阴影部分的面积是分)(2014?长沙模拟)如图的两个正方形,边长分别为8厘米和4244.(3厘米.考点:组合图形的面积.分析:两个正方形的面积减去两个空白三角形的面积.解答:8,)﹣4+8×8××解:4×4+88﹣×4×(,﹣24﹣32=16+642;cm)(=242.答:阴影的面积是24cm 24.故答案为:求组合图形面积的化为求常用图形面积的和与差求解.点评:12的面积等于的面积是△ABC18平方厘米,则四边形AEDCAE=BEABC35.(分)在△中,BD=2DC,,已知平方厘米.相似三角形的性质(份数、比例);三角形的周长和面积.考点:的关系,由此即可求出四边形BDE△的关系,ABD根据题意,连接分析:AD,即可知道△和△ADC△ADE和的面积.AEDC 解答:,,因为BD=2DC解:连接AD ABD=2S△ADC,△所以,S△即,SABD=18(平方厘米)=12,×又因为,AE=BE,5 / 10ADE=BD所以S=6(平方厘米),即,S△BDE=12×6=12(平方厘米);所以AEDC的面积是:18﹣故答案为:12.点评:解答此题的关键是,根据题意,添加辅助线,帮助我们找到三角形之间的关系,由此即可解答.厘米.厘米、OB是3.26.(3分)如图是边长为4厘米的正方形,AE=5组合图形的面积考O的面积是正方形面积的一半,再依据三角形面积公式就可以求A可以看出,三角AB连分析B的长度A相交解:如图连BA,B解答:BDF△S△ADE=S 则=8(平方厘米);(4×4)×S△ABE=S正方形= (厘米);OB=8×2÷5=3.2 3.2厘米.答:OB 是.故答案为:3.2 此题主要考查三角形和正方形的面积公式,将数据代入公式即可.点评:DE5厘米,那么它的宽厘米,长方形DEFG的长DG是34 .7(3分)如图正方形ABCD的边长是厘米,CG是厘米.是 3.2:组合图形的面积.考点的高,DG的面积,因为已知,进而可以求三角形AGDAGDAG 分析:连接,则可以依据题目条件求出三角形也就是长方形的宽,问题得解.AG解答:解:如图连接6 / 10S,=S﹣S﹣S ABGCDG△△△AGDABCD正方形2 4÷2﹣1××4﹣3×4÷=426﹣=16﹣(平方厘米);=8 (厘米);2÷5=3.28×3.2厘米.答:长方形的宽是3.2.故答案为:依据题目条件做出合适的辅助线,问题得解.点评:.24310个小矩形,其中有6个小矩形的面积如图所示,那么这个大矩形的面积是8.(3分)如图,一个矩形被分成组合图形的面积.考点:从图中可以看出每上、下两个小矩形的一个边是相邻的,也就是说长是相等的,那么根据矩形的面积公式分析:的矩形,可16知,如果长相同,面积之比也就是宽之比,反之宽之比也就是面积之比;由中间面积20和以算出空着的小矩形面积,最后把所有小矩形面积加起来就是大矩形的面积.解:由图和题意知,解答:,:4中间上、下小矩形的面积比是:20:16=5 ,:4所以宽之比是5 A=45;得:36=5:4那么,A B=20;B=5:4得25:C=24;C=5:4得30:D=15;:4得D:12=5 ;=45+36+25+20+20+16+30+24+15+12=243所以大矩形的面积.故答案为:243 此题考查了如果长方形的长相同,宽之比等于面积之比,还考查了比例的有关知识.点评:上的三等、AD、IH分别是边BC是边12,PAB上的任意一点,M、N、的边长为(9.3分)如图,正方形ABCD .上的四等分点,图中阴影部分的面积是60E分点,、F、G是边CD组合图形的面积.考点:上的三ADBC、HN上的任意一点,M、、I、分别是边ABP12ABCD 分析:根据题意:正方形的边长为,是边,然后再利用三角形的面积公式进行计算即可得到答DP上的四等分点,可连接是边、、等分点,EFGCD 案.7 / 10 解答BPMAPDADEAD解:阴影部分的面D×BP4×××3×12+=×4×AP+×3×12+=2AP+18+18+2BPAP+BP)=36+2×(12 =36+2×=36+24=60..答:这个图形阴影部分的面积是60 此题主要考查的是三角形的面积公式.点评:的厘米,阴影部分的总面积是10平方厘米,四边形ABCD分)10.(3 图中的长方形的长和宽分别是6厘米和4 4平方厘米.面积是:重叠问题;三角形的周长和面积.考点,2=12÷2=12,S△AEF+S△AGH=四边形EFGH 面积÷GHC=分析:因为S△EFC+S△四边形EFGH面积平方÷△DGC=四边形EFGH面积2﹣阴影部分的总面积是10平方厘米=2ADH=S所以S△ABE+S△△BFC+S 厘米.2=4平方厘米.﹣÷4﹣2=6=ECH所以:四边形ABCD面积=S△﹣(S△ABE+S△ADH)四边形ABCD面积平﹣阴影面积10平方厘米=2DGC=S解答:解:由题意推出:△ABE+S△ADH=S △BFC+S△四边形EFGH面积÷2 方厘米.﹣)=四边形ABCD面积÷42=6﹣2=4平方厘米.ADHS=S所以:四边形ABCD面积△ECH﹣(△ABE+S△故答案为:4.此题在重叠问题中考查了三角形的周长和面积公式,此题设计的非常精彩.点评:0分)二、解答题(共4小题,满分的面CQ=2BQ,求阴影四边形CEPQAP=2PFABCDEF11.图中正六边形的面积是54.,积..考点:等积变形(位移、割补)个小正三角形,根据平行四边形对角线平分平行四边形面积,采用分析:54ABCDEF等分为如图,将正六边形数小三角形的办法来计算面积.解答:解:如图,PEF=3S△,S,CDE=9S△四边形ABQP=11.8 / 1023=3.因此,阴影四边CEP面积5上述三块面积之和3+9+11=2此题主要利用面积分割,用数基本小三角形面积来解决问题点评平方厘米.问:大正六角星形面积是多少平方厘米..如图,涂阴影部分的小正六角星形面积是1612等积变形(位移、割补考个空白小三角形面个小三角形,且都与外围分析由图及题意知,可把涂阴影部分小正六角星形等分1平方厘米,可求出大正六角星形中心正六边形的面积,相等,已知涂阴影部分的小正六角星形面积1个小正三角形,且它们与外围六个大角的面积相等,进而可求出大正六角星这个正六边形又可等分面解:如下图所示解答:6个空白小三角形面积相等,涂阴影部分小正六角星形可等分成12个小三角形,且都与外围的(平方厘米);12+6)=24×所以正六边形ABCDEF的面积:16÷12(6个小正三角形,且它们与外围六个大角的面积相等,又由于正六边形ABCDEF又可等分成(平方厘米);24×2=48所以大正六角星形面积:48平方厘米.答:大正六角星形面积是个大点的正三角形组个小正三角形,又可看作是6 此题要借助求正六边形的面积来解答,它既可看作是18点评:成.)中小长方形1)与(2)所示意那样,划分为四个小长方形.在(13.一个周长是56厘米的大长方形,按图中(1D'.又知,长方形:33,B':C'=1)中相应的比例是:C=1:2.而在(2A':B'=1:B面积的比是:A:B=1:2,.求大长方形的面积.:3的长减去在D的长所得到的差之比为1的宽所得到的差,与的宽减去DD'比的应用;图形划分.考点:::C=12,B:“在(1)中小长方形面积的比是:A:B=1要求大长方形的面积,需求出它的长和宽,由条件分析:的宽所得到的差,D.又知,长方形D'的宽减去,3B':C'=1:3.而在(22)中相应的比例是A':B'=1:′,D的宽是大长方形宽的”可知:D的宽是大长方形宽的,1与D'的长减去在D的长所得到的差之比为:3′﹣大长方形的宽),由此便可以列式计算.(×﹣大长方形的宽)D的长是×(28,D的长是28 ,则长为x28﹣x 解答:解:设大长方形的宽为′′D.=DD的宽=x,所以,的宽﹣的宽,=D因为的宽x′28×长D=(﹣)﹣=长,)xD(×28x,9 / 10 2长D:=由题设可知,于是=,即x=8.= 8于是,大长方形的长=28﹣8=20,从而大长方形的面积为×20=160平方厘米.答:大长方形的面积是160平方米.此题比较复杂,主要考查比的关系,应利用比的意义,找清数量见的比,再利用题目条件,就可以进行计点评:算求得结果.,左边部分面积是38,FG=6直线AB将图形分成两部分,CD=514.(2012?武汉模拟)如图,已知,DE=7,EF=15,.的面积是4065右边部分面积是,那么三角形ADG考点:三角形的周长和面积.分析:看成是一个整体,根据各线段的关系和左右两部分面积的关系,可以列出一个方程,求出可以把S ADE△S的关系求出答案.S的面积,然后再根据所求三角形与ADE△△ADE解答:=3S解:由题意知,S,S=,S BEC△ADEBFE△△AEG△X),(S=3X=X设S,则S,=38﹣BFEADE△△△AEG)(可列出方程:38﹣X+3X=65,,解方程,得:x=10 =40.)(=10×所以S1+3ADG△故答案为:40.此题考查了如何利用边的关系求三角形的面积.点评:10 / 10。
(2021年整理)五年级奥数平面图形面积计算

五年级奥数平面图形面积计算编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(五年级奥数平面图形面积计算)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为五年级奥数平面图形面积计算的全部内容。
五年级奥数第六讲-——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式特征面积公式正方形①四条边都相等。
②四个角都是直角。
③有四条对称轴。
S=aa长方形①对边相等。
②四个角都是直角。
③有二条对称轴。
S=ab平行四边形①两组对边平行且相等。
②对角相等,相邻的两个角之和为180°③平行四边形容易变形。
S=ah三角形①两边之和大于第三条边.②两边之差小于第三条边.③三个角的内角和是180°.④有三条边和三个角,具有稳定性.S=ah÷2梯形①只有一组对边平行.②中位线等于上下底和的一半。
S=(a+b)h÷2 2.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算.【典型例题】【例1】已知平行四边表的面积是28平方厘米,求阴影部分的面积。
【练一练】如果用铁丝围成如下图一样的平行四边形,需要用多少厘米铁丝?(单位:厘米)【例2】求图中阴影部分的面积。
(单位:厘米)【练一练】下图中甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)【例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。
【练一练】平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米.求CF 的长。
五年级上册数学多边形的面积知识精讲+易错练习(含答案)

五年级上册数学多边形的面积知识精讲+易错题过关练习(含答案)知识精讲:1.平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
2.三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷23.梯形面积公式推导:旋转4.两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷25.等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
6.长方形框架拉成平行四边形,周长不变,面积变小。
7.组合图形面积计算:必须转化成已学的简单图形。
当组合图形是凸出的,用虚线分割成几种简单图形,把简单图形面积相加计算。
当组合图形是凹陷的,用虚线补齐成一种最大的简单图形,用最大简单图形面积减几个较小的简单图形面积进行计算。
易错题过关练习(拔高篇)一、选择题1.下图中阴影部分的面积是48平方厘米,梯形的面积是()平方厘米。
A.95B.117C.138D.2762.如图所示,每个小正方形的面积是1平方厘米,涂色部分的面积是()平方厘米。
A.6B.7C.8D.93.晓东列出算式“13.5×17.5-(5+13.5)×(17.5-11)÷2”计算下面图形的面积,晓东的思考过程可以用()来表示。
A.B.C.D.4.如图所示,每个小方格的面积是1平方厘米,则阴影部分的面积大约是()平方厘米。
完整版)五年级奥数平面图形面积计算

完整版)五年级奥数平面图形面积计算五年级奥数第六讲——平面图形面积的计算一、知识要点1.基本平面图形特征及面积公式正方形:特征:四条边相等,四个角都是直角,有四条对称轴。
面积公式:S=边长的平方长方形:特征:对边相等,四个角都是直角,有二条对称轴。
面积公式:S=长×宽平行四边形:特征:两组对边平行且相等,对角相等,相邻的两个角之和为180°,容易变形。
面积公式:S=底边×高三角形:特征:两边之和大于第三条边,两边之差小于第三条边,三个角的内角和是180°,具有稳定性。
面积公式:S=底边×XXX÷2梯形:特征:只有一组对边平行,中位线等于上下底和的一半。
面积公式:S=(上底+下底)×高÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
典型例题】例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。
例2】求图中阴影部分的面积。
例3】如图所示,甲三角形的面积比乙三角形的面积大6平方厘米,求CE的长度。
例4】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?练与拓展】1.计算下面图形的面积。
2.下面的梯形中,阴影部分面积是150平方厘米,求梯形的面积。
3.正方形ABCD的边长是12厘米,已知DE是EC长度的2倍,求三角形DEF的面积和CF的长。
4.平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边EC长8厘米,已知阴影部分的面积比三角形EFG的面积大10平方厘米,求CF的长。
5.正方形ABCD的面积是100平方厘米,AE=8厘米,请计算以下图形的面积。
1.在一块长80米、宽30米的长方形地上,修了宽为2米和3米的两条小路,求草地的面积。
五上北师大数学面积基础知识点考核及参考答案

1.平行四边形面积=
2.平行四边形高=
3.平行四边形底=
4.三角形面积=
5.三角形高=
6.三角形底=
7.梯形面积=
8.梯形的高=
9.梯形的上底=
10.梯形的下底=
11. 7的倍数有( )个。
12.( )既不是质数,也不是合数。
13.100以内质数有:
质数中唯一的偶数是( );最小的合数( )
14.三角形有( )条高。
15.平行四边形有( )条高
16.梯形有( )条高。
1.平行四边形面积=底×高
2.平行四边形高=面积÷底
3.平行四边形底=面积÷高
4.三角形面积=底×高÷2
5.三角形高=面积×2÷底
6.三角形底=面积×2÷高
7.梯形面积=(上底+下底)×高÷2
8.梯形的高=面积×2÷(上底+下底)
9.梯形的上底=面积×2÷高-下底
11.梯形的下底=面积×2÷高-上底
10. 7的倍数有(无数)个
11.( 1 )既不是质数,也不是合数
12.100以内的质数有:
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83 ,89,97.
质数中唯一的偶数是(2)最小的合数(4)
13.三角形有(3)条高。
14.平行四边形有(无数)条高
15.梯形有(无数)条高。