2018年浙江省嘉兴市中考数学试卷含答案
2018年浙江省嘉兴市中考数学试卷附答案解析

一、选择题(共10题;共20分)1.下列几何体中,俯视图为三角形的是()A. B. C.D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为 2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A.B.C.D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C.D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。
则该方程的一个正根是()B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A.B.C.D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲C.丙D.丙与丁二、填空题(共6题;共7分)11.分解因式m2-3m=________。
2018年浙江省嘉兴市中考数学真题试卷(解析版)

2018年浙江省初中毕业生学业考试(嘉兴卷)数学试题卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. 下列几何体中,俯视图...为三角形的是()A. B. C. D.【答案】C【解析】分析:根据俯视图是从物体上面看,所得到的图形,分别得出四个几何体的俯视图,即可解答.详解:A.圆锥的俯视图是带圆心的圆,故本选项错误;B.长方体的俯视图是长方形,故本选项错误;C.三棱柱的俯视图是三角形,故本选项正确;D.四棱锥的俯视图是中间有一点的四边形,故本选项错误.故选C.点睛:本题主要考查简单几何体的三视图;考查了学生的空间想象能力,属于基础题.2. 2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L.2点,它距离地球约1500000.数1500000用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1500000用科学记数法表示为: .故选B.【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误..的是()A. 1月份销量为2.2万辆.B. 从2月到3月的月销量增长最快.C. 1~4月份销量比3月份增加了1万辆.D. 1~4月新能源乘用车销量逐月增加.【答案】D【解析】【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B. 从2月到3月的月销售增长最快,正确.C., 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题的关键是看懂图象.4. 不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】分析:求出已知不等式的解集,表示在数轴上即可.详解:不等式1﹣x≥2,解得:x≤-1.表示在数轴上,如图所示:故选A.点睛:本题考查了在数轴上表示不等式的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5. 将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据两次折叠都是沿着正方形的对角线折叠, 展开后所得图形的顶点一定在正方形的对角线上, 根据③的剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形的对角线折叠的,根据③的剪法,展开后所得图形的顶点一定在正方形的对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠的过程,得到关键信息,如本题得到展开后的图形的顶点在正方形的对角线上是解题的关键.6. 用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内.B. 点在圆上.C. 点在圆心上.D. 点在圆上或圆内.【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.【解答】用反证法证明时,假设结论“点在圆外”不成立,那么点应该在圆内或者圆上.故选D.【点评】考查反证法以及点和圆的位置关系,解题的关键是掌握点和圆的位置关系.7. 欧几里得的《原本》记载.形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长.B. 的长C. 的长D. 的长【答案】B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得:∵∴∴AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.8. 用尺规在一个平行四边形内作菱形,下列作法中错误的是()A. (A)B. (B)C. (C)D. (D)【答案】C【解析】分析:由作图,可以证明A、B、D中四边形ABCD是菱形,C中ABCD是平行四边形,即可得到结论.详解:A.∵AC是线段BD的垂直平分线,∴BO=OD,∴∠AOD=∠COB=90°.∵AD∥BC,∴∠ADB=∠DBC,∴△AOD≌△COB,∴AO=OC,∴四边形ABCD是菱形.故A正确;B.由作图可知:AD=AB=BC.∵AD∥BC,∴四边形ABCD是平行四边形.∵AD=AB,∴四边形ABCD是菱形.故B正确;C.由作图可知AB、CD是角平分线,可以得到ABCD是平行四边形,不能得到ABCD是菱形.故C错误;D.如图,∵AE=AF,AG=AG,EG=FG,∴△AEG≌△AFG,∴∠EAG=∠F AG.∵AD∥BC,∴∠DAC=∠ACB,∴∠F AG=∠ACB,∴AB=BC,同理∠DCA=∠BCA,∴∠BAC=∠DCA,∴AB∥DC.∵AD∥BC,∴四边形ABCD是平行四边形.∵AB=BC,∴四边形ABCD是菱形.故D正确.故选C.点睛:本题考查了菱形的判定与平行四边形的性质.解题的关键是弄懂每个图形是如何作图的.9. 如图,点在反比例函数的图象上,过点的直线与轴,轴分别交于点,且,的面积为1.则的值为()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】过点C作轴,设点,则得到点C 的坐标,根据的面积为1,得到的关系式,即可求出的值.【解答】过点C作轴,设点,则得到点C的坐标为:的面积为1,即故选D.【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.10. 某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A. 甲.B. 甲与丁.C. 丙.D. 丙与丁.【答案】B【解析】【分析】4个队一共要比场比赛,每个队都要进行3场比赛,各队的总得分恰好是四个连续奇数,甲、乙、丙、丁四队的得分情况只能是进行分析即可.【解答】4个队一共要比场比赛,每个队都要进行3场比赛,各队的总得分恰好是四个连续奇数,甲、乙、丙、丁四队的得分情况只能是乙队胜1场,平2场,负0场.丙队胜1场,平0场,负2场.丁队胜0场,平1场,负2场.与乙打平的球队是甲与丁,故选B.【点评】首先确定比赛总场数,然后根据“各队的总得分恰好是四个连续的奇数”进行分析是完成本题的关键.二、填空题(本题有6小题,毎题4分.共24分)11. 分解因式:________.【答案】【解析】【分析】用提取公因式法即可得到结果.【解答】原式=.故答案为:【点评】考查提取公因式法因式分解,解题的关键是找到公因式.12. 如图.直线.直线交于点;直线交于点,已知,________.【答案】2【解析】【分析】根据,可以知道,即可求得.【解答】,根据,故答案为:2.【点评】考查平行线分线段成比例定理,熟练掌握定理是解题的关键.13. 小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面、那么你赢;如果两次是一正一反.则我赢.”小红赢的概率是________.据此判断该游戏________.(填“公平”或“不公平”).【答案】(1). (2). 不公平【解析】【分析】首先利用列举法列举出可能出现的情况,可能是两正,两反,一正一反、一反一正四种情况,用可能情况数除以情况总数即可得出都是正面朝上或者都是反面朝上和一正一反的可能性,可能性相同则公平,否则就不公平.【解答】抛两枚硬币可能会是两正,两反,一正一反、一反一正四种情况;小红赢的可能性,即都是正面朝上,赢的概率是:小明赢的可能性,即一正一反的可能性是:所以游戏对小红不公平.故答案为:(1). (2). 不公平【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.14. 如图,量角器的度刻度线为.将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的读数为.则该直尺的宽度为________【答案】【解析】【分析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【解答】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为:【点评】考查垂径定理,熟记垂径定理是解题的关键.15. 甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为:【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.16. 如图,在矩形中,,,点在上,,点是边上一动点,以为斜边作.若点在矩形的边上,且这样的直角三角形恰好有两个,则的值是________.【答案】0或或4【解析】【分析】在点F的运动过程中分别以EF为直径作圆,观察圆和矩形矩形边的交点个数即可得到结论.【解答】当点F与点A重合时,以为斜边恰好有两个,符合题意.当点F从点A向点B运动时,当时,共有4个点P使是以为斜边.当时,有1个点P使是以为斜边.当时,有2个点P使是以为斜边.当时,有3个点P使是以为斜边.当时,有4个点P使是以为斜边.当点F与点B重合时,以为斜边恰好有两个,符合题意.故答案为:0或或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.三、解答题(本题有8小题,第17~19题每题6分.第20,21题每题8分.第22,23题每题10分,第24题12分,共66分)17. (1)计算:;(2)化简并求值:,其中【答案】(1);(2)原式=1【解析】【分析】(1)根据实数的运算法则进行运算即可.(2)根据分式混合运算的法则进行化简,再把字母的值代入运算即可.【解答】(1)原式(2)原式.当,时,原式.【点评】考查实数的混合运算以及分式的化简求值,掌握运算法则是解题的关键.18. 用消元法解方程组时,两位同学的解法如下:解法一: 解法二:由②,得, ③由①-②,得. 把①代入③,得.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是【解析】分析:利用加减消元法或代入消元法求解即可.详解:(1)解法一中的计算有误(标记略)(2)由①-②,得:,解得:,把代入①,得:,解得:,所以原方程组的解是.点睛:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19. 已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.【答案】证明见解析.【解析】分析:由等腰三角形的性质得到∠B=∠C.再用HL证明Rt△ADE≌Rt△CDF,得到∠A=∠C,从而得到∠A=∠B=∠C,即可得到结论.详解:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=Rt∠.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.20. 某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了 20 个祥品迸行检测.过程如下: 收集数据(单位: 甲车 间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,17 6,180. 乙车 间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,18 0,183. 整理数据: 组别 165.5~170.5 频数 甲车间 乙车间 2 1 4 2 5 6 2 2 1 0 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5 ):分析数据: 车间 甲车间 乙车间 平均数 180 180 众数 185 180 中位数 180 180 方差 43.1 22.6应用数据; (1)计算甲车间样品的合格率. (2)估计乙车间生产的 1000 个该款新产品中合格产品有多少个? (3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由. 【答案】(1)甲车间样品的合格率为 好,理由见解析. 【解析】分析:(1)根据甲车间样品尺寸范围为 176mm~185mm 的产品的频数即可得到结论; (2)用总数 20 减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样 品的合格率,用合格率乘以 1000 即可得到结论. (3)可以根据合格率或方差进行比较. (2)乙车间的合格产品数为 个;(3)乙车间生产的新产品更详解:(1)甲车间样品的合格率为 (2)∵乙车间样品的合格产品数为 ∴乙车间样品的合格率为 ∴乙车间的合格产品数为 ,; (个) ,(个) .(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好. ②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间 生产的新产品更好. 点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体. 21. 小红帮弟弟荡秋千(如图 1) 、秋千离地面的高度 (1)根据函数的定义,请判断变量 是否为关于 的函数? (2)结合图象回答: ①当 时. 的值是多少?并说明它的实际意义. 与摆动时间 之间的关系如图 2 所示.②秋千摆动第一个来回需多少时间?【答案】(1)理由见解析; (2)① 【解析】 【分析】 ①当,它的实际意义是秋千摆动时,离地面的高度为;②根据函数的定义进行判断即可.时,根据函数的图象即可回答问题.②根据图象即可回答. 【解答】(1)∵对于每一个摆动时间 ,都有一个唯一的 的值与其对应, ∴变量 是关于 的函数. (2)① ② . ,它的实际意义是秋千摆动 时,离地面的高度为 .【点评】本题型旨在考查学生从图象中获取信息、用函数的思想认识、分析和解决问题的能力. 22. 如图 1,滑动调节式遮阳伞的立柱 为 中点, , . 垂直于地面 , , 为立柱上的滑动调节点,伞体的截面示意图为 ,.当点 位于初始位置 时,点 与 重合(图 2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳. (图 3),为使遮阳效果最佳,点 需从 上调多少距离? (结果(1)上午 10:00 时,太阳光线与地面的夹角为精确到)(2)中午 12:00 时,太阳光线与地面垂直(图 4),为使遮阳效果最佳,点 在(1)的基础上还需上调多少距离? (结果精确到 (参考数据: ) , , , , )【答案】(1)点需 从 上调;(2)点 在(1)的基础上还需上调 . 10:00 时,太阳光线与地面的夹角为 , 为等腰直角三角形, ,【解析】 【分析】(1)如图 2,当点 位于初始位置 时, 点 上调至 处, .,即可求出点 需从 上调的距离. (2)中午 12:00 时,太阳光线与 , ,地面都垂直,点 上调至 处,过点 作 , . ,根据 于点 即可求解.【解答】(1)如图 2,当点 位于初始位置 时, 如图 3,10:00 时,太阳光线与地面的夹角为 , ∴ ∵ ∵ ∴ ∴ 即点 需从 上调 . . ,∴ ,∴ 为等腰直角三角形,∴ , . , , ,∴ ,,点 上调至 处,(2)如图 4,中午 12:00 时,太阳光线与 ∴ ∵ ∵ ∴ ∵ ∴ 过点 作 ∴ ∴ ∴ 即点 在(1)的基础上还需上调 , , . ,得 . 于点 , , . ,∴ , . 为等腰三角形, .,地面都垂直,点 上调至 处,【点评】考查等腰三角形的性质,解直角三角形,熟练运用三角函数是解题的关键.可以数形结合. 23. 巳知,点 为二次函数 (1)判断顶点 是否在直线 图象的顶点,直线 上,并说明理由. .且 内,若点 , .根据图象,写出 的取值范围. 都在二次函数图象上,试比较 与 的大小. 分别交 轴, 轴于点(2)如图 1.若二次函数图象也经过点 (3)如图 2.点 坐标为 ,点 在【答案】(1)点 在直线上,理由见解析;(2) 的取值范围为或;(3)①当时.;②当时,;③当时, 进行判断即可. 在抛物线上,代入求得 ,求出二次函数表【解析】 【分析】(1)写出点 的坐标,代入直线 (2)直线 与 轴交于点为 ,求出点 坐标,把达式,进而求得点 A 的坐标,数形结合即可求出 (3) 直线 与直线 交于点 , 与 轴交于点 , 而直线 表达式为时, 的取值范围. ,联立方程组 ,得.点,.分三种情况进行讨论.【解答】 (1)∵点 坐标是 ∴把 代入 ,得 上. 与 轴交于点为 ,∴点 坐标为 . , ,∴点 在直线 (2)如图 1,∵直线 又∵ ∴在抛物线上, ,解得 , , ,∴ . 时, 或 .∴二次函数的表达式为 ∴当 时,得 ,观察图象可得,当 的取值范围为(3)如图 2,∵直线 而直线 表达式为与直线 ,交于点 ,与 轴交于点 ,解方程组,得.∴点,.∵点 在内,∴. )对称时,当点 , 关于抛物线对称轴(直线 ,∴ .且二次函数图象的开口向下,顶点 在直线 综上:①当 ②当 ③当 时, 时, 时, ; . ;上,【点评】考查一次函数图像上点的坐标特征,不等式,二次函数的性质等,注意数形结合思想和分类讨论思 想在数学中的应用. 24. 我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这 个三角形的“等底”。
(真题)2018年嘉兴市中考数学试卷(有答案)

浙江省嘉兴市2018年中考数学试卷一、选择题(共10题;共20分)1.下列几何体中,俯视图为三角形的是()A. B. C. D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。
则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C. D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二、填空题(共6题;共7分)11.分解因式m2-3m=________。
浙江省嘉兴市2018年中考数学试题及答案(Word版)

2018年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。
卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列几何体中,俯视图...为三角形的是()2.2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L.2点,它距离地球约1500000km .数1500000用科学记数法表示为()A .51015⨯B .6105.1⨯ C .71015.0⨯ D .5105.1⨯ 3.2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误..的是()A .1月份销量为2.2万辆.B .从2月到3月的月销量增长最快.C .1~4月份销量比3月份增加了1万辆.D .1~4月新能源乘用车销量逐月增加.4.不等式21≥-x 的解在数轴上表示正确的是()5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是() A .点在圆内. B .点在圆上. C .点在圆心上. D .点在圆上或圆内.7.欧几里得的《原本》记载.形如22b ax x =+的方程的图解法是:画ABC Rt ∆,使︒=∠90ACB ,2a BC =,b AC =,再在斜边AB 上截取2aBD =.则该方程的一个正根是()A .AC 的长.B .AD 的长C . BC 的长D .CD 的长 8.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是()9.如图,点C 在反比例函数)0(>=x xky 的图象上,过点C 的直线与x 轴,y 轴分别交于点B A ,,且BC AB =,AOB ∆的面积为1.则k 的值为()A . 1B . 2C . 3D . 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A .甲.B .甲与丁.C .丙.D .丙与丁.卷Ⅱ(非选择题)二、填空题(本题有6小题,毎题4分.共24分)11.分解因式:=-m m 32.12.如图.直线321////l l l .直线AC 交321,,l l l 于点C B A ,,;直线DF 交321,,l l l 于点F E D ,,,已知31=AC AB ,=DEEF.13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面、那么你赢;如果两次是一正一反.则我赢.”小红赢的概率是 .据此判断该游戏 .(填“公平”或“不公平”).14.如图,量角器的O 度刻度线为AB .将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点C ,直尺另一边交量角器于点D A ,,量得cm AD 10=,点D 在量角器上的读数为︒60.则该直尺的宽度为 cm15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测x 个.则根据题意,可列出方程: .16.如图,在矩形ABCD 中,4=AB ,2=AD ,点E 在CD 上,1=DE ,点F 是边AB 上一动点,以EF 为斜边作EFP Rt ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是 .三、解答题(本题有8小题,第17~19题每题6分.第20,21题每题8分.第22,23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑。
2018年浙江省嘉兴市中考数学试卷(带解析)

点 D 在量角器上的读数为 60°,则该直尺的宽度为
cm.
【解答】解:连接 OC, ∵直尺一边与量角器相切于点 C, ∴OC⊥AD, ∵AD=10,∠DOB=60°, ∴∠DAO=30°, ∴OE= ,OA= , ∴CE=OC﹣OE=OA﹣OE= ,
第 6页(共 18页)
故答案为:
15.(4 分)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个,则根据题意,可
9.(3 分)如图,点 C 在反比例函数 y= (x>0)的图象上,过点 C 的直线与 x 轴,y 轴分别交于点 A,B,且 AB=BC,△AOB 的面积为 1,则 k 的值为( )
A.1 B.2 C.3 D.4 【解答】解:设点 A 的坐标为(a,0), ∵过点 C 的直线与 x 轴,y 轴分别交于点 A,B,且 AB=BC,△AOB 的面积为 1, ∴点 C(﹣a, ), ∴点 B 的坐标为(0, ),
7.(3 分)欧几里得的《原本》记载,形如 x2+ax=b2 的方程的图解法是:画 Rt △ABC,使∠ACB=90°,BC= ,AC=b,再在斜边 AB 上截取 BD= .则该方程的一 个正根是( )
A.AC 的长 B.AD 的长 C.BC 的长 D.CD 的长 【解答】解:欧几里得的《原本》记载,形如 x2+ax=b2 的方程的图解法是:画 Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边 AB 上截取 BD= , 设 AD=x,根据勾股定理得:(x+ )2=b2+( )2, 整理得:x2+ax=b2, 则该方程的一个正根是 AD 的长, 故选:B.
【解答】解:所有可能出现的结果如下表所示:
浙江省嘉兴市2018年中考数学试题及答案(Word版)

2018年浙江省初中毕业生学业考试(嘉兴卷)数学试题卷 考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。
卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分选,均不得分)1.下列几何体中,俯视图...为三角形的是() 2.2018年5月25日,球约1500000km .数1500000A .51015⨯B .6105.1⨯C .71015.0⨯D .5105.1⨯3.2018A .1B .从2C .1~4D .1~44.不等式5.,然后沿③中平行于底边的虚线剪去一个角,6.,那么点与圆的位置关系只能是() A .点在圆内.B .点在圆上.C .点在圆心上.D .点在圆上或圆内.7.欧几里得的《原本》记载.形如22b ax x =+的方程的图解法是:画ABC Rt ∆,使︒=∠90ACB ,2a BC =,b AC =,再在斜边AB 上截取2aBD =.则该方程的一个正根是() A .AC 的长.B .AD 的长C .BC 的长D .CD 的长8.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是() 9.如图,点C 在反比例函数)0(>=x xky 的图象上,过点C 的直线与x 轴,y 轴分别交于点B A ,,且BC AB =,AOB ∆的面积为1.则k 的值为() A .1B .2C .3D .410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是() A .甲.B .甲与丁.C .丙.D .丙与丁. 卷Ⅱ(非选择题)二、填空题(本题有6小题,毎题4分.共2411.分解因式:=-m m 32.12.如图.直线321////l l l .直线AC 交321,,l l l 于点A ,31=AC AB ,=DEEF. 13.小明和小红玩抛硬币游戏,连续抛两次.;如果两次是一正一反.则我赢.”小红赢的概率是.(填“公平”或“不公平”).14.如图,叠、得AD 10=cm15.甲、20个,甲检测300个比乙检测200个所用的时间少:.16.如图,CD 上,1=DE ,点F 是边AB ABCD 的边上,且三、解答题(本题有8小题,第17~19题每题6分.第20,21题每题8分.第22,23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑。
浙江省嘉兴市2018年中考数学试题(含答案)(精品推荐)

2018年浙江省初中毕业生学业考试(嘉兴卷)数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.温馨提示:本次考试为开卷考,请仔细审题,答题前仔细阅读答题纸.上的“注意事项”。
卷Ⅰ(选择题)一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.下列几何体中,俯视图...为三角形的是()2.2018年5月25日,中国探月工程的“鹊桥号”中继星成功运行于地月拉格朗日L.2点,它距离地球约1500000km .数1500000用科学记数法表示为()A .51015⨯B .6105.1⨯C .71015.0⨯D .5105.1⨯ 3.2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误..的是()A .1月份销量为2.2万辆.B .从2月到3月的月销量增长最快.C .1~4月份销量比3月份增加了1万辆.D .1~4月新能源乘用车销量逐月增加.4.不等式21≥-x 的解在数轴上表示正确的是()5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是() A .点在圆内. B .点在圆上. C .点在圆心上. D .点在圆上或圆内.7.欧几里得的《原本》记载.形如22b ax x =+的方程的图解法是:画ABC Rt ∆,使︒=∠90ACB ,2a BC =,b AC =,再在斜边AB 上截取2aBD =.则该方程的一个正根是()A .AC 的长.B .AD 的长C . BC 的长D .CD 的长 8.用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是()9.如图,点C 在反比例函数)0(>=x xky 的图象上,过点C 的直线与x 轴,y 轴分别交于点B A ,,且BC AB =,AOB ∆的面积为1.则k 的值为()A . 1B . 2C . 3D . 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A .甲.B .甲与丁.C .丙.D .丙与丁.卷Ⅱ(非选择题)二、填空题(本题有6小题,毎题4分.共24分)11.分解因式:=-m m 32 .12.如图.直线321////l l l .直线AC 交321,,l l l 于点C B A ,,;直线DF 交321,,l l l 于点F E D ,,,已知31=AC AB ,=DEEF. 13.小明和小红玩抛硬币游戏,连续抛两次.小明说:“如果两次都是正面、那么你赢;如果两次是一正一反.则我赢.”小红赢的概率是 .据此判断该游戏 .(填“公平”或“不公平”).14.如图,量角器的O 度刻度线为AB .将一矩形直尺与量角器部分重叠、使直尺一边与量角器相切于点C ,直尺另一边交量角器于点D A ,,量得cmcm AD 10=,点D 在量角器上的读数为︒60.则该直尺的宽度为15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测x 个.则根据题意,可列出方程: .16.如图,在矩形ABCD 中,4=AB ,2=AD ,点E 在CD 上,1=DE ,点F 是边AB 上一动点,以EF 为斜边作EFP Rt ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是 .三、解答题(本题有8小题,第17~19题每题6分.第20,21题每题8分.第22,23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑。
(完整word版)2018年浙江省嘉兴市中考数学试卷含答案,推荐文档

浙江省嘉兴市2018年中考数学试卷一、选择题<本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.<4分)<2018•嘉兴)﹣2的相反数是< )A .2B.﹣2C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.2.<4分)<2018•嘉兴)如图,由三个小立方块搭成的俯视图是< )A .B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到两个相邻的正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.<4分)<2018•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船<中共一大会址).数2500万用科学记数法表示为< )b5E2RGbCAPA .2.5×108B.2.5×107C.2.5×106D.25×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2500万=2500 0000=2.5×107,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.<4分)<2018•嘉兴)在某次体育测试中,九<1)班6位同学的立定跳远成绩<单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是< )p1EanqFDPwA .1.71B.1.85C.1.90D.2.31考点:众数.分析:根据众数的概念:一组数据中出现次数最多的数据叫做众数求解即可.解答:解:数据1.85出现2次,次数最多,所以众数是1.85.故选B.点评:考查众数的概念.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.<4分)<2018•嘉兴)下列运算正确的是< )A .x2+x3=x5B.2x2﹣x2=1C.x2•x3=x6D.x6÷x3=x3考同底数幂的除法;合并同类项;同底数幂的乘法.点:分析:根据合并同类项的法则、幂的乘方及积的乘方法则、同底数幂的除法法则,分别进行各选项的判断即可.解答:解:A、x2与x3不是同类项,不能直接合并,原式计算错误,故本选项错误;B、2x2﹣x2=x2,原式计算错误,故本选项正确;C、x2•x3=x5,原式计算错误,故本选项错误;D、x6÷x3=x3,原式计算正确,故本选项正确;故选D.点评:本题考查了同底数幂的除法、幂的乘方与积的乘方,解答本题的关键是熟练掌握各部分的运算法则.6.<4分)<2018•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为< )DXDiTa9E3dA .cm B.cm C.cm D.7πcm考点:弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.7.<4分)<2018•嘉兴)下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是< )A .①B.②C.③D.④考点:全面调查与抽样调查;方差;随机事件;概率的意义.分析:了解一批灯泡的使用寿命,应采用抽样调查的方式,普查破坏性较强,不合适;根据概率的意义可得②错误;根据方差的意义可得③正确;根据必然事件可得④错误.解答:解:①要了解一批灯泡的使用寿命,应采用抽样调查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖,说法错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,说法正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件.故选:C.点评:此题主要考查了抽样调查、随机事件、方差、概率,关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.<4分)<2018•嘉兴)若一次函数y=ax+b<a≠0)的图象与x轴的交点坐标为<﹣2,0),则抛物线y=ax2+bx的对称轴为< )RTCrpUDGiTA直线x=1B直线x=﹣2C直线x=﹣1D直线x=﹣4....考点:二次函数的性质;一次函数图象上点的坐标特征.分析:先将<﹣2,0)代入一次函数解读式y=ax+b,得到﹣2a+b=0,即b=2a,再根据抛物线y=ax2+bx的对称轴为直线x=﹣即可求解.解答:解:∵一次函数y=ax+b<a≠0)的图象与x轴的交点坐标为<﹣2,0),∴﹣2a+b=0,即b=2a,∴抛物线y=ax2+bx的对称轴为直线x=﹣=﹣1.故选C.点评:本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中.用到的知识点:点在函数的图象上,则点的坐标满足函数的解读式;二次函数y=ax2+bx+c的对称轴为直线x=﹣.9.<4分)<2018•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为< )5PCzVD7HxAA .2B.8C.2D.2考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r﹣2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.解解:∵⊙O的半径OD⊥弦AB于点C,AB=8,答:∴AC=AB=4,设⊙O的半径为r,则OC=r﹣2,在Rt△AOC中,∵AC=4,OC=r﹣2,∴OA2=AC2+OC2,即r2=42+<r﹣2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,在Rt△ABE中,∵AE=10,AB=8,∴BE===6,在Rt△BCE中,∵BE=6,BC=4,∴CE===2.故选D.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.<4分)<2018•舟山)对于点A<x1,y1),B<x2,y2),定义一种运算:A⊕B=<x1+x2)+<y1+y2).例如,A<﹣5,4),B<2,﹣3),A⊕B=<﹣5+2)+<4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点< )jLBHrnAILgA .在同一条直线上B.在同一条抛物线上C .在同一反比例函数图象上D.是同一个正方形的四个顶点考点:一次函数图象上点的坐标特征.专题:新定义.分析:如果设C<x3,y3),D<x4,y4),E<x5,y5),F<x6,y6),先根据新定义运算得出<x3+x4)+<y3+y4)=<x4+x5)+<y4+y5)=<x5+x6)+<y5+y6)=<x4+x6)+<y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C<x3,y3),D<x4,y4),E<x5,y5),F<x6,y6)都在直线y=﹣x+k上.解答:解:∵对于点A<x1,y1),B<x2,y2),A⊕B=<x1+x2)+<y1+y2),如果设C<x3,y3),D<x4,y4),E<x5,y5),F<x6,y6),那么C⊕D=<x3+x4)+<y3+y4),D⊕E=<x4+x5)+<y4+y5),E⊕F=<x5+x6)+<y5+y6),F⊕D=<x4+x6)+<y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴<x3+x4)+<y3+y4)=<x4+x5)+<y4+y5)=<x5+x6)+<y5+y6)=<x4+x6)+<y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C<x3,y3),D<x4,y4),E<x5,y5),F<x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.点评:本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.二、填空题<本大题有6小题,每小题5分,共30分)11.<5分)<2018•嘉兴)二次根式中,x的取值范围是x≥3 .考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查的知识点为:二次根式的被开方数是非负数.12.<5分)<2018•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.xHAQX74J0X考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P<A)=.13.<5分)<2017•鞍山)因式分解:ab2﹣a= a<b+1)<b﹣1).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,再运用平方差公式继续分解因式.解答:解:ab2﹣a,=a<b2﹣1),=a<b+1)<b﹣1).点评:本题考查了提公因式法与公式法分解因式,关键在于提取公因式后要进行二次因式分解,因式分解一定要彻底,直到不能再分解为止.14.<5分)<2018•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.LDAYtRyKfE考点:圆与圆的位置关系;旋转的性质.专题:计算题.分析:根据旋转的性质得到△OAB为等边三角形,则AB=OA=2,而⊙A、⊙B的半径都为1,根据圆与圆的位置关系即可判断两圆的位置关系.解答:解:∵⊙A绕点O按逆时针方向旋转60°得到的⊙B,∴△OAB为等边三角形,∴AB=OA=2,∵⊙A、⊙B的半径都为1,∴AB等于两圆半径之和,∴⊙A与⊙B外切.故答案为外切.点评:本题考查了圆与圆的位置关系:两圆的半径分别为R、r,两圆的圆心距为d,若d=R+r,则两圆外切.也考查了旋转的性质.15.<5分)<2018•嘉兴)杭州到北京的铁路长1487千M.火车的原平均速度为x千M/时,提速后平均速度增加了70千M/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣=3 .Zzz6ZB2Ltk考点:由实际问题抽象出分式方程.分析:先分别求出提速前和提速后由杭州到北京的行驶时间,再根据由杭州到北京的行驶时间缩短了3小时,即可列出方程.解答:解:根据题意得:﹣=3;故答案为:﹣=3.点评:此题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系并列出方程.16.<5分)<2018•嘉兴)如图,正方形ABCD的边长为3,点E,F 分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P与正方形的边碰撞的次数为 6 ,小球P所经过的路程为6.dvzfvkwMI1考点:正方形的性质;轴对称的性质.分析:根据已知中的点E,F的位置,可知入射角的正切值为,通过相似三角形,来确定反射后的点的位置,从而可得反射的次数.再由勾股定理就可以求出小球经过的路径的总长度.解答:解:根据已知中的点E,F的位置,可知入射角的正切值为,第一次碰撞点为F,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得第二次碰撞点为G,在DA上,且DG=DA,第三次碰撞点为H,在DC上,且DH=DC,第四次碰撞点为M,在CB上,且CM=BC,第五次碰撞点为N,在DA上,且AN=AD,第六次回到E点,AE=AB.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球经过的路程为:+++++=6,故答案为:6,6.点评:本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的位置,从而可得反射的次数,由勾股定理来确定小球经过的路程,是一道学科综合试卷,属于难题.三、解答题<本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)rqyn14ZNXI17.<8分)<2018•嘉兴)<1)计算:|﹣4|﹣+<﹣2)0;<2)化简:a<b+1)﹣ab﹣1.考点:整式的混合运算;实数的运算;零指数幂.专题:计算题.分析:<1)原式第一项利用负数的绝对值等于它的相反数化简,第二项利用平方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;<2)原式去括号合并即可得到结果.解答:解:<1)原式=4﹣3+1=2;<2)原式=ab+a﹣ab﹣1=a﹣1.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.<8分)<2018•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.EmxvxOtOco<1)求证:△ABE≌DCE;<2)当∠AEB=50°,求∠EBC的度数?考点:全等三角形的判定与性质.分析:<1)根据AAS即可推出△ABE和△DCE全等;<2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.解答:<1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE<AAS);<2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.点评:本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.19.<8分)<2018•嘉兴)如图,一次函数y=kx+1<k≠0)与反比例函数y=<m≠0)的图象有公共点A<1,2).直线l⊥x轴于点N<3,0),与一次函数和反比例函数的图象分别交于点B,C.SixE2yXPq5<1)求一次函数与反比例函数的解读式;<2)求△ABC的面积?考点:反比例函数与一次函数的交点问题.专题:计算题.分析:<1)将A坐标代入一次函数解读式中求出k的值,确定出一次函数解读式,将A坐标代入反比例函数解读式中求出m的值,即可确定出反比例解读式;<2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,三角形ABC面积=三角形BDN面积﹣三口安排下ADE面积﹣梯形AECN面积,求出即可.解答:解:<1)将A<1,2)代入一次函数解读式得:k+1=2,即k=1,∴一次函数解读式为y=x+1;将A<1,2)代入反比例解读式得:m=2,∴反比例解读式为y=;<2)设一次函数与x轴交于D点,令y=0,求出x=﹣1,即OD=1,∴A<1,2),∴AE=2,OE=1,∵N<3,0),∴到B横坐标为3,将x=3代入一次函数得:y=4,将x=3代入反比例解读式得:y=,∴B<3,4),即ON=3,BN=4,C<3,),即CN=,则S△ABC=S△BDN﹣S△ADE﹣S梯形AECN=×4×4﹣×2×2﹣×<+2)×2=.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求函数解读式,三角形、梯形的面积求法,熟练掌握待定系数法是解本题的关键.20.<8分)<2018•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图<部分未完成).请根据图中信息,回答下列问题:6ewMyirQFL<1)校团委随机调查了多少学生?请你补全条形统计图;<2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?<3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?kavU42VRUs考点:条形统计图;用样本估计总体;扇形统计图;中位数.分析:<1)零用钱是40元的是10人,占25%,据此即可求得总人数,总人数乘以所占的比例即可求得零用钱是20元的人数,则统计图可以作出;<2)求出零用钱是50元的所占的比例,乘以360度即可求得对应的扇形的圆心角,根据中位数的定义可以求得中位数;<3)首先求得抽取的学生的零用钱的平均数,平均数的一半乘以1000即可求解.解答:解:<1)随机调查的学生数是:10÷25%=40<人),零花钱是20圆的人数是:40×20%=8<人).;<2)50元的所占的比例是:=,则圆心角36°,中位数是30元;<3)学生的零用钱是:=32.5<元),则全校学生共捐款×32.5×1000=16250元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.21.<10分)<2018•舟山)某学校的校门是伸缩门<如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘M.校门关闭时,每个菱形的锐角度数为60°<如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°<如图3).问:校门打开了多少M?<结果精确到1M,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).y6v3ALoS89考点:解直角三角形的应用;菱形的性质.分析:先求出校门关闭时,20个菱形的宽即大门的宽;再求出校门打开时,20个菱形的宽即伸缩门的宽;然后将它们相减即可.解答:解:如图,校门关闭时,取其中一个菱形ABCD.根据题意,得∠BAD=60°,AB=0.3M.∵在菱形ABCD中,AB=AD,∴△BAD是等边三角形,∴BD=AB=0.3M,∴大门的宽是:0.3×20≈6<M);校门打开时,取其中一个菱形A1B1C1D1.根据题意,得∠B1A1D1=10°,A1B1=0.3M.∵在菱形A1B1C1D1中,A1C1⊥B1D1,∠B1A1O1=5°,∴在Rt△A1B1O1中,B1O1=sin∠B1A1O1•A1B1=sin5°×0.3=0.02616<M),∴B1D1=2B1O1=0.05232M,∴伸缩门的宽是:0.05232×20=1.0464M;∴校门打开的宽度为:6﹣1.0464=4.9536≈5<M).故校门打开了5M.点评:本题考查了菱形的性质,解直角三角形的应用,难度适中.解题的关键是把实际问题转化为数学问题,只要把实际问题抽象到解直角三角形中,一切将迎刃而解.22.<12分)<2018•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.M2ub6vSTnP<1)请写出这种做法的理由;<2)小明在此基础上又进行了如下操作和探究<如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;0YujCfmUCw<3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线<画板内的部分),只要求作出图形,并保留作图痕迹.eUts8ZQVRd考点:作图—应用与设计作图;平行线的性质;等腰三角形的性质.分析:<1)根据平行线的性质得出即可;<2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;<3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.解答:解:<1)PC∥a<两直线平行,同位角相等);<2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA<对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;<3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.点评:本题涉及到的几何基本作图包括:<1)过直线外一点作直线的平行线,<2)作线段的垂直平分线;涉及到的考点包括:<1)平行线的性质,<2)等腰三角形的性质,<3)对顶角的性质,<4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.23.<12分)<2018•嘉兴)某镇水库的可用水量为12000立方M,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.sQsAEJkW5T<1)问:年降水量为多少万立方M?每人年平均用水量多少立方M?<2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方M才能实现目标?GMsIasNXkA考点:二元一次方程组的应用;一元一次方程的应用.分析:<1)设年降水量为x万立方M,每人每年平均用水量为y立方M,根据储水量+降水量=总用水量建立方程求出其解就可以了;<2)设该城镇居民年平均用水量为z立方M才能实现目标,同样由储水量+25年降水量=25年20万人的用水量为等量关系建立方程求出其解即可.解答:解:<1)设年降水量为x万立方M,每人每年平均用水量为y 立方M,由他提议,得,解得:答:年降水量为200万立方M,每人年平均用水量为50立方M.<2)设该城镇居民年平均用水量为z立方M才能实现目标,由题意,得12000+25×200=20×25z,解得:z=34则50﹣34=16<立方M).答:该城镇居民人均每年需要节约16立方M的水才能实现目标.点评:本题是一道生活实际问题,考查了列二元一次方程组解实际问题的运用,列一元一次方程解实际问题的运用,解答时根据储水量+降水量=总用水量建立方程是关键.24.<14分)<2018•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=<x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.TIrRGchYzg<1)当m=2时,求点B的坐标;<2)求DE的长?<3)①设点D的坐标为<x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第<3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?7EqZcWLZNX考点:二次函数综合题.专题:数形结合.分析:<1)将m=2代入原式,得到二次函数的顶点式,据此即可求出B点的坐标;<2)延长EA,交y轴于点F,证出△AFC≌△AED,进而证出△ABF∽△DAE,利用相似三角形的性质,求出DE=4;<3)①根据点A和点B的坐标,得到x=2m,y=﹣m2+m+4,将m=代入y=﹣m2+m+4,即可求出二次函数的表达式;②作PQ⊥DE于点Q,则△DPQ≌△BAF,然后分<如图1)和<图2)两种情况解答.解答:解:<1)当m=2时,y=<x﹣2)2+1,把x=0代入y=<x﹣2)2+1,得:y=2,∴点B的坐标为<0,2).<2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A<m,﹣ m2+m),点B<0,m),∴AF=AE=|m|,BF=m﹣<﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.<3)①∵点A的坐标为<m,﹣ m2+m),∴点D的坐标为<2m,﹣ m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解读式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,<Ⅰ)当四边形ABDP为平行四边形时<如图1),点P的横坐标为3m,点P的纵坐标为:<﹣ m2+m+4)﹣<m2)=﹣m2+m+4,把P<3m,﹣ m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×<3m)2+×<3m)+4,解得:m=0<此时A,B,D,P在同一直线上,舍去)或m=8.<Ⅱ)当四边形ABDP为平行四边形时<如图2),点P的横坐标为m,点P的纵坐标为:<﹣ m2+m+4)+<m2)=m+4,把P<m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0<此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.点评:本题是二次函数综合题,涉及四边形的知识,同时也是存在性问题,解答时要注意数形结合及分类讨论.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省嘉兴市2018年中考数学试卷
一、选择题<本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)
1.<4分)<2018•嘉兴)﹣2的相反数是< )
2.<4分)<2018•嘉兴)如图,由三个小立方块搭成的俯视图是<
)
3.<4分)<2018•嘉兴)据统计,1959年南湖革命纪念馆成立以来,约有2500万人次参观了南湖红船<中共一大会址).数2500万用科学记数法表示为< )b5E2RGbCAP
4.<4分)<2018•嘉兴)在某次体育测试中,九<1)班6位同学的立定跳远成绩<单位:m)分别为:1.71,1.85,1.85,1.95,
2.10,2.31,则这组数据的众数是< )p1EanqFDPw
5.<4分)<2018•嘉兴)下列运算正确的是< )
6.<4分)<2018•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为< )DXDiTa9E3d
cm cm cm
=
7.<4分)<2018•嘉兴)下列说法:
①要了解一批灯泡的使用寿命,应采用普查的方式;
②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;
③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,
=0.2,则甲组数据比乙组数据稳定;
④“掷一枚硬币,正面朝上”是必然事件.
正确说法的序号是< )
=0.1,=0.2
8.<4分)<2018•嘉兴)若一次函数y=ax+b<a≠0)的图象与x轴的交点坐标为<﹣2,0),则抛物线y=ax2+bx的对称轴为< )RTCrpUDGiT
﹣
﹣=
﹣.
9.<4分)<2018•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为
< )5PCzVD7HxA
2
=
==2.
10.<4分)<2018•舟山)对于点A<x1,y1),B<x2,y2),定义一种运算:A⊕B=<x1+x2)+<y1+y2).例如,A<﹣5,4),B<2,﹣3),A⊕B=<﹣5+2)+<4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点< )jLBHrnAILg
二、填空题<本大题有6小题,每小题5分,共30分)11.<5分)<2018•嘉兴)二次根式中,x的取值范围是x≥3 .
12.<5分)<2018•嘉兴)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.xHAQX74J0X
13.<5分)<2017•鞍山)因式分解:ab2﹣a= a<b+1)<b﹣
1).
14.<5分)<2018•嘉兴)在同一平面内,已知线段AO=2,⊙A的半径为1,将⊙A绕点O按逆时针方向旋转60°得到的像为⊙B,则⊙A与⊙B的位置关系为外切.LDAYtRyKfE
15.<5分)<2018•嘉兴)杭州到北京的铁路长1487千M.火车的原平均速度为x千M/时,提速后平均速度增加了70千M/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为﹣
=3 .Zzz6ZB2Ltk
﹣=3;
故答案为:﹣=3
16.<5分)<2018•嘉兴)如图,正方形ABCD的边长为3,点E,F 分别在边AB,BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小
球P第一次碰到点E时,小球P与正方形的边碰撞的次数为 6 ,小球P所经过的路程为6.dvzfvkwMI1
数.再由勾股定理就可以求出小球经过的路径的总长度.
EF=FG=GH=HM=MN=,
故小球经过的路程为:+++++=6,
6
三、解答题<本大题有8小题,第17~20题每题8分,第21题每题10分,第22、23题每题12分,第24题14分,共80分)
rqyn14ZNXI
17.<8分)<2018•嘉兴)<1)计算:|﹣4|﹣+<﹣2)0;
<2)化简:a<b+1)﹣ab﹣1.
18.<8分)<2018•嘉兴)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.EmxvxOtOco
<1)求证:△ABE≌DCE;
<2)当∠AEB=50°,求∠EBC的度数?
19.<8分)<2018•嘉兴)如图,一次函数y=kx+1<k≠0)与反比例函数y=<m≠0)的图象有公共点A<1,2).直线l⊥x轴于点N<3,0),与一次函数和反比例函数的图象分别交于点B,
C.SixE2yXPq5
<1)求一次函数与反比例函数的解读式;
<2)求△ABC的面积?
)×2=.
20.<8分)<2018•嘉兴)为了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图<部分未完成).请根据图中信息,回答下列问题:6ewMyirQFL
<1)校团委随机调查了多少学生?请你补全条形统计图;
<2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?
<3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?
kavU42VRUs
;
元的所占的比例是:=
)学生的零用钱是:
21.<10分)<2018•舟山)某学校的校门是伸缩门<如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘M.校门关闭时,每个菱形的锐角度数为60°<如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°<如图3).问:校门打开了多少M?<结果精确到1M,参考数据:sin5°≈0.0872,cos5°≈0.9962,sin10°≈0.1736,cos10°≈0.9848).y6v3ALoS89
22.<12分)<2018•嘉兴)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画
PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.M2ub6vSTnP
<1)请写出这种做法的理由;
<2)小明在此基础上又进行了如下操作和探究<如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;0YujCfmUCw
<3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线<画板内的部分),只要求作出图形,并保留作图痕迹.eUts8ZQVRd
23.<12分)<2018•嘉兴)某镇水库的可用水量为12000立方M,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.sQsAEJkW5T
<1)问:年降水量为多少万立方M?每人年平均用水量多少立方M?<2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方M才能实现目标?GMsIasNXkA
解得:
24.<14分)<2018•嘉兴)如图,在平面直角坐标系xOy中,抛物线y=<x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.TIrRGchYzg
<1)当m=2时,求点B的坐标;
<2)求DE的长?
<3)①设点D的坐标为<x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第<3)①题确定的函数图象的另一个交点为
P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?7EqZcWLZNX
2)两种情况解答.
∴=,即:=,
∴所求函数的解读式为:y=﹣x2+x+4,
﹣
﹣×<3
﹣x2+x+4﹣
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。