开关电源斜坡补偿的详细推导
详解开关电源斜坡补偿的推导过程

详解开关电源斜坡补偿的推导过程
我们首先假设,(BUCK电路为例)电感的电流波形以斜率m1上升,然后以斜率m2下降,在电感的电流达到峰值电流的时候限值电压(顶上的电
压横线)突然受到一个干扰时间为Δt,幅值为+ΔV的干扰后(限值电压升高),电感峰值电流达到原本的峰值电流后在Δt时间内继续上升,上升的电流幅值为ΔI,随后干扰消失,电感电流以m2的斜率下降,大致如下图,下面来
计算一下受到干扰后电流波形与原本的电流轨迹的差值ΔI1,ΔI2......ΔIn,是
越来越大还是越来越小,越大则不稳定,越小则稳定。
上图中虚线为受到干扰后的波形,实线为原本的波形轨迹
我们把实线的第一个峰值电流记做i1
我们把虚线的第一个峰值电流记做i1_1
i1_1 - i1=ΔI
我们把实线的第二个峰值电流记做i2
我们把虚线的第二个峰值电流记做i2_1
有
i2=i2_1 i1=in_1
然后我们把时间点t1垂直建立一个坐标系,设时间轴t上的点t1为原点
可以看出i1以m2的斜率下降了时间toff,i1_1以m2的斜率下降了时间toff-Δt,可得出结论i1和i1_1下降到时间点t2后,i1_1比i1少下降了时间
Δt
则i1_1比i1降低的电流为Δt·m2
由于原来i1_1比i1就高出了ΔI i1_1 - i1=ΔI。
升压型DC_DC转换器中的动态斜坡补偿电路设计

文章编号:100423365(2005)0420420204升压型DC2DC转换器中的动态斜坡补偿电路设计来新泉,周丽霞,陈富吉(西安电子科技大学CAD研究所,陕西西安 710071)摘 要: 文章给出了一种用于升压型DC2DC转换器的动态斜坡补偿电路。
该设计引入了输入、输出电压反馈控制电路,利用工作于线性区的MOS管压控电阻特性,实现了动态、优化的斜坡补偿。
与传统的设计相比,引入的斜坡补偿对系统带载能力、瞬态响应的负面影响有效减小,并给出了仿真结果。
关键词: DC2DC转换器;斜坡补偿;反馈控制;压控电阻中图分类号: TN432 文献标识码:ADesign of a Dynamic Slope Compensation Circuit for Boost DC2DC ConverterL A I Xin2quan,ZHOU Li2xia,C H EN Fu2ji(I nstit ute of Elect ronic CA D,X i dian Uni versit y,X i’an,S haanx i710071,P1R1China)Abstract: A dynamic slope compensation circuit for boost DC2DC converter is presented in this paper1With the utilization of the voltage controlled resistor characteristics of MOS transistor and the introduction of a feedback cir2 cuit controlled by input and output voltages,a dynamic and optimal slope compensation circuit is realized1Compared with the traditional design,negative effects on the system’s output current capability and transient response are ef2 fectively reduced1Finally,the simulation results are provided1K ey w ords: DC2DC converter;Slope compensation;Feedback control;Voltage controlled resistorEEACC: 2570D1 引 言电流模脉宽调制(PWM)开关电源由于其优越的电源电压和负载调整特性,得到越来越广泛的应用。
峰值电流控制中的斜坡补偿研究

本科毕业设计(论文)峰值电流控制中的斜坡补偿研究***燕山大学2012年 6 月本科毕业设计(论文)峰值电流控制中的斜坡补偿研究学院(系):***专业:08级应用电子学生姓名:***学号:***指导教师:***答辩日期:2012年6月17日燕山大学毕业设计(论文)任务书摘要摘要相比传统的线性电源,DC-DC开关电源由于具有高效率、高可靠性、体积小等优点,使其成为国内外研究的热点。
电流模式DC-DC开关电源具有响应速度快、稳定性高、内在限流保护等特点在电源管理芯片中得到了广泛的运用。
在这一背景下,本文以Boost变换器为例,设计峰值电流控制的斜坡补偿电路;输入电压48V,输出电压200V。
本文主要研究电流模式DC-DC开关电源中斜坡补偿理论,分析了电感电流扰动导致控制环路产生不稳定的原因,给出抑制这种不稳定因素的处理办法即斜坡补偿方法。
针对此问题提出斜坡补偿设计思想,在此理论基础上完成了相应的斜坡补偿控制电路路设计。
本文中完成了DC-DC开关电源系统的各个单元电路设计与分析,重点分析斜坡补偿控制电路的设计。
最后采用MATLAB软件进行仿真。
通过整体仿真,实现稳定电压,系统具有良好的负载调整特性和快速的稳态恢复时间和优良的电源调整率。
关键词开关电源,峰值电流模式,斜坡补偿AbstractAbstractThe switch power possesses the advantages of high efficiency, high reliability and compact size compared with conventional linear power which becomes a pop research object home and abroad. Due to its characteristics of fast response, good stability, inherent current limiting, current-mode controller has been widely applied in power management circuits. In this background, this paper to Boost converter as an example, the design of peak current control slope compensation circuit; the input voltage 48V, output voltage 200V.This paper mainly studies the current mode switching power supply DC-DC slope compensation in theory, analysis of inductor current disturbance causes the control loop to generate unstable reason given, inhibition of the unstable factors approach that slope compensation method. The slope compensation design, on the basis of the theory to accomplish the corresponding slope compensation control circuit design. This paper completed the DC-DC switching power supply system each unit circuit design and analysis, focusing on the analysis of the slope compensation control circuit design. Finally using the MATLAB software simulation. Through the simulation, to achieve stable voltage, the system has a good load regulation characteristics and rapid steady state recovery time and excellent power adjustment rate.Keywords Switch power supply, peak current mode, slope compensation目录摘要 (I)Abstract ................................................................................................................ I I 第1章绪论.. (1)1.1课题背景 (1)1.2开关电源的发展阶段 (2)1.3开关电源的发展趋势 (4)1.4论文的主要内容和设计目标 (4)1.5本章小结 (5)第2章电流峰值控制 (6)2.1开关电源基础知识 (6)2.2升压型(BOOST)变换器电路 (7)2.2.1工作原理和工作过程 (7)2.2.2稳态波形和主要参数计算 (8)2.3电流峰值控制 (11)2.3.1 电流峰值控制的概念 (13)2.3.2 电流控制的稳定性问题 (15)2.4本章小结 (20)第3章斜坡补偿电路设计 (21)3.1锯齿波补偿稳定电流控制的稳定性分析 (21)3.2常见的几种斜坡产生电路 (25)3.2.1线性斜坡 (25)3.2.2 n阶线性斜坡 (27)3.2.3带箝位的斜坡补偿电路 (31)3.2.4可外同步的斜坡补偿电路 (32)3.2.5非线性斜坡产生电路 (32)3.2.6总结这几种斜坡补偿电路 (33)3.3本章小结 (34)第4章仿真结果 (35)4.1仿真 (35)4.2本章小结 (40)结论 (41)参考文献 (42)致谢 (43)附录1 (44)附录2 (47)附录3 (50)附录4 (54)附录5 (60)第1章绪论第1章绪论1.1 课题背景随着电子技术的飞速发展和不断创新,电子电力设备与人们工作和生活的关系日益密切,其性能的优劣直接关系到电子设备的技术指标及能否安全可靠地工作,由此也带来了电源管理技术的腾飞。
活学活用PWM控制器之斜坡补偿方法科普

活学活用PWM控制器之斜坡补偿方法科普
PWM控制器作为一种非常常见的重要电子元件,在中小功率开关电源
及消费类电子产品的电路系统设计中应用广泛。
本文将会针对PWM控制器
的斜坡补偿方法进行简单介绍和科普,希望能够对正在进行电子技术学习的
爱好者和初学者带来一定的帮助。
在一些中小功率开关电源模块的研制过程中,很多工程师都需要面对一个
问题,那就是在采用了电流型PWM控制器的电路系统中,会出现输出电压
正比于输出电流平均值而不是正比于峰值电流的情况。
众所周知,功率开关
管的峰值电流由PWM控制器保持恒定控制,当输入电压减小时,为了使电
流恒定,占空比将调节为D2,这时平均电流将上升为I2,输出电压也将上升。
在电流型控制器件的调节下,仅有输出电压能够得到控制。
那幺,采用斜坡补偿的方式可以解决电流型PWM控制器的这一应用弊端吗?答案是肯定的。
首先来看斜坡补偿的技术原理。
为了维持一个恒定的平
均电流(输出电压),要求有一个与占空比无关的电流波形补偿斜坡,当(NsPNp)Rs(m2P2)=m成立时,输出电感平均电流与Ton无关,则保持
了输出电压恒定。
电流型PWM控制器的平均电流曲线如下图图1所示。
图1 电流型PWM控制器平均电流曲线
在实际的电路系统设计过程中,采用斜坡补偿的技术是比较容易实现的,
一般可以直接用图2所展示的电路来实现。
在图2所展示的斜坡补偿原理图中,一般R1的阻值预先设定,再计算R2的阻值,需要特别注意的一个问题
是R2的阻值必须足够高,以避免使振荡器产生振荡频率漂移。
斜坡补偿计算

斜坡补偿计算
斜坡补偿是一种在电流上叠加一个固定斜坡信号的技术,主要应用在电路设计中,以提高电流内环的相位裕度,增加系统的稳定性。
斜坡补偿的计算涉及到多个参数和公式,以下是一些关键的计算步骤和考虑因素:
1.斜坡补偿斜率与电流内环相位裕度的关系:斜坡补偿的斜率(Mc)与电流内环的相位裕度(PM)
之间存在关系,可以通过公式Mc = (1 - 1/D + 1/(2D * cos(PM))) * (Vo/L)来计算,其中D是占空比,Vo是输出电压,L是电感。
这个公式说明,增大斜坡电流可以提高电流内环的相位裕度,从而增强系统的稳定性。
2.斜坡补偿的斜率选择:在实际应用中,斜坡补偿的斜率通常选择为Mc = 0.75M2,其中M2是电感
电流的下降斜率。
这个选择是为了给电路设计留下一定的裕度,保证系统的稳定性。
3.占空比的影响:占空比D对斜坡补偿的效果有重要影响。
当占空比接近0.5时,即使没有斜坡补
偿,也可能出现次谐波振荡。
因此,在占空比小于0.5时也需要进行一定的斜坡补偿。
4.重力补偿算法的应用:在机器人等设备的斜坡行走中,还需要考虑重力补偿算法。
通过测量俯仰
角和翻滚角,可以计算出沿着斜坡方向的重力分量,并通过补偿力来平衡这个重力分量,从而实现稳定行走。
需要注意的是,斜坡补偿的计算涉及到多个参数和公式,需要根据具体的应用场景和电路设计来进行调整和优化。
同时,重力补偿算法的实现也需要根据具体的设备和应用场景来进行设计和实现。
斜率补偿

“斜率补偿”是指用电流控制方式时,将一部分锯齿波电压加到控制信号上,以改进控制特性,包括消除谐波振荡。
开关电源以其高效率、小体积等优点获得了广泛的应用。
近年电流型PWM技术得到了飞速发展。
相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得到明显的改善。
与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一个电流反馈环节,给环路调试带来了一定困难。
这种困难不仅仅是由双环反馈带来的,还要考虑通过电流环引入的谐波干扰。
另外,电流采样信号通常来自于变压器原边,有比较大的开关噪声,特别是对于大功率模块会对环路的稳定性有很大的影响。
电流模式变换器工作在占空比大于50%和连续电感电流的条件下,会产生谐波振荡,这种不稳定性与稳压器的闭环特性无关。
既然是独立于系统环路之外的扰动信号,就可以在保证系统环路稳定并具有一定的系统裕量的前提下,对电流环扰动单独处理。
斜率补偿是比较常用的方法,现将其基本的补偿原理以及实际工作中使用的几种典型电路加以分析整理。
1 谐波振荡产生的原因在t0时刻,开关管导通,使电感电流以斜率m1上升,该斜率是输入电压除以变压器原边电感的函数。
t1时刻,电流取样输入达到由控制电压建立的门限,开关管关断,电流以斜率m2下降,直到下一个振荡周期开始。
如果此时有一个扰动加到控制电压上,产生一个小的,就会出现不稳定情况。
在一个固定的振荡周期内,电流衰减时间减少,最小电流在开关接通时刻(t2)上升了。
接下来电感最小电流在会下一个周期(t3)减小至。
在每一个后续周期,该扰动被m2m1相乘,在开关接通时交替增加和减小电感电流,要经过几个振荡周期电感电流减为零,使过程重新开始。
由图示可知,如果m2/m1大于1,变换器将不能稳定工作。
另一方面,如果采样电流上升斜坡斜率较小,扰动信号同样会叠加上去,如果扰动尖峰过大,叠加之后的信号就会使PWM控制器内电流比较器误触发而翻转。
开关电源中斜坡补偿电路的分析与设计

因此Q4, Q5. Q6. Q7的开启点分别为
Q2 go的集电极电流为上述四个晶体管的集电极电流总和:
因为 Q 4 ,Q 5,Q 6和Q7是先后开启的,所以补偿电流在时间轴上的斜率dl_}dt将随着V05C的增大而增大,即斜坡补偿的量随占空比增大而增大功率 管 的 导通时间结束时,V,由高变低,Ql关断,1.1随即降为零(51。这样可以减少不必要的系统功耗。考虑 不 同 应用情况下m:的变化范围,计算(5)式就可以确定m随D变化的曲线,再根据电流放大器IA的增益和振荡器锯齿波斜率计算可得各元件的尺寸。图 7 是 在选取了元件尺寸后计算机仿真波形。
其中Vosc是理想化的锯齿波to二是输出的补偿电流,如·乓、、Imo, IQ分别Q4, Q5, Q6和Q7的漏极电流可以看到,为了在占空比小于50%的时候系统更加稳定,Q4在每个周期开始时就已经开启,但是电流的斜率较小。随着Vosc以恒定的斜率上升,将先后在t1, t2, t3时达到Q5, Q6和07的开启点。设Q4, Q5, Q6, Q7开启后的电流斜率分别为m4, m5, m6和m7, A3R9
开关 电 源 一般由脉冲宽度控制(PWM)IC、功率开关管、整流二极管和LC滤波电路构成。在中小功率开关电源中,功率开关管可以集成在PWM控制IC内。开关电源按反馈方式分为电压模式和电流模式。电流模式开关电源因其突出的优点而得到了快速的发展和广泛的应用。但是电流模式的结构决定了它存在两个缺点:恒定峰值电流而非恒定平均电流引起的系统开环不稳定:占空比大于50%时系统的开环不稳定[21
设电流采样电阻的阻值为Hale Waihona Puke S,那么叠加在该电阻上压降的斜率为:
4.结论
本文 分 析 了传统电流模式开关电源的工作原理及其优劣,从原理上解释了电流模式在占空比大于50%后输出不稳定的问题和解决的方法。在此基础上本文分析了一个实用的斜坡补偿电路结构并详细分析了其工作过程。通过HSPICE的仿真分析,得到了预期的结果,证明了该电路
关电源中斜坡补偿电路的分析与设计[1]
![关电源中斜坡补偿电路的分析与设计[1]](https://img.taocdn.com/s3/m/55afd8323968011ca300919a.png)
路, 不仅实现了内 部同步补偿, 而且能随占 空比变化自 动调节补偿量。 电路分析和仿真结果表明, 路能弥补传统电流模式的 该电 不足
有效地稳定开关电源的输出电压 关健词 开关电源,电流模式,斜坡补偿,占空比
1 .引言 开关电源是利用现代电力电子技术, 控制开关晶体管 的导通和关断的时间比率, 维持输出电压稳定的一种电源, 它和线性电源相比, 具有效率高、功率密度高、 可以 实现 和 输人电网的电 气隔离等优点, 被誉为 离效节能电 源M 目 前开关电源已经应用到了 各个领域, 尤其在大功率应用 的场合,开关电源具有明显的优势。 开关电源一般由脉冲宽度控制( ) 、 P I 功率开关管、 WM C 整流 二极管和L 滤 路构成。 小功率开 源中, C 波电 在中 关电 功率开 关管可以集成在PM W 控制I C内。 开关电源按反馈方 式分为电压模式和电流模式。电流模式开关电源因其突出 的优点而得到了快速的发展和广泛的 应用。 但是电流模式 的 结构决定了它存在两个缺点: 恒定峰值电流而非恒定平 均电 流引起的系统开环不稳定:占 空比大于 5% 0 时系统的 开环不稳定[ 2 1 本文旨 在从原理上分析传统电流模式的 缺陷及改进方 案,之后分析一个实用的斜坡补偿电路。
m,
波电 一 因 反 路的 可以 简 r 路的 半。 此 馈电 设计 大幅 化 n
④ 改善了负载 调整率。 在电流 模式中, 误差放大器 的带宽更大, 因而负载调整率更好。 3 .电流模式的缺点 3 恒定峰值电流引起的电感平均电流不恒定。 . 1
电流模式的实质是使电感平均电流跟随误差放大器输
图a 电感电流扰动被放大
I= II ( _ I d . g . 一 - 2 ) _ 一 - m t
2 产 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源斜坡补偿的详细推导
直接进入正题,如下图以Buck为例。
我们首先假设,电感的电流波形以斜率m1上升,然后以斜率m2下降,在电感的电流达到峰值电流的时候限值电压(顶上的电压横线)突然受到一个干扰时间为Δt,幅值为+ΔV的干扰后(限值电压升高),电感峰值电流达到原本的峰值电流后在Δt时间内继续上升,上升的电流幅值为ΔI,随后干扰消失,电感电流以m2的斜率下降,大致如下图,下面来计算一下受到干扰后电流波形与原本的电流轨迹的差值
ΔI1,ΔI2......ΔIn,是越来越大还是越来越小,越大则不稳定,越小则稳定。
上图中虚线为受到干扰后的波形,实线为原本的波形轨迹
我们把实线的第一个峰值电流记做i1
我们把虚线的第一个峰值电流记做i1_1
i1_1 - i1=ΔI
我们把实线的第二个峰值电流记做i2。