半导体器件物理4章半导体中的载流子输运现象
半导体物理-第四章-载流子的输运现象PPT课件

但是热平衡状态不受到干扰。
.
2
4.1 载流子的漂移运动
一、电导微观理论(刘恩科书p106)
单位: 西门子/米 1S=1A/V=1/Ω
.
3
.
4
二、半导体的电导率和迁移率
.
5
4.2 载流子的散射
一、
.
6
1、
.
7
.
8
.
9
二、
.
10
.
11
.
12
.
13
小结:
.
14
4.3 迁移率与杂质浓度和温度的关系
一、
.
15
.
16
.
17
二、
.
18
.
19
4.4 强电场下的输运
一、欧姆定律的偏离和热载流子
.
20
.Leabharlann 21.22
.
23
.
24
第四章 载流子的输运现象
书 第五章
.
1
• 在半导体中电子和空穴的净流动产生电流,把载流子的 这种运动称为输运。
• 本章介绍半导体晶体中两种基本输运机制: 1、漂移运动:由电场引起的载流子运动。 2、扩散运动:由浓度梯度引起的载流子运动。 此外半导体的温度梯度也引起载流子的运动,但是由于 半导体器件尺寸越来越小,这一效应可以忽略。
半导体物理基础(4)06.02

J = nqμ E = nqvd
在某一个电场强度 区域,电流密度随电场 强度的增大而减小。
负的微分电导(negetive differential conductance)。 NDC
3 Gunn effect (耿氏效应) 实验现象:
ε0
阈电场(threshold field)
对于GaAs: ε 0
电子 空穴
电场:
ε
v
若比例系数为 μ 则: v vd v ------迁移率 vd = με ∴ μ =
ε
单位电场下, 载流子的平均 漂移速度
2 Mobility(迁移率) 定性分析:迁移率的大小反映了载流子迁移的难易程度。
载流子的有效质量 m ∗ ↑⇒ μ ↓, 载流子的平均自由时间 τ ↑⇒ μ ↑
n1
μ 2 =100cm / V ⋅ s
2
n2
2 Negetive differential conductance(负微分电导)
n1μ1 + n2 μ 2 μ= n1 + n2
1 电场很低 2 电场增强 3 电场很强
n2 ≈ 0
n1 ↓
n1 ≈ 0
n ≈ n1
n2 ↑
n = n1 + n2
n ≈ n2可以证明:μ =qτ m∗
μn μp
qτ n = ∗ mn qτ p = m∗ p
3 影响迁移率的因素
qτ n μn = ∗ mn
μp =
qτ p m
∗ p
不同材料,载流子的有效质量不同;但材料一定,有效质 量则确定。 对于一定的材料,迁移率由平均自由时间决定。也就是 由载流子被散射的情况来决定的。
μ: T *中温
电子在半导体中的载流子输运与载流子浓度变化规律

电子在半导体中的载流子输运与载流子浓度变化规律在现代科技的发展中,半导体材料扮演着重要的角色。
它们不仅广泛应用于电子器件中,而且在光电子学、能源等领域也有着重要的应用。
而半导体器件的工作原理则与半导体中载流子的输运与浓度变化规律息息相关。
本文将以电子在半导体中的载流子输运与载流子浓度变化规律为主题展开讨论。
在半导体材料中,载流子指的是电子或空穴,它们在材料中的运动形成了电流。
对于电子而言,它们在半导体中的运动遵循一定的规律。
首先,电子会随机地做热运动,即在晶格内进行热振动。
当电场作用于半导体材料时,电子除了受到晶格的阻碍外,还受到电场的驱动力,从而形成了电子的漂移运动。
这种漂移运动可分为两种情况:导电态和不导电态。
在导电态中,电子的漂移速度与电场强度成正比;而在不导电态中,由于晶格散射的影响,电子的漂移速度不再与电场强度呈线性关系。
另外,电子在半导体中的输运还受到其他因素的影响,如杂质、温度等。
其中,杂质的作用十分显著。
杂质在半导体中引入了陷阱态,从而影响了电子的运动速度。
当电子进入陷阱态时,它们的运动速度会减小,从而降低了电子的漂移速度。
因此,在半导体中具有杂质的区域,电子的输运速度较慢。
而在纯净的半导体区域,电子的漂移速度较快。
此外,半导体中载流子的浓度也会随着不同条件而变化。
载流子的浓度与材料中离子的掺杂浓度以及温度有关。
离子的掺杂浓度越高,载流子的浓度也越高。
掺杂浓度高的区域称为n型区域,其中带负电的电子浓度较高;而掺杂浓度低的区域则称为p型区域,其中带正电的空穴浓度较高。
在n型区域和有机区域之间存在电势差,这使得电子和空穴在区域间发生扩散。
当达到动态平衡时,区域间的扩散流和复合流相互抵消,从而形成载流子浓度分布的稳定状态。
总结起来,电子在半导体中的载流子输运与载流子浓度变化规律是一个复杂而又精彩的过程。
电子的漂移运动受到电场和晶格散射的共同影响,杂质的引入又对电子的运动速度产生了显著的影响。
第四章 半导体中载流子的输运现象

N( t ) N( t t ) N( t ) dN( t ) lim N( t )P t 0 t 0 t t dt
lim
t=0时所有N0个电子都未遭散射,由上式得到 t时刻尚未遭散射的 电子数
更重要。
在GaAs等化合物半导体中,组成晶体的两种原子由于负电性不
同,价电子在不同原子间有一定转移,As原子带一些负电,Ga
原子带一些正电,晶体呈现一定的离子性。
纵光学波是相邻原子相位相反的振动,在GaAs中也就是正负离 子的振动位移相反,引起电极化现象,从而产生附加势场。
(a) 纵光学波
1
2
3
给上式两端同乘以
1 ( q mn ) 得到 1 1 1 1 1 2 3
所以总迁移率的倒数等于各种散射机构所决定的迁移率的倒数之和。
多种散射机构同时存在时,起主要作用的散射机构所决定的平
均自由时间最短,散射几率最大,迁移率主要由这种散射机构决定。
(b) 纵光学波的电极化
图4.4 纵光学波及其所引起的附加势场
离子晶体中光学波对载流子的散射几率P0为
Po ( h l ) ( k0T )
3 1 2 2
h l exp k T 1 0
1
1 h l f[ ] k0T
式中 l 为纵光学波频率,f ( h l / k0T ) 是随 ( h l / k 0 T ) 变化的函数,
其值为0.6~1。P0与温度的关系主要取决于方括号项,低温下P0
较小,温度升高方括号项增大,P0增大。
第半导体物理课件 第四章

用,对电子产生散射作用。
• 横声学波要引起一定的切变,对具有多极值、旋转椭球等 能面的锗、硅来说,也将引起能带极值的变化。
光学波散射
• 离子性半导体中,长纵光学波有重要的散射作用。 • 每个原胞内正负离子振动位移相反,正负离子形成硫密 相间的区域,造成在一半个波长区域内带正电,另一半 个波长区域内带负电,将产生微区电场,引起载流子散 射。 长声学波振动,声子的速度很小,散射前后电子能量基本不 变,--弹性散射 光学波频率较高,声子能量较大,散射前后电子能 量有较大的改变,--非弹性散射。
迁移率和杂质与温度关系
杂质浓度较低,迁移率随温度升高迅速减小,晶格散射起主要作用; 杂质浓度高,迁移率下降趋势不显著,说明杂质散射机构的影响为主。当 杂质浓度很高时,低温范围内,随温度升高,电子迁移率缓慢上升,直到
很高温度(约550K左右)才稍有下降,这说明杂质散射起主要作用。晶格 振动散射与前者比影响不大,所以迁移率随温度升高而增大;温度继续升 高后,又以晶格振动散射为主,故迁移随温度下降。
② 计算中假设散射后的速度完全无规则,即散射后载流子向各个方向运动 的几率相等。这只适用于各向同性的散射.对纵声学波和纵光学波的散射确 实是各向同性的.但是电离杂质的散射则偏向于小角散射。所以精确计算还 应考虑散射的方向性。
下节较精确地计算半导体的电导率,为简单起见,仍限于讨论各向同性的 散射。
5 玻耳兹曼方程· 电导率的统计理论
• 各向同性晶体特点:
a、声学波散射: Ps∝T3/2 b、光学波散射:P o∝[exphv/k0T)]-1
2)电离杂质散射:即库仑散射
散射几率Pi∝NiT-3/2(Ni:为杂质浓度总和)。
3)其它散射机构
半导体材料中载流子输运行为研究

半导体材料中载流子输运行为研究随着科技的快速发展,半导体材料在电子行业中起着重要的作用。
半导体材料中的载流子输运行为研究不仅对于理解材料本身的特性有着重要意义,还能为电子器件的设计和优化提供理论依据。
一、载流子输运行为的意义与背景随着电子技术的不断进步,人们对于材料与器件之间的关系有了更深入的了解。
而半导体材料作为电子器件的重要组成部分,其载流子输运行为对于电流的流动与电荷的传输起着至关重要的作用。
因此,研究半导体材料中的载流子输运行为就成为了科学家们的关注点。
二、载流子输运行为的原理与机制在半导体材料中,载流子的输运往往是通过扩散和漂移两种方式进行的。
扩散是由于载流子浓度梯度引起的自发过程,而漂移是由于电场的作用使得载流子向着电场方向运动。
这两种方式在不同的材料中起着不同的作用,需要根据具体的情况来考虑。
在半导体材料中,载流子的输运行为受到很多因素的影响。
例如,材料的晶格结构、杂质和缺陷等都会对载流子的运动产生影响。
此外,温度和电场也是重要的影响因素。
因此,科学家们需要通过实验和理论计算来研究这些因素对于载流子输运行为的影响,并找出最佳的策略来优化电子器件的性能。
三、载流子输运行为的研究方法与手段为了研究载流子输运行为,科学家们采用了多种不同的方法和手段。
例如,他们可以通过光电子学方法来研究载流子的激发和复合过程;通过扫描电子显微镜和透射电子显微镜等显微镜技术,观察材料表面和内部的载流子输运行为;通过电学测量,测定载流子在材料中的迁移率和寿命等参数。
此外,模拟计算也是研究载流子输运行为的重要手段之一。
通过建立合适的模型和方程,科学家们可以在计算机上模拟材料中的载流子输运行为,从而预测其性能和行为。
四、载流子输运行为研究的应用研究半导体材料中的载流子输运行为不仅对于理解材料的特性有着重要意义,还有着广泛的应用前景。
例如,在太阳能电池中,研究材料中的载流子传输行为有助于提高太阳能电池的效率。
此外,在遥感和传感器领域,对于半导体材料中载流子输运行为的研究也能为新型传感器的设计和开发提供指导。
半导体物理学中载流子的输运特性分析

半导体物理学中载流子的输运特性分析半导体物理学是研究半导体材料中电荷载流子的性质和运动的学科。
对于这些半导体材料电流输送特性的研究,对于现代电子设备和信息技术的发展起着至关重要的作用。
本文将探讨半导体物理学中载流子的输运特性分析。
一、载流子的定义和类型在半导体物理学中,载流子是指携带电荷的粒子,它们在半导体材料中负责电流的输送。
根据带电荷性质的不同,载流子分为正电荷的空穴和负电荷的电子。
空穴是电子跳出离子晶格位置后在其原处留下的带正电荷的空位,而电子则是负电荷的粒子。
二、载流子的产生和输运载流子的产生主要通过固体材料的激发过程来实现。
当外界施加电场、光照或温度变化等激励时,电子会从价带跃迁到导带形成电子-空穴对。
这些电子和空穴会受到电场力的作用向着电场方向运动,从而形成了电流。
在半导体中,电子由于能级差距小,其导电性能强于绝缘体材料。
三、载流子的输运特性在半导体材料中,载流子的输运特性决定了材料的电导率和电流的传输效率。
其中,电流主要通过两种方式传输:漂移和扩散。
1. 漂移:漂移是指由于外加电场的作用,携带电荷的载流子在晶体中受到电场力的驱动而移动。
漂移速度与电场强度成正比,与载流子迁移率成正比。
而载流子的迁移率受到材料中杂质、晶格缺陷等因素的影响。
因此,提高半导体材料的纯度和结晶度可以提高载流子的迁移率,进而提高电导率。
2. 扩散:扩散是指由于载流子浓度差异引起的材料中的载流子传输。
当载流子浓度不均匀时,通过自由运动的载流子将会发生扩散,以实现浓度均匀分布。
扩散速度与浓度梯度成正比,与扩散系数成正比。
扩散系数受到温度、材料的缺陷和掺杂等因素的影响。
四、载流子输运的限制因素在实际的半导体器件中,载流子的输运过程会受到一些因素的限制,主要包括散射、载流子密度限制和表面反射等。
1. 散射:散射是指载流子在晶体中与杂质、晶格缺陷或声子等相互作用后改变原始运动状态的过程。
散射会使得载流子的迁移率降低,影响载流子的输运效率。
半导体材料中的能带结构和载流子输运机制

半导体材料中的能带结构和载流子输运机制半导体材料在现代科技中扮演着至关重要的角色,广泛应用于电子器件、光电子器件等领域。
要理解半导体材料的性质和性能,我们需要研究半导体材料中的能带结构和载流子输运机制。
一、能带结构能带结构是描述物质中电子能级分布的一种模型。
对于半导体材料来说,能带结构由价带和导带组成。
1. 价带:价带是能量较低的带,其中填满了电子。
在固体中,原子间的电子交互作用使得原子能级分裂成离散的能带,在固体中表现为连续的能量带。
价带中的电子处于较稳定的状态,不易被激发到导带。
2. 导带:导带是能量较高的带,其中没有电子。
当外界能量作用于原子或者晶格时,电子可获得足够的能量从价带跃迁到导带。
导带中的电子具有较高的能量,容易参与导电过程。
半导体的能带结构与金属和绝缘体有所不同。
金属中,价带与导带重叠,使得电子能够自由移动,导电性能好;而绝缘体中,价带与导带之间存在较大的能隙,电子能量不足以跃迁到导带,因此其导电性能很差。
半导体的能带结构介于金属和绝缘体之间,存在较小的能隙,能够通过适当的能量激发将电子从价带跃迁到导带,从而实现电子的导电。
二、载流子输运机制载流子是指电子和空穴,它们是半导体材料中的导电粒子。
载流子的输运过程影响着半导体材料的导电性能。
1. 电子输运:电子由外界电场驱动,从一个位置向另一个位置移动。
在半导体中,电子的输运通常分为漂移和扩散两种情况。
漂移是指电场作用下,电子沿着电场方向移动,与杂质或晶格碰撞,导致速度减小;扩散是指电子在浓度梯度作用下,从高浓度区域向低浓度区域扩散。
电子输运的基本原理可以用经典电动力学和半导体物理学中的牛顿第二定律和欧姆定律描述。
2. 空穴输运:空穴是电子跃迁到导带中留下的一个“空位”,在半导体材料中的移动过程也被称为空穴的输运。
空穴的运动类似于正电荷的运动。
当外界电场作用于半导体材料时,空穴会受到电场力的驱动,从一个位置移动到另一个位置。
空穴的输运过程中,同样存在漂移和扩散两种情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 半导体中载流子的输运现象在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。
我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。
半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。
由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。
其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。
载流子的漂移运动和扩散运动都会在半导体内形成电流。
此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。
载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。
因此,研究半导体中载流子的输运现象非常必要。
4.1漂移电流密度如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。
电场力的作用下使载流子产生的运动称为“漂移运动”。
载流子电荷的净漂移会产生“漂移电流”。
如果电荷密度为ρ的正方体以速度d υ运动,则它形成的电流密度为()4.1drf dJ ρυ=其中ρ的单位为3C cm -,drf J 的单位是2Acm -或2/C cm s 。
若体电荷是带正电荷的空穴,则电荷密度ep ρ=,e 为电荷电量191.610(e C -=⨯库仑),p 为载流子空穴浓度,单位为3cm -。
则空穴的漂移电流密度/p drf J 可以写成:()()/ 4.2p drf dpJ ep υ=dp υ表示空穴的漂移速度。
空穴的漂移速度跟那些因素有关呢?在电场力的作用下,描述空穴的运动方程为()* 4.3p F m a eE==e 代表电荷电量,a 代表在电场力F作用下空穴的加速度,*p m 代表空穴的有效质量。
如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。
但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。
在电场的作用下,晶体中的空穴获得加速度,速度增加。
当载流子同晶体中的原子相碰撞后,载流子会损失大部分或全部能量,使粒子的速度减慢。
然后粒子又会获得能量并重新被加速,直到下一次受到碰撞或散射,这一过程不断重复。
因此,在整个过程粒子将会有一个平均漂移速度。
在弱电场的情况下,平均漂移速度与电场强度成正比(言外之意,在强电场的情况下,平均漂移速度与电场强度不会成正比)。
()4.4dp p Eυμ=其中p μ是空穴迁移率,载流子迁移率是一个重要的参数,它描述了粒子在电场作用下的运动情况,迁移率的单位为2/cm V s 。
将式(4.4)带入(4.2),可得出空穴漂移电流密度的表达式:()/ 4.5p drf p J ep Eμ=空穴的漂移电流密度方向与施加的电场方向相同。
同理可知电子的漂移电流为()/ 4.6n drf dnJ en υ=-弱电场时,电子的漂移电流也与电场成正比。
但由于电子带负电,电子的运动方向与电场方向相反,所以()4.7dn n Eυμ=-其中dn υ代表电子的平均漂移速度,n μ代表电子的迁移率,为正值。
所以电子的漂移电流密度为()()()/ 4.8n drf n n J en E en Eμμ=--=虽然电子的运动方向与电场方向相反,但电子的漂移电流密度方向仍与电场方向相同。
()()224.1300//1350480850040039001900n p T K cm V s cm V s Si GaAs Geμμ=表时,低掺杂浓度下的典型迁移率值材料电子迁移率和空穴迁移率都与温度和掺杂浓度有关。
表4.1给出了300T K =时低掺杂浓度下的一些典型迁移率值。
总的漂移电流是电子的漂移电流与空穴的漂移电流的和:即()()4.9drf n p J e n p Eμμ=+()1631632102431630010,04.135/10,1.5102.251010d a d a d iT K N cm N E V cm N N N n N cm n p cm n n ---====>≈=⨯===⨯例题:给定电场强度时,计算半导体中产生的漂移电流密度。
考虑硅半导体在,掺杂浓度。
假定电子与空穴的迁移率由表给出,计算给定电场强度时产生的漂移电流密度。
解:由于,所以是型半导体。
假定室温下杂质完全电离,因此电子浓度:空穴浓度由于()()()()()1916221.6101013503575.6/756/drf n p n p J e n p E en E A cm mA mm μμμ->>=+≈=⨯==,所以漂移电流为这个例子说明,漂移电流密度是由多数载流子产生的;很小的电场就会产生较大的漂移电流密度;也意味着产生毫安级的电流占用较小的器件面积。
()()143153*********.30010,10,4.135, 6.82.300201207.8110d a def a T K N cm N cm E Vcm Acm T K E Vcm J Acm p N cm -------=========⨯练习题:时,硅的掺杂浓度为电子与空穴的迁移率见表。
若外加电场为求漂移电流密度。
时,某P 型半导体器件的外加电场,求漂移电流密度为时的杂质浓度。
注意:上面提到的电子迁移率和空穴迁移率都是指多子迁移率。
4.2迁移率载流子迁移率反映的是载流子的平均漂移速度与施加电场的关系,定义为Eυμ=。
对空穴而言dp p E υμ=。
空穴的加速度与电场力的关系()****4.10p p p p eEt d m d F eE m a m m dt dtυ⎛⎫⎪ ⎪⎝⎭====υ表示载流子在电场作用下沿电场方向的平均速度;t 表示两次碰撞的时间间隔。
根据上式得*peEtE m υμ==,所以载流子迁移率()* 4.11pet m μ=如果将上式的t 用空穴的平均碰撞时间cp τ代替,则空穴的迁移率为()*4.12dpcp p pe E mυτμ==同理,电子的迁移率为()* 4.13dncnn ne E m υτμ==其中cn τ表示电子受到碰撞的平均时间间隔。
晶体中影响载流子迁移率大小的主要因素是两种散射机制:即晶格散射(声子散射)与电离杂质散射。
固体的理想周期性势场允许电子在整个晶体中自由运动,不会对电子产生散射。
当温度升高时,半导体晶体中的原子具有一定的热能,在其晶格位置附近做无规则的振动,晶格振动破坏了理想周期势场,导致载流子电子、空穴与振动的晶格原子发生相互作用。
这就是所谓的晶格散射机制。
因为晶格散射与原子的热运动有关,所以出现散射的几率一定是温度的函数。
如果定义L μ代表存在晶格散射的迁移率,根据散射理论,在一阶近似的情况下有()3/24.13L T μ-=∝当温度下降时,晶格原子的热振动减弱,受到晶格散射的几率降低,使迁移率增大。
在高温下,轻掺杂半导体中晶格散射是迁移率降低的主要机制。
另一种影响载流子迁移率的机制称谓电离杂质散射。
掺入半导体的杂质原子可以控制或改变半导体的特性。
室温下杂质已完全电离,电子和空穴与电离杂质之间存在库仑作用,库仑作用引起的散射也会改变载流子的速度特性。
如果定义I μ表示只有电离杂质散射存在的迁移率,则在一阶近似下有()3/24.14I IT N μ=∝其中Id a N N N +-=+表示半导体总电离杂质浓度。
温度升高,载流子的随机运动速度增加,减小了位于电离杂质散射中心附近的时间,这相当于库仑作用时间短,受到散射的影响就小,电离散射迁移率I μ就大;如果电离杂质散射中心数量I N 增加,那么载流子与电离杂质散射中心碰撞或散射几率相应增加,电离散射迁移率I μ就小。
低温或常温下,半导体中电离杂质散射是迁移率降低的主要机制。
如果L τ表示晶格散射的平均时间间隔,那么/L dt τ就表示在dt 时间内受到晶格散射的几率。
同理,如果I τ表示电离杂质散射的平均时间间隔,那么/I dt τ就表示在dt 时间内受到电离杂质散射的几率。
若同时存在两种散射机制且两种散射机制相互独立,则在dt 时间内受到的散射的几率为两者之和()4.15L Idt dt dtτττ=+其中τ为任意两次散射的平均时间间隔。
根据迁移率的定义(4.12)或(4.13)式,上式可以写成()1114.16LIμμμ=+其中I μ代表仅有电离杂质散射时的迁移率; L μ代表仅有晶格原子散射时的迁移率; μ代表总的迁移率。
4.3电导率4.2节的(4.9)式给出了漂移电流密度的表达式,可以写成:()()4.17drf n p J e n p E Eμμσ=+=其中σ代表半导体材料的电导率,单位是()1cm -Ω,电导率是载流子浓度及迁移率的函数。
而迁移率又是掺杂浓度的函数()Id aNN N +-=+(主要指电离杂质散射迁移率)。
因此,电导率是掺杂浓度的复杂函数。
电导率的倒数是电阻率。
记为ρ,单位是cm Ω。
()()114.18n p e n p ρσμμ==+图5.5表示条形半导体材料电阻,电阻条的长度为L ,高度为j x ,宽度为W ,则电阻条的截面积为j A Wx =。
如果在条形半导体材料的两端施加电压V ,产生流过电阻的电流为I 。
我们有电流密度()4.19jI I J E a A Wx σ===加在半导体电阻上的电场()4.19V E b L=所以()4.19j I V c Wx Lσ=()4.19j j L L V I I RI d WxWx ρσ⎛⎫⎛⎫===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭式(4.19a )是半导体中的欧姆定律。
其中()4.20j jLLL R R Wx x WW ρρ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭jR x ρ=是方块电阻,它是电阻率与结深的比值。
所以电阻既是电阻率的函数又是半导体几何形状和图形尺寸的函数。
考虑具有受主掺杂浓度为()0a d N N =的P 型半导体,由于a i N n >>,假定电子与空穴的迁移率为同一数量级,则电导率为()()4.21n p p e n p e pσμμμ=+≈假定杂质完全电离上式可改写为()14.22p a e N σμρ≈=非本征半导体的电导率或电阻率的大小由多数载流子浓度决定。
这验证了漂移电流密度由多数载流子贡献的结论。
载流子迁移率的值应根据掺杂浓度和对应的温度下的实际测量曲线求得。
既然载流子迁移率的大小跟温度有关,那么非本征半导体的电导率或电阻率也与温度有关,其半导体材料制成的电阻器也是温度的函数。
对本征半导体而言,电导率为()()4.23i n p ie n σμμ=+一般来说,电子和空穴的迁移率并不相等,所以本征半导体的电导率中含有电子迁移率和空穴迁移率两个参数。