2014年浙江省金华市武义县中考适应性考试数学试卷及答案
浙江省金华市中考数学真题试题(含答案)

浙江省金华市2014年中考数学真题试题满分为120分,考试时间为120分钟一、选择题(本题有10小题,每小题3分,共30分) 1. 在数1,0,-1,-2中,最小的数是A. 1B. 0C. -1D. -2 【答案】D .2. 如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线。
能解释这一实际应用的数学知识是 A. 两点确定一条直线 B. 两点之间线段最短C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直 【答案】A3. 一个几何体的三视图如图所示,那么这个几何体是【答案】D .4. 一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其它完全相同,从中任意摸出一个球,是红球的概率是 A.61 B. 51 C. 52 D. 53 【答案】D . 5. 在式子21-x ,31-x ,2-x ,3-x 中, x 可以取2和3的是 A.21-x B. 31-xC. 2-xD. 3-x【答案】C .23tan =α,6. 如图,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,则t 的值是A. 1B. 1.5C. 2D. 3 【答案】C .7. 把代数式1822-x 分解因式,结果正确的是A. )9(22-xB. 2)3(2-xC. )3)(3(2-+x xD. )9)(9(2-+x x【答案】C .8. 如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ’B ’C ,连结AA ’,若∠1=20°,则∠B 的度数是 A. 70° B. 65° C. 60° D. 55° 【答案】B .9. 如图是二次函数422++-=x x y 的图象,使y ≤1成立的x 的取值范围是A. -1≤x ≤3B. x ≤-1C. x ≥1D. x ≤-1或x ≥3 【答案】D .10. 一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪得一个正方形,边长都为1,则扇形和圆形纸板的面积比是A. 4:5B. 2:5C. 2:5D. 2:5【答案】A .二、填空题(本题有6小题,每小题4分,共24分) 11. 写出一个解为x ≥1的一元一次不等式 ▲ 【答案】x 10-≥(答案不唯一). 12. 分式方程1123=-x 的解是 ▲ 【答案】x 2=13. 小明从家跑步到学校,接着马上原路步行回家。
2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014年金华市中考模拟数学试卷

2014年金华市中考模拟数学试卷第Ⅰ卷(选择题,共36分)一、选择题(共12小题。
每小题3分。
共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑.1.有理数-2的相反数是()(A)2 (B)-2 (C)12(D)-122.函数y=x的取值范围是()(A)x≥1.(B)x≥-1.(C)x≤1.(D)x≤-1.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()(A)x>-1,x>2 (B)x>-1,x<2(C)x<-1,x<2 (D)x<-1,x>24.下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”.(A) ①②都正确.(B)只有①正确.(C)只有②正确.(D)①②都正确.5.2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为( )(A)664×104(B)66.4×l05(C)6.64×106(D)0.664×l076.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()(A)100°(B)80°(C)70°(D)50°7.若x1,x2是方程x2=4的两根,则x1+x2的值是( )(A)8.(B)4.(C)2.(D)0.(A) (B) (C) (D)9.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()(A)(13,13) (B)(―13,―13) (C)(14,14) (D)(-14,-14)10.如图,⊙O 的直径AB 的长为10,弦AC 长为6,∠AC'B 的平分线交⊙O 于D ,则CD 长为( ) (A) 7(B)(C)(D) 912.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,BD ⊥DC ,BE=DC ,CE 平分∠BCD ,交AB 于点E ,交BD 于点H ,EN ∥DC 交BD 于点N .下列结论:①BH=DH ;②CH=1)EH ;③ENH EBHS EHSEC=.其中正确的是( )(A)①②③ (B)只有②③ (C)只有② (D)只有③ 第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).14.某校八年级(2)班四名女生的体重(单位:kg)分别是:35,36,38,40.这组数据的中位数是_________. 15.如图,直线y 1=kx+b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx+b >mx -2的解集是______________.(第15题图)(第16题图)16.如图,直线3y x b=-+与y轴交于点A,与双曲线kyx=在第一象限交于B、C两点,且AB·AC=4,则k=_________.三、解答题(共9小题,共72分)17.(本题满分6分)解方程:x2+x-1=0.18.(本题满分6分)先化简,再求值:53(2)224xxx x---÷++,其中3x=.19.(本题满分6分)如图。
2014年初中毕业班适应性考试数学试题附答案

2014年初中毕业班适应性考试数学试题(满分:150分;考试时间:120分钟)★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;② 可以携带使用科学计算器,并注意运用计算器进行估算和探究; ③ 未注明精确度、保留有效数字等的计算问题不得采取近似计算;一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.2014-的绝对值是A .2014-B .2014C .2014±D .201412.下列图案中,既不是中心对称图形也不是轴对称图形的是A .B .C .D . 3.小明同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数是61700000,这个数用科学记数法表示为 A .71017.6⨯ B .61017.6⨯ C .510617⨯ D .810617.0⨯ 4.下列调查方式合适的是A .对载人航天器“嫦娥二号”零部件的检查,采用抽样调查的方式.B .了解炮弹的杀伤力,采用全面调查的方式.C .对电视剧《来自星星的你》收视率的调查,采用全面调查的方式.D .对建阳市食品合格情况的调查,采用抽样调查的方式.5.某同学参加射击训练,共射击了六发子弹,击中的环数分别为3,4,5,7,7,10.则下列说法错误..的是 A .其平均数为6 B .其众数为7 C .其中位数为7 D .其中位数为6 6.下列运算,正确的是A .43a aa =+ B .632a a a =∙C .632)(a a =D .5210a a a=÷7.已知关于x 的一元二次方程0122=-+x mx 有两个不相等的实数根,则m 的取值范围是 A .1-<m B .1>m C .1<m 且0≠m D .1->m 且0≠m 8.明明用纸(如下图左)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混 放在一起,只凭观察,墨水所在的盒子是A .B .C .D .9200平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面xA B C D 10.),(1y x p ,),(),1y x y x y -+=;且规定)),((),(11y x P P y x P n n -=(n 为大于1的整数).例如:)1,3()2,1(1-=p ,)4,2()1,3())2,1(()2,1(1112=-==p p p p ,)2,6()4,2())2,1(()2,1(1213-===p p p p . 则=-)1,1(2014pA .)2,0(1006B .)2,2(10071007-C .)2,0(1006- D .)2,2(10061006-二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡...的相应位置)11.计算:16-= .12.已知21O O ⊙与⊙的半径分别为3和5,且21O O ⊙与⊙相切,则21O O 等于 . 13.分解因式:=+-a ab ab 962.14.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如下表:则这四位选手中,成绩发挥最稳定的是 .15.不等式x x ≥-32的解集是 .16.从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数xm y 25-=中m 的值,恰好使函数的图象经过第二、四象限的概率是 .17.已知扇形的面积为12π,半径等于6,则它的圆心角等于 度.18.如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .现给出以下四个命题(1)∠APB =∠BPH ; (2)当点P 在边AD 上移动时,△PDH 的周长不发生变化;(3)∠PBH =450 ; (4)BP=BH. 其中正确的命题是 .三、解答题(本大题共8小题,共86分.请在答题卡...的相应位置作答)E B C OF D A AB Ey 19.(每小题7分,共14分)(1)(7分)计算:1)21(3127)22(-+----(2)(7分)先化简,再求值:22)1(ba ab a b -÷+-,其中a =2,b =﹣1. 20.(8分)解方程组:⎩⎨⎧=+=-②①1321134y x y x21.(8分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F . (1)猜想:AD 与CF 的大小关系; (2)请证明上面的结论.22.(10分)小红为了了解本班全体同学在阅读方面的情况,采取全面调查的方法,从喜欢阅读“科普常识、小说、漫画、营养美食”等四类图书中调查了全班学生的阅读情况(要求每位学生只能选择一种自己喜欢阅读的图书类型)根据调查的结果绘制了下面两幅不完整的统计图:请你根据图中提供的信息解答下列问题:(1)该班的学生人数为________人,并把条形统计图补充完整;(2)在扇形统计图中,表示“漫画”类所对圆心角是________度,喜欢阅读“营养美食”类图书的人数占全班人数的百分比为________;(3)如果喜欢阅读“营养美食”类图书的4名学生中有3名男学生和1名女学生,现在打算从中随机选出2名学生参加学校组织的“营养美食”知识大赛,请用列表或画树状图的方法,求选出的2名学生中恰好有1名男生和1名女生的概率.23.(10分)如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE ∥BD ,交BC 于点F ,交AE 于点E . (1)求证:∠E =∠C ;(2)当⊙O 的半径为3,tanC =52时,求BE 的长.24.(10分)如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边 ABCDFE 营养 美食 漫画小说30% 科普常识40% 人数/人图书 类型 营养 美食 小说 科普 常识 漫画 16 12 41612 4 8AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数(0)ky x x=>的图像与边BC 交与点F . (1)(4分)若△OAE 、△OCF 的面积分别为S 1、S 2,且S 1+S 2=2,求k 的值; (2)(6分)在(1)的结论下,当OA =2,OC =4时,求三角形OEF 的面积. 25.(12分)已知:四边形ABCD 中,对角线的交点为O ,E 是OC 上的一点,过点A 作AG BE ⊥于点G ,AG 、BD 交于点F .(1)如图1,若四边形ABCD 是正方形,求证:OE OF =;(2)如图2,若四边形ABCD 是菱形,120ABC ∠=°.探究线段OE 与OF 的数量关系,并说明理由;(3)如图3,若四边形ABCD 是等腰梯形,ABC α∠=,且AC BD ⊥.结合上面的活动经验,探究线段OE 与OF 的数量关系为 .(直接写出答案).图1O G F E DCBA图2AB CDEFG O图3ABCDEFGO26.(14分)已知抛物线y =ax 2+bx +c (a >0)的图象经过点B (12,0)和C (0,-6),对称轴为x =2.(1)求该抛物线的解析式;(2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x =1上是否存在点M 使,△MPQ 为等腰三角形?若存在,请写出所有点M 的坐标(请直接写出答案),若不存在,请说明理由. 【提示:抛物线c bx ax y ++=2(a ≠0)的对称轴是,a b x 2-=顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 4422,】数学试题参考答案及评分说明说明:A B CP QDO x y(1) 解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 如果考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.一、选择题(本大题共10小题,每小题4分,共40分)1.B ; 2.D ; 3.A ; 4.D ; 5.C ; 6.C ; 7.D ; 8.B ; 9.A ; 10.B . 二、填空题(本大题共8小题,每小题3分,共24分) 11.-4;12.2或8;13.2)3(-b a ; 14.乙; 15.3≥x ; 16.52; 17.120; 18.(1)(2)(3).三、解答题(本大题共8小题,共86分) 19.(1)原式=21-3-33-1+)( …………………4分 =213-331++-…………………5分=34-4…………………7分(2)原式=))((b a b a ab a b b a -+÷+-+…………………3分=ab a b a b a a ))((-+∙+…………………4分 =b a -…………………5分当a =2,1-=b 时,原式3)1(2=--= ………………7分20.解:②×2-①得:5y =15y =3 ………………4分把y=3代人②得:x =5…………………6分∴方程组的解是⎩⎨⎧==35y x ……… 8分21.解:(1)AD =CF .…………………2分(2) 证法一四边形ABCD 是矩形,AB DC =∴ 090=∠A ……4分AB DE =DC DE =∴ …………………5分90=∠∴⊥DFC F DE CF 于090=∠=∠∴DFC A ………6分 FCD ADE ∆≅∆∴…………7分 AD CF ∴=…………………8分证法二:四边形ABCD 是矩形,∴AB =CD AB ∥CD 090=∠A ……3分 ∴FDC AED ∠=∠………………… 4分AB DE =DC DE =∴………………………… 5分90=∠∴⊥DFC F DE CF 于090=∠=∠∴DFC A ………………6分 FCD ADE ∆≅∆∴…………………7分 AD CF ∴=………………………… 8分22.解:(1)40; …………………2分;直方图正确补全 …………………3 分(2)72,10%; …………………7 分(3)列表或画树状图正确……9分∴P (1男生1女生)=21……10分23.解:(1) 证明:连接OB ……………1分CD 为⊙O 的直径∴ ︒=∠+∠=∠90OBD CBO CBD ……………2分 AE 是⊙O 的切线. .∴︒=∠+∠=∠90OBD ABD ABO ……………3分 ∴CBO ABD ∠=∠……………4分OB 、OC 是⊙O 的半径∴OB=OC ∴CBO C ∠=∠……………5分 OE ∥BD ,∴ABD E ∠=∠ ……………6分∴C E ∠=∠……………7分(2) C E ∠=∠∴ tanE = tanC =52……………8分在Rt △OBE 中, OB =3∴215523tan ===E OB BE ……………10分 24.解:(1)∵点E 、F 在函数y=(0)kx x>的图象上∴设111(,)(0)kE x x x >,222(,)(0)........1kF x x x >分∴1111S 22k kx x =⋅⋅=,2221S ........322k k x x =⋅⋅=分∵1222 2 (422)k kS S k +=∴+=∴=分 (2)∵四边形OABC 为矩形,OA=2,OC=4∴E (1,2),F (4,21)……………6分∴AE =1,BE =3,BF =23,CF =21……………8分 ∴415=---=H ∆∆∆BEF OCF AOE AOCBOEF S S S S S 矩形……………10分25.(1)证明:∵四边形ABCD 是正方形,∴OA =OB AC ⊥BD …………………1分∴∠AOF =∠BOE =90° ∴∠OAF +∠AFO =90° ∵AG ⊥BF , ∴∠AGE =90° ∴∠OAF +∠AEG =90°∴∠AFO =∠BEO …………………3分 ∴△AFO ≌△BEO∴OE OF =…………………4分 (2)答:3=OEOF…………………5分 理由如下:∵四边形ABCD 是菱形, ∴ AC ⊥BD∴∠AOF =∠BOE =90° ∴∠OAF +∠AFO =90° ∵AG ⊥BF , ∴∠AGE =90° ∴∠OAF +∠AEG =90° ∴∠AFO =∠BEO ∴△AFO ∽△BEO ∴BOAOOE OF =…………………7分 ∵120ABC ∠=° ∴∠ABO =ABC ∠21=60° ∴3tan ==∠BOAOABO …………………8分 ∴3=OEOF…………………9分 (3)OEOF=︒-)45tan(α…………………12分 26.解:(1)∵抛物线过C (0,-6)∴c =-6, 即y=ax 2+bx -6…………………1分…………………2分解得:a=161 ,b=-41∴该抛物线的解析式为6411612--=x x y …………4分 (2)存在…………………5分 设直线CD 垂直平分PQ ,在Rt △AOC 中,AC =2268+=10=AD …………………6分 ∴点D 在对称轴上,连结DQ 显然∠PDC =∠QDC , 由已知∠PDC =∠ACD , ∴∠QDC =∠ACD ,∴DQ ∥AC , …………………7分∴CQBQAD BD = ∵AB =20,AD =10∴DB =AB -AD =20-10=10=AD∴1=CQBQ∴CQ BQ =∴DQ 为△ABC 的中位线,…………………8分∴DQ=21AC =5. AP =AD -PD=AD -DQ =10-5=5∴t =5÷1=5(秒) …………………9分 ∴存在t =5(秒)时,线段PQ 被直线CD 垂直平分,在Rt △BOC 中, BC =5612622=+…………………10分∴CQ =53∴点Q 的运动速度为每秒553单位长度. …………………11分 (本小题还可以连接DQ ,PC ,证明△APC ≌△DQB ,得到PA=PD=DQ ,步骤参照上述标准给分)(3)存在这样的五点:M 1(1, -3), M 2(1,74), M 3(1,-74),M 4(1, 653+-),M 5((1, 653--)…………………14分(少一点扣1分,少三个点不得分)。
2014届中考适应性考试数学试题及答案

2014年中考数学模拟试题一、选择题:(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答。
) 1.若a 与2互为相反数,则2+a 等于( )A .0B .4C .25 D .232.如图,AE ∥BD ,︒=∠︒=∠40220 C ,则1∠的度数是( )A.︒110B.︒120C.︒130D.︒140 3.在“百度”搜索引擎输入“马航飞机失踪”,能搜索到与之相关的结果个数约为32300000,这个数用科学记数法表示为( ) A .3.23×108 B .3.23×107 C .32.3×106 D .0.323×1084.四中九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( )A .4,5B .5,4C .4,4D .5,5 5. 下列三个函数:①2y x =+;②4y x=;③221y x x =-+.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 6.下列各运算中,正确的是( )A. 6239)3(a a =- B. 624a a a =÷ C. 2523a a a =+ D. 4)2(22+=+a a7.下列四个命题:(1)对角线相等的梯形是等腰梯形;(2)对角线互相垂直且相等的四边形是正方形;(3)顺次连接矩形四边中点得到的四边形是菱形;(4)一组对边平行且一组对角相等的四边形是平行四边形.其中真命题的个数有 ( )A .1个B .2个C .3个D .4个8.将不等式组⎪⎩⎪⎨⎧-≤--<-x x xx 23421241的解集在数轴上表示出来,正确的是( )9.一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A.2个B.3个C.5个D.10个10. 若⊙O 1和⊙O 2的圆心距为3,两圆半径分别为r 1、r 2,且r 1、r 2是方程组的解,则两圆的位置关系( )A.外离B.外切C.相交D.内切11.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( )A. 32.5°B. 57.5°C. 32.5°或57.5D. 65°或57.5°12.如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y 1),(2,y 2)是抛物线上两点,则y 1>y 2.其中说法正确的是( ) A . ①②B . ②③C . ②③④D . ①②④二、填空题(本大题共5道小题,每小题3分,共15分.把答案填在题中的横线上.)13.计算:212138-+= . 14. 随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至每平方米4050元,设每次降价的百分率相同,则降价百分率为 . 15.抛物线y =2x 2+3上有两点A (x 1,y 1)、B (x 2,y 2),且x 1≠x 2,y 1=y 2,当x=x 1+x 2时,y = . 16.在正方形ABCD 中,点E 是对角线BD 上一点,且AE BD 3=,则∠BAE= .17.如图,⊙O 与⊙O 1内切于点A ,⊙O 的弦BC 与⊙O 1相切于点D ,且BC ∥O 1O ,BC =4,则图中阴影部分的面积为_____ _. 三、解答题(9小题,共69分)18.(6分)已知222=-y x ,求x y x x y x y x 4)](2)()[(222÷-++-+的值.19.(6分)反比例函数xn y 7+=的图象的一支在第一象限, A (-1,a )、B (-3,b )均在这个函数的图象上.(1)图象的另一支位于什么象限?常数n 的取值范围是什么? (2)试比较a 、b 的大小;(3)作AC ⊥x 轴于点C ,若△AOC 的面积为5,求这个反比例函数的解析式.20.(6分)“六•一”快到了,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品。
2014年适应性考试数学试题答案

2014年适应性数学试题注意事项:1.本卷共有4页,共有25小题,满分120分,考试时限120分钟.2.答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.A .±3B .3C .-3D .92.如图,AB ∥CD ,E 在AB 上,F 在CD 上,EG ⊥GF ,若∠BEG=120°,A .20°B .30°C .40°D . 60° 3.下列计算正确的是:A 、a 2+a 3=a 5B 、a 6÷a 2=a 3C 、(a 2)3=a 6D 、2a 2×3a =6a 2 4. 如图,是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为:A.30° B .60° C.120° D.180°5. 为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为:A 、25.6 26B 、26 25.5C 、26 26D 、25.5 25.56.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是:7. 将图1所示的正六边形进行分割得到图2,再将图2中最小的某一个正六边形按同样的方式进行分割得到图3,再将图3中最小的某一个正六边形按同样的方式进行分割……,则第2014个图形中,共有_________个正六边形。
A .4027B .6040C .10066D .以上都不对从左面看(A) (D)(C) B CD8. 一条排水管的截面如图所示.已知排水管的截面圆半径10OB =,水面宽AB 是16,则截面水深CD 是:A. 3 B .4 C.5 D.6(7题) (8题) (9题)9. 如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则四边形AECF 的周长为:A .12 cmB .16 cmC .20 cmD .24 cm 10.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交, 其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b =0; ③a =4c -4;④方程ax 2+bx+c -2=0无实数根.其中正确的个数是: A . 4 B. 3 C. 2 D. 1二、填空题(共6小题,每小题3分,本大题满分18分)11.为做好房地产市场调控工作,同时为中低收入阶层提供基本住房保障,住建部通知,2014年全国将新开工保障房6000000套以上,将数字6000000用科学记数发表示为6×106。
2014年初三中考适应性考试数学试卷答案

- 1 - 2014年初三中考适应性考试数学试卷参考答案及评分标准一、选择题(本题有12小题,每小题4分,共48分)1. D2. C3. D4. B5. C6. A7. C8. D9. D 10. D 11. C 12. D二、填空题(本题有6小题,每小题4分,共24分)13. 2x ≠ 14.3(3)(3)a a +- 15. 1 16. 310 17. 点O 旋转了0453321802ππ•⨯=,平移了270391802ππ•=,所以共走了6π 18. 连结AM ,AN ,∵AC 是⊙o 的直径,∴∠AMC =900, ∠ANC =900, ∵AB =13,BM =5∴AM =12,∵CM =9∴AC =15, ∵△AMN ∽△ACD ∴AM :MN =CD :CA∴12:MN =13:15∴MN =13180三、解答题(本题有8小题,共78分,每题都必须写出解答过程)19. (本题8分) 解:(1)原式=a 2﹣4a +4+a 2+4a =2a 2+4, (4分)当3a =时,原式=2()2+4 =10; (6分)20.(本题8分)(1)证明:∵在△ABE 和△DCE 中∴△ABE ≌△DCE (AAS );………………………………………………………………4分(2)解:∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°……………………………………………………………………………8分21.(本题8分)(1)500 (2 分) 图略,对应的人数为180,正确得 (4分)(2)360500100⨯=72° (6分) (3)∵)8021405.118011005.0(5001⨯+⨯+⨯+⨯=1.2>1 ∴本次调查中学生参加户外活动的平均时间符合要求. (8分)。
金华六校2014年5月中考数学模拟试卷(附答案)

金华六校2014年5月中考数学模拟试卷(附答案)金华市六校2014年5月初中毕业生学业水平考试联合模拟数学试卷(2014.5)一、选择题(本题有10小题,每小题3分,共30分)1.-2的相反数是(▲)A.2B.-2C.12D.-122.若使代数式2x-1有意义,则字母x的取值范围是(▲)A.x≠1B.x≥12C.x≥1D.x≠123.据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录.88000用科学计数法表示为(▲)A.0.88×105B.8.8×103C.8.8×104D.8.8×1054.已知关于x的方程2x-m-5=0的解是x=-2,则m的值为(▲)A.9B.-9C.1D.-15.如图,AB∥CD,点E在BC上,CD=CE,若∠ABC=34°,则∠D的度数是(▲)A.84°B.68°C.34°D.73°6.如图是由三个相同的小立方体组成的几何体,该几何体的左视图是(▲)A.B.C.D.7.要证明命题“若a>b,则a2>b2”是假命题,下列a,b的值不能作为反例的是(▲)A.a=1,b=-2B.a=0,b=-1C.a=-1,b=-2D.a=2,b=-18.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.则两次都摸到红球的概率是(▲)A.925B.310C.920D.359.如图,“凸轮”的外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段等弧组成.已知正三角形的边长为a,则“凸轮”的周长等于(▲)A.πaB.2πaC.12πaD.13πa10.函数y1=-2x(x<0)和y2=22x(x>0)的图象如图所示,M是y 轴正半轴上任意一点,过点M作PQ∥x轴分别交y1,y2的图象于P,Q两点,连接OP,OQ.有以下结论:①△OPQ的面积为定值;②当x>0时,y2随x的增大而减小;③MQ=2PM;④若∠POQ=90°,则OQ=2OP.其中正确的结论有(▲)A.1个B.2个C.3个D.4个二、填空题(本题有6小题,每小题4分,共24分)11.方程2x-1=3x的根是▲.12.分解因式:x2y-2xy+y=▲.13.已知一个多边形的内角和是外角和的2倍,则这个多边形为▲边形.14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n个图案中共有小三角形的个数是▲.15.若三角形有一边上的中线长恰好等于这边的长,则称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠C=90°,较短的一条直角边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形的“有趣中线”长等于▲.16.如图,在平面直角坐标系中,梯形OABC各顶点的坐标分别为O(0,0),A(2,3),B(4,3),C(6,0).点M的坐标为(0,-1),D是线段OC上的一个动点,当D点从O点向C点移动时,直线MD与梯形的一边交于点N.设点D的横坐标为t.(1)当t=1时,△DNC的面积是▲.(2)若以M,N,C为顶点的三角形是钝角三角形,则t的取值范围是▲.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分,各小题都必须写出解答过程)17.(本题6分)计算:16-2cos45°+(13)-1+|-2|.18.(本题6分)先化简,再求值:(a+2)(a-2)+4(a-1)-4a,其中a =-3.19.(本题6分)如图,甲乙两幢楼之间的距离BD=30m,自甲楼顶端A处测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为26.6°,求甲、乙楼两幢楼的高度.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)20.(本题8分)园林管理部门对去年栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分:栽下的各品种树苗棵数统计表植树品种甲种乙种丙种丁种植树棵数150125125已知丙种树苗的成活率为92%.根据以上信息解答下列问题:(1)去年栽下的四个品种的树苗共多少棵?(2)求丙种树苗的成活棵数,并补全条形统计图.(3)求这些树苗的总体成活率.21.(本题8分)如图,AB为⊙O的直径,C是⊙O上一点,P是⊙O 外一点,OP∥BC,∠P=∠BAC.(1)求证:PA是⊙O的切线.(2)若OB=5,OP=253,求AC的长.22.(本题10分)因长期干旱,甲水库蓄水量降到了正常水位的最低值a,为灌溉需要,由乙水库向甲水库匀速供水,20小时后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20小时,甲水库打开另一个排灌闸同时灌溉,再经过40小时,乙水库停止供水.已知甲水库两个排灌闸每小时的灌溉量相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.(1)求线段BC的函数解析式.(2)乙水库向甲水库每小时供水多少万m3?甲水库一个排灌闸每小时的灌溉量是多少万m3?(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?23.(本题10分)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知两条抛物线①:y=x2+2x-1,②:y=-x2+2x+1,判断这两条抛物线是否关联,并说明理由.(2)抛物线C1:y=18(x+1)2-2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2与C1关联,求抛物线C2的解析式.(3)若A为抛物线C1:y=18(x+1)2-2的顶点,B是与C1关联的抛物线的顶点,将线段AB绕点A按顺时针方向旋转90°得到线段AB',若点B'恰好在y轴上,求点B'的纵坐标.24.(本题12分)在平面直角坐标系中,O是坐标原点,矩形OABC的位置如图所示,点A,C的坐标分别为(10,0),(0,8).点P是y轴上的一个动点,将△OAP沿AP翻折得到△O'AP,直线BC与直线O'P交于点E,与直线O'A交于点F.(1)当点P在y轴正半轴,且∠OAP=30°时,求点O'的坐标,并判断点O'落在矩形OABC的内部还是外部.(2)当O'落在直线BC上时,求直线O'A的解析式.(3)在点P的运动过程中,是否存在某一时刻,使得线段CF与线段OP的长度相等?若存在,请求出点P的坐标;若不存在,请说明理由. 参考答案一、选择题(本题有10小题,每小题3分,共30分)题号12345678910答案ABCBDCDBAD二、填空题(本题有6小题,每小题4分,共24分)11.x=312.y(x-1)213.614.3n+415.23316.(1)152.(2)0<t<920,32<t<6.三、解答题(共66分)17.(6分)原式=4-2×22+3+2(4分)=7.(2分)18.(6分)原式=a2-8.(4分)当a=-3时,原式=1.(2分)19.(6分)甲楼的高度为15m,乙楼的高度为45m.(6分)20.(8分)(1)500棵;(2分)(2)丙种树苗的成活数为115棵,图形略;(3分)(3)这些树苗的总体成活率为90.4%.(3分)21.(8分)(1)略;(4分)(2)AC=8.(4分)22.(10分)(1)Q=5t+400.(3分)(2)乙水库向甲水库每小时供水15万m3/h,甲水库一个排灌闸每小时的灌溉量为10万m3/h.(4分)(3)经过10h甲水库蓄水量又降到了正常水位的最低值.(3分)23.(10分)(1)抛物线①与抛物线②关联;(3分)(2)y=-18(x-7)2+6或y=-18(x+9)2+6;(4分)(3)-2+22,-2-22.(3分)24.(12分)(1)O'(5,53),在矩形外部;(4分)(2)y=-43x+403,y=43x-403;(4分)(3)(0,10),(0,-10),(0,203),(0,207).(4分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金华市武义县2014年中考适应性考试数学试卷一、选择题(本大题有10小题,每小题3分,共30分) 1. 在下列实数中,无理数是( ▲ ) A. 2B. 3.14C. 3D. -132. 下列运算正确的是( ▲ ) A. a •a 2=a 2 B. a 6÷a 2=a 4 C. (ab )2=ab 2 D. (a 2)3=a 53. 下列几何体中,有一个几何体的主视图的形状与其它三个不一样,这个几何体是( ▲ )A .B .C .D .4. 一元二次方程x 2+2x -3=0根的情况是( ▲ )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定5. 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次 拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处 的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行, 则∠B 等于( ▲ ) A. 81°B. 99°C. 108°D. 120° (第5题图)6. 满足不等式组⎩⎨⎧x -1≤1,2x >-4的所有整数解的和为( ▲ )A. 0B. 1C. 2D. 37. 在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为( ▲ )A. 12B. 13C. 14D. 348. 如图,A ,B 是⊙O 上两点,有下列四种寻找AB ⌒的中点C 的方法: ① 连接OA ,OB ,作∠AOB 的角平分线交AB⌒于点C ; ② 连接AB ,作OH ⊥AB 于H ,交AB⌒于点C ; ③ 在优弧AmB⌒上取一点D ,作∠ADB 的平分线交AB ⌒于点C ; ④ 分别过A ,B 作⊙O 的切线,两切线交于点P ,连接OP 交AB⌒于C . 其中正确的有( ▲ ) (第8题图) A. 1种 B. 2种 C. 3种 D. 4种9. 如图,△ABC 中,A 1,A 2是BC 边的三等分点,B 1,B 2是AC 边的三等分点,C 1,C 2是AB 边的三等分点,连接A 2B 1,B 2C 1,C 2A 1,若△ABC 周长为L ,则六边形A 1A 2B 1B 2C 1C 2的周长为( ▲ ) A. 34L B. 23L C. 2L D. 35L (第9题图)CBA222111C C B B A A CB AC. a +3bD. -a -3b(第10题图) 二、填空题(本大题有6小题,每小题4分,共24分) 11. 因式分解:x 3-x = ▲ .12. 如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于 ▲ °.13. 若方程组⎩⎨⎧ax +y =5,x +by =-1的解为⎩⎨⎧x =2,y =1,则点P (a ,b )在第 ▲ 象限.14. 有一列数a 1,a 2,a 3,a 4,a 5,…,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,按此规律,当a n =2015时,n 的值等于 ▲ .(第12题图) (第15题图) (第16题图)15. 如图,在△ABC 中,AB =AC ,cos ∠ABC =45,点D 在BC 边上,BD =6,CD =AB ,则AD 的长为 ▲ .16. 如图,直角坐标系中,点P (t ,0)是x 轴上的一个动点,过点P 作y 轴的平行线,分别与直线y =12x ,直线y =-x 交于A ,B 两点,以AB 为边向右侧作正方形ABCD . (1)当t =2时,正方形ABCD 的周长是 ▲ .(2)当点(2,0)在正方形ABCD 内部时,t 的取值范围是 ▲ .三、解答题(本大题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)计算:(12)-1+(-2014)0-9+2tan60°.18.(本题6分)先化简 (aa -1-1)(a 2-1),然后在0,1,2三个数中选一个你认为合适的数,作为a 的值代入求值.19.(本题6分)如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡长AB =10m ,坡角∠ABC =60°,汛期来临前对其进行了加固,改造后的背水面坡角∠E =45°. (1)求防洪大堤的横断面的高度. (2)求改造后的坡长AE .20.(本题8分)某中学对全校学生1分钟跳绳的次数进行了统计,全校平均次数是120次.九(1)班体育委员统计了全班50名学生1分钟跳绳的成绩,绘出如下的频数分布直方图(每个分组包括左端点,不DC BA包括右端点).(1)该班1分钟跳绳的平均次数至少..是多少?是否超过全校平均次数? (2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围. (3)从该班中任选一人,其跳绳次数达到 或超过校平均次数的概率是多少?21.(本题8分)如图,将一块腰长为5的等腰直角三角板ABC 放在平面直角坐标系中,点A 在y 轴正半轴上,直角顶点C 的坐标为(-2,0),点B 在第二象限. (1)求点A ,点B 的坐标.(2)将△ABC 沿x 轴正方向平移后得到△A′B′C′,点A′,B′ 恰好落在反比例函数y =kx 的图象上,求平移的距离和反比例函数的解析式.22.(本题10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,在⊙O 上取点D ,连接CD ,使得AC =CD ,延长CD 交直线AB 于点E .(1)求证:CD 是⊙O 的切线.(2)若AC =23,AE =6. ①求⊙O 的半径.②点M 是优弧DAB⌒上的一个动点(不与B ,D 重合), 求MD ,MB 及BD⌒围成的阴影部分面积的最大值.23.(本题10分)如图,点A 是直线y =2x 上一动点,以A 为顶点的抛物线y =(x -m )2+h 交直线y =2x 于另一点E ,交y 轴于点F ,抛物线的对称轴交x 轴于点B ,交直线EF 于点C (点A ,E ,F 两两不重合). (1)若点A 的横坐标为1,求点E 的坐标.(2)当点A 运动到使EF 与x 轴平行时,求ACOF 的值.(3)当点A 在直线y =2x 上运动时,是否存在使点F 的位置最低的情形?如果存在,请求出此时点A 的坐标及ACOF 的值;如果不存在,请说明理由.E24.(本题12分)如图,在平面直角坐标系中,正方形OABC 的边长是4,点A ,C 分别在y 轴、x 轴的正半轴上,动点P 从点A 开始,以每秒2个单位长度的速度在线段AB 上来回运动.动点Q 从点B 开始沿B →C →O 的方向,以每秒1个单位长度的速度向点O 运动.P ,Q 两点同时出发,当点Q 到达点O 时,两点同时停止运动.设运动时间为t 秒. (I )当t =1时,求PQ 所在直线的解析式. (2)当点Q 在BC 上运动时,若以P ,B ,Q 为顶点的 三角形与△OAP 相似,求t 的值.(3)在P ,Q 两点运动的过程中,若△OPQ 的面积为 6,请直接写出所有符合条件的P 点坐标.参考答案及评分意见一、选择题(本大题有10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CBDABCADBD二、填空题(本大题有6小题,每小题4分,共24分)11. x (x +1)(x -1) 12. 135 13. 四 14. 335 15. 21016. (1)12;(2)t <-4或45<t <2(每小题各2分)三、解答题(本大题有8小题,共66分)17.(本题6分)原式=2+1-3+2×3 (每写对一个得1分)=2 3. (2分)18.(本题6分)原式=a +1, (4分) 当a =0时,原式=1. 或当a =2时,原式=3. (2分) 19.(本题6分)(1)防洪大堤横断面的高度为53m ; (3分) (2)改造后的坡长AE 为56m . (3分) 20.(本题8分)(1)该班60秒跳绳的平均次数至少是120.8,超过全校平均次数; (3分) (2)设该生跳绳成绩为a 次,则120≤a <140; (2分) (3)跳绳成绩达到或超过校平均次数的概率为0.66. (3分) 21.(本题8分)(1)A (0,1),B (-3,2); (3分) (2)平移的距离为6,反比例函数的解析式为y =6x . (5分)22.(本题10分)(1)连结OD ,OE . 根据SSS 可证△CAO ≌△CDO ,得∠ODC =∠OAC =90°,则CD 是⊙O 的切线; (4分) (2)①⊙O 的半径为2; (3分)②当M 运动到优弧DAB⌒的中点时,阴影部分的面积最大,最大值是23π+2. (3分)23.(本题10分)(1)(3,6); (3分)(2)当EF ∥x 轴时,点E ,F 关于直线AC 对称,∴EC =CF .∵CA ∥y 轴,∴△ECA ∽△EFO ,∴AC OF =ECEF =12; (3分) (3)点F 的纵坐标为m 2+2m ,当m =-1时,点F 的位置最低,此时A 点坐标为(-1,-2),抛物线解析式为y =(x +1)2-2. 求得该抛物线与直线y =2x 的另一个交点E 的坐标为(1,2),∴OA =OE ,∴AC OF =AEOE =2. (4分)24.(本题12分)(1)y =-12x +5; (3分)(2)t 1=1,t 2=23-2,t 2=22; (6分) (3)P 点坐标为(4-22,4);(22,4);(2,4). (3分)。