电路分析与电子线路 绪论

合集下载

电路及分析方法

电路及分析方法

电路的状态与参数
总结词
电路的状态包括开路、短路、断路和通路四种,电路 的主要参数包括电流、电压、电阻、电感和电容等。
详细描述
开路是指电路中无电流通过的状态,短路是指电流不经 过负载直接由电源正负极流过的状态,断路是指电流无 法形成闭合回路的状况,通路是指电流能够正常流通的 状态。电流是指单位时间内通过导体的电荷量,电压是 指电场中两点之间的电势差,电阻是指导体对电流的阻 碍作用,电感是指电流变化时产生感应电动势的能力, 电容是指储存电荷的能力。这些参数对于理解和分析电 路的工作原理具有重要意义。
PART 03
交流电路分析
REPORTING
WENKU DESIGN
正弦交流电的基本概念
正弦交流电
相位和初相
正弦交流电是一种随时间按正弦规律 变化的电压或电流,是自然界中普遍 存在的电能形式。
相位表示交流电某一时刻所处的状态, 初相是正弦交流电开始计时时的相位。
周期、频率和角频率
正弦交流电的周期是表示交流电变化 一周所需的时间,频率是单位时间内 交流电变化的周数,角频率是正弦交 流电的相位变化率。
应用
小信号分析法广泛应用于通信、雷达、音频等领域中的非线性电路 分析。
优点
该方法能够得到较为精确的解,适用于对精度要求较高的场合。
PART 05
电路仿真与分析软件
REPORTING
WENKU DESIGN
Multisim软件介绍
交互式界面
用户界面直观易用,方便用户进行电路设 计和仿真分析。
A 电路设计与仿真
PSpice软件介绍
电路模拟与仿真
PSpice是一款强大的电路模拟与仿真软件, 能够模拟和分析各种电路的性能。

电子技术专业电子线路与电路分析优秀教案范本

电子技术专业电子线路与电路分析优秀教案范本

电子技术专业电子线路与电路分析优秀教案范本尊敬的教师们:本教案针对电子技术专业的电子线路与电路分析课程,旨在帮助学生全面理解电子线路的基本原理和电路分析的方法与技巧。

通过优秀的教案设计,能够激发学生的学习兴趣并提高他们的学习效果。

以下是我为你们准备的一份电子线路与电路分析的优秀教案范本:第一节:电子线路基础知识概述1. 目标:引导学生了解电子线路的基本概念和相关术语,并能够简单分析电子线路的组成和特点。

2. 内容:- 电子线路的定义和分类- 电子线路的基本组成元件及其特点- 电子线路的符号表示法3. 授课方法:结合多媒体展示和实例分析进行互动式授课,提醒学生注意各种电子线路在实际应用中的重要性。

第二节:电子线路的分析方法1. 目标:让学生掌握电子线路的分析方法和技巧,能够根据电子线路的特性进行准确的电路分析。

2. 内容:- 电流和电压的基本概念- 基尔霍夫定律及其应用- 节点电压法和支路电流法的原理和步骤- 网孔分析法的基本思想和操作步骤3. 实践环节:引导学生通过简单的电路实例,使用上述分析方法进行电路分析,培养学生的实际操作能力。

第三节:复杂电路的分析与设计1. 目标:提高学生对复杂电路分析与设计的能力,掌握混合信号电路的分析方法。

2. 内容:- 电子线路的组合与简化- 多级放大电路的设计与分析- 集成电路的应用与原理3. 实验实践:组织学生进行实验,通过构建多级放大电路和使用集成电路进行信号处理,加深学生对复杂电路的理解和应用。

第四节:电子线路故障诊断与维修1. 目标:培养学生的电子线路故障诊断与维修能力,提高实际应用水平。

2. 内容:- 常见电子线路故障的诊断方法- 故障维修的基本原则和技巧- 电子线路测试仪器的使用与操作3. 实践实验:组织学生进行故障模拟实验,引导学生通过仪器检测和分析,并解决电子线路故障。

第五节:电子线路的创新设计1. 目标:培养学生的创新思维和电子线路设计能力,激发学生的创造力和想象力。

通信电子线路重点总结

通信电子线路重点总结

通信电子线路重点总结第一章1、一个完整的通信系统应包括信息源、发送设备、信道、接收设备和收信装置五部分。

2、只有当天线的尺寸大到可以与信号波长相比拟时,天线才具有较高的辐射效率。

这也是为什么把低频的调制信号调制到较高的载频上的原因之一。

3、调制使幅度变化的称调幅,是频率变化的称调频,使相位变化的称调相。

4、解调就是在接收信号的一方,从收到的已调信号中把调制信号恢复出来。

调幅波的解调称检波,调频波的解调叫鉴频。

第二章1、小信号调谐放大器是一种最常见的选频放大器,即有选择地对某一频率的信号进行放大的放大器。

它是构成无线电通信设备的主要电路,其作用是放大信道中的高频小信号。

所谓调谐,主要是指放大器的集电极负载为调谐回路。

2、调谐放大器主要由放大器和调谐回路两部分组成。

因此,调谐放大器不仅有放大作用,还有选频作用。

其选频性能通常用通频带和选择性两个指标衡量。

3、并联谐振回路01LC0L10CLCCLCL(C称为谐振回路的特性阻抗)并联谐振回路的品质因数是由回路谐振电阻与特性阻抗的比值定义的,即QR0LCR00LR00CR0回路的越大,Q值越大,阻抗特性曲线越尖锐;反之,00R0越小,Q值越小,阻抗特性曲线越平坦。

在谐振点处,电压幅值最大,当0时,回路呈现感性,电压超前电流一个相角,电压幅值减小。

当相角,电压幅值也减小。

4、谐振回路的谐振曲线分析UUm11(Q2f2)f0时,回路呈现容性,电压滞后电流一个U对于同样频偏f,Q越大,Um值越小,谐振曲线越尖锐一个无线电信号占有一定的频带宽度,无线电信号通过谐振回路不失真的条件是谐振回路的幅频特性是一常数,相频特性正比于角频率。

在无线电技术中,常把Um从1下降到U1ff2(以dB表示,从0下降到-3dB)处的两个频率1和22f0.7的范围叫做通频带,以符号B或Bf2f1f0Q表示。

即回路的通频带为选择性是谐振回路的另一个重要指标,它表示回路对通频带以外干扰信号的抑制能力。

0-电路分析基础绪论

0-电路分析基础绪论

0-电路分析基础绪论电路分析基础ClicktoaddTitle电路分析基础制作人:李丽敏1323佳木斯大学信息电子技术学院ClicktoaddTitleClicktoaddTitle0.绪论0.1电磁理论及相关科学技术的发展简史0.2电路理论的发展历史和最新动态电路分析基础课程和学习方法0.30.1电磁理论及相关科学技术的发展简史一、电磁学发展简史1600年英国物理学家吉尔伯特因发表《论磁》一书而被誉为“电学之父”。

1746年美国科学家富兰克林开始研究电现象,进一步揭示了电的性质,并提出了电流。

1785年法国物理学家库仑得出了历史上最早的静电学定律——库仑定律。

1800年意大利物理学家伏特制成伏特电池。

为动电研究打下基础,推动了电学的发展。

1820年丹麦物理学家奥斯特发现电流的磁效应。

在电与磁之间架起了一座桥梁,这为电磁学的发展打下了基础。

1825年法国物理学家安培提出安培定律,为电动机的发明作了理论上的准备。

奠定了电动力学的基础。

1826年德国科学家欧姆在多年实验基础上,提出了著名的欧姆定律。

1831年英国物理学家法拉第发现电磁感应现象。

这具有划时代的意义,开创了电气化时代的新纪元。

1832年美国科学家亨利发现了电的自感现象。

亨利还发明了继电器、无感绕组等。

1833年俄国物理学家楞次发现了确定感生电流方向的定律──楞次定律。

说明电磁现象也遵循能量守恒定律。

1837年美国人莫尔斯发明了有线电报,有线电报的发明具有划时代的革命意义。

1845年德国物理学家基尔霍夫提出了电路中的基本定律——基尔霍夫定律。

基尔霍夫被称为“电路求解大师”。

1853年德国物理学家亥姆霍兹提出电路中的等效发电机原理。

论证了能量转换的规律性。

1864年英国特理学家麦克斯韦预言了电磁波的存在,为电路理论奠定了坚定的基础。

1866年德国工程师西门子提出了发电机的原理,完成了第一台直流发电机,从此电气化时代开始了。

1879年美国发明家爱迪生发明了灯泡。

非线性电子电路第一章绪论课件

非线性电子电路第一章绪论课件
对接收装置的要求:增益高,选择性好。
解决方案:
发射机和接收机借助线性和非线性电子线路对携有信 息的电信号进行变换和处理。除放大外,最主要有调制、 解调。
调制是远距离传输的基础。在通信系统中起着至关重要的作 用。它的主要技术作用是将基带信号变换成符合特定信道传输要 求的信号形式;同时,也是为在一个物理通路中传输多路信号 (实现信道多路复用)以及非线提性电高子电信路第号一章抗绪论干扰能力的技术基础。
书山有路勤为径
学海无崖苦作舟
非 线 性 电 子 电 路
非线性电子电路第一章绪论
先修课程
• 电路分析基础 • 线性电子电路 • 信号与系统等
非线性电子电路第一章绪论
1.1 非线性电子线路的作用
一、线性电子电路与非线性电子电路
电子器件严格讲是非线性的,但依使用条件不同,表现 的非线性程度不同。为此,有如下两种应用:
跟踪 fc。
可见,有用信号在不
同频率上进小行信放号大放大—器—超
实用通信系统的实现得依靠三个方面的技术支持:
传感器技术、信号处理技术、信号传输技术
非线性电子电路第一章绪论
进入框图
通信系统的基本模型
现代通信系统在传输信息的技术手段和方法上有了 显著的进步,但通信系统仍可概括地用下图来表示:
输入信息 输入变换器
发送设备
信道
接收设备
输出变换器
非线性电子电路第一章绪论
调为幅小信接号谐收振放机大器的,作组成框图为多:级固定调
用:选频(选有用抑制无
谐的小信号放
用信号)放大(有用信号
大器,作用: 放大中频信号。
解调,从 中频调幅 波还原所 传送的调 制信号。
产生频率为
fL =|fc + fI |(或 fL = fc - fI ) 的高频等幅

[高频电子线路].曾兴雯第1章绪论

[高频电子线路].曾兴雯第1章绪论

第1章 绪论
3. 频率特性 任何信号都具有一定的频率或波长。我们这里所讲的 频率特性就是无线电信号的频率或波长。电磁波辐射的波 谱很宽,如图 1-6 所示。
第1章 绪论
图 1-6 电磁波波谱
第1章 绪论
无线电波只是一种波长比较长的电磁波,占据的频率范
围很广。在自由空间中,波长与频率存在以下关系:
第1章 绪论
高频电子线路
学时:48+8
第1章 绪论
《高频电子线路》课程的重要性——专业基础课,承前启后 高等数学 电路分析 模电 信号与系统
高频电子线路 通信原理
第1章 绪论
电子线路的分类
工作频率:低频电子线路、高频电子线路、微波电子线路 流通的信号形式:模拟电子线路、数字电子线路 集成度的高低:分立电路和集成电路。 包含的元件性质:线性电子线路和非线性电子线路。
不同的调制信号和不同的调制方式,其调制特性不同。 调制的逆过程称为解调(Demodulation)或检波,其作用是将 已调信号中的原调制信号恢复出来。
第1章 绪论
接收机的结构:
(1)超外差:在接收过程中,将射频输入信号与本地振荡器产生的 信号混频,由混频器后的中频滤波器选出射频信号与本振信号频率 两者的和频或差频。
第1章 绪论
思考题
课后1-1,1-3,1-6
第1章 绪论
应当指出,实际的通信设备比上面所举例子要复杂 得多。比如发射机的振荡器和接收机的本地振荡器就可 以用更复杂的组件——频率合成器(FS)来代替,它可以 产生大量所需频率的信号。
第1章 绪论
在无线通信系统中通常需要某些反馈控制电路,这些反馈控 制电路主要是自动增益控制(AGC) ,自动频率控制(AFC)电路和 自动相位控制(APC)电路(也称锁相环PLL)。此外,还要考虑高频 电路中所用的元件、器件和组件,以及信道或接收机中的干扰与 噪声问题。需要说明的是,虽然许多通信设备可以用集成电路(IC) 来实现,但是上述的单元电路通常都是由有源的和无源的元器件 构成的,既有线性电路,也有非线性电路。这些基本单元电路的 组成、原理及有关技术问题,就是本书的研究对象。

电路原理绪论PPT课件

电路原理绪论PPT课件

国内习惯的归类与统称
各学科领域
国外习惯的归类与统 称
电气工程
电力工程
控制工程
通信工程
电气工程
信息科学与技术
电子工程
(或电子信息科学与技术)
……
计算机科学与技术
计算机科学 计算机工程
统称:电气工程与信息科学 统称:电气工程与计算机科学
(或电气电子信息科学)
(简称EECS、ECE)
四、电路都有哪些作用?
• 处理能量
– 电能的产生、传输、分配……
• 处理信号
– 电信号的获得、变换、放大……
五、电路原理的后续课程
电路原理
信号与系统
模拟电子线路
电力电子技术
(关注大功率)
通信电路
(关注高频段)
数字电子线路
微电子技术
(集成芯片设计)
公共 基础
专门 技术
电力系统
控制系统
通信系统
信号处理系统* 计算机系统
(能量传输与处理)(信号反馈与处理) (信号传输与处理)
x 1
T
x(t) dt
T0
返回目录
1.5 电路用于能量处理
一、 功率(power) 单位时间内电场力所做的功。
p dw , u dw , i dq
dt
dq
dt
p dw dw dq ui dt dq dt
功率的单位名称:瓦[特] 符号:W (Watt, 瓦特; 1736 –1819 , British) 能量的单位名称: 焦[耳] 符号:J (Joule,焦耳; 1818 – 1889, British)

I 10V
A I1
10
B I2
电路中电流 I 的大小为1A, 其方向为从A流向B。 (此为电流的实际方向)

通信电子线路(沈伟慈版)电子课件---绪论

通信电子线路(沈伟慈版)电子课件---绪论
退出
0.3.2 发送设备
发送设备的作用: 发送设备的作用: 将基带信号变换成适合信道的传输特性的 信号。 信号。 对基带信号进行变换的原因: 对基带信号进行变换的原因: 由于要传输的信息种类多样, 由于要传输的信息种类多样,其对应的 基带信号特性各异, 基带信号特性各异,这些基带信号往往并不 适合信道的直接传输。 适合信道的直接传输。
1、双绞线 、 适用于短距离(小于 )、1Mb/s数 适用于短距离(小于100m)、 )、 数 据率的通信环境。 据率的通信环境。 2、同轴电缆 、 适用于距离在几百米、带宽小于 适用于距离在几百米、带宽小于10MHz、 、 码流率小于20Mbps的通信环境 的通信环境。 码流率小于 的通信环境
退出
退出
0.5 信号及其频谱
如:下面所示的一般语音信号的频谱示意图
电 压
f/Hz 300
语音信号的频谱 1000Hz
3400
的 其
0.5 信号及其频谱
振 幅
一般数字信号的频谱图如下: 一般数字信号的频谱图如下:
f
数字信号的频谱

脉冲信号的分解
i (a) I0 t i (b) t i 三 谐 1 次 波i (d) t
(1)通过学习掌握实际单元电路的分析方法。 包括放大、振荡、调谐、调制、变频电 路。 (2)整机电路的分析和计算。 (3)根据给出的指标完成部分电路的设计。
退出
0.7 数字通信系统
• 传输数字信号的通信系统称为数字通信 系统,其原理框图如下图所示: 系统,其原理框图如下图所示:
输入 模拟 信号 数字 信源编码 信道解码 信道编码 信源解码 发射机 输出模拟信号 信道 接收机
音频信号 (b)
vc t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.4 电子电路分析的量
电子电路分析的量——描述电路模型电磁性能的量 ➢电路模型上的偏置——直流电压、电流和功率 ➢电路模型上的信号——交流电压、电流和功率
习惯上,电压、电流和功率分别用i(t)、u(t)和p(t)表示,简记 为i、u和p
第0章 绪论
Δq dq ①电流 i(t) = lim
Δt0 Δt dt
p dw dw dq ui dt dq dt
或写为 p吸 ui
式中,功率p的单位为W(瓦)
直流电流直流电压——用P=UI表示
40
第0章 绪论
功率的计算
➢关联参考方向,经计算,p > 0,电路实际吸收正功率;
p < 0,电路吸收负功率,实际发出功率
➢非关联参考方向,电路实际吸收或发出功率情况与之相 反
在分析电路问题时,常在电路中选一个点为参考点 (reference point),把任一点到参考点的电压(降)称为该点的电位。
a
b
设c点为电位参考点,则 c 0
a Uac , b Ubc , d Udc
d
c
34 a b c
a
b
c
第0章 绪论
两点间电压与电位的关系 例:已知 Uab=1.5 V,Ubc=1.5 V,计算Uac (1) 以a点为参考点,a =0
P发= 10 W, P吸= 5+5=10 P发=P吸 (功率守恒)
练习
第0章 绪论
+ U1 - + U6 -
1
6
I1

++2 Fra bibliotek2U4 4
-+ + U3 - I2
3
U5 5 - I3
求图示电路中各方框 所代表的元件吸收或产生 的功率。 已知: U1=1V, U2= -3V, U3=8V, U4= -4V, U5=7V, U6= -3V,I1=2A, I2=1A,,I3= -1A
这种理想化的元件称为实际器件的“器件模型”。
用理想化元件表示实际元件,并按实际电路的连接方式连接 起来的电路图称为电路模型。
第0章 绪论
理想电路元件
有某种确定的电磁性能的理想元件。
几种基本的理想电路元件:
电阻元件:表示消耗电能的元件 电感元件:表示产生磁场,储存磁场能量的元件
电容元件:表示产生电场,储存电场能量的元件
判断R3上电流I3的方向?
I I1 I2
R1
R3 R2
US R4
I3?
R5
27
第0章 绪论
电流参考方向与实际方向的关系
实际电流方向与参考电流方向的关系
➢经计算,i > 0,电流的实际方向与参考方向一致; ➢经计算, i < 0,电流的实际方向与参考方向相反 ➢未标注参考方向,电流的正负无意义
28
电流具有方向,电流的实际方向规定为正电荷运动的方向
任意选定一个方向作为电流的参考方向——参考方向
电流的参考方向任意选定,在电路图中的元件上用箭头或者双下标表示
i
a
b
(a) 用箭头表示
(b)用双下标表示
26 第0章 绪论
为什么要规定电流参考方向 ➢电路分析与计算过程需要用到电流方向 ➢复杂电路中,事先不能确定电流的实际方向 ➢时变电流的方向实际随时间不断变化
(2) 以b点为参考点,b =0
35
第0章 绪论
两点间电压与电位的关系
结论:电路中任意两点间的电压等于该两点间的电位差。
电路中的电位参考点可任意选定;选择不同的电位参考点,电路 中各点的电位将随之改变,但任意两点间的电压保持不变
36
第0章 绪论
关联参考方向
➢电流的参考方向和电压的参考极性都任意选定,二者彼此独立,对于二端元
电流——单位时间内通过导体横截面的正电荷
式中,t的单位为s、q的单位为C、i的单位为A
不随时间变化的电流——直流电流——一般用I表示
➢电流具有方向,电流的实际方向规定为正电荷运动的方向
➢电子电路分析时,难以预知各元件电流的实际方向,可以 先给电流一个假定方向——参考方向
25 第0章 绪论
电流参考方向的两种表示
为什么要引入电路模型
实际电路在运行过程中的表现相当复杂,如:制作一个电阻器 是要利用它对电流呈现阻力的性质,然而当电流通过时还会产 生磁场。要在数学上精确描述这些现象相当困难。为了用数学 的方法从理论上判断电路的主要性能,必须对实际器件在一定 条件下,忽略其次要性质,按其主要性质加以理想化,从而得 到一系列理想化元件。
➢能量的传输与转换 ——电能的产生、传输、分配……
如电力系统的发电、传输等。
第0章 绪论
电子电路的描述——电原理图 ➢电子元器件→图形符号 ➢电路连接→拓扑结构
(a)手电筒电路
(b)实际电路
演变过程
(c)电原理图
第0章 绪论
电子电路的描述——电原理图(GB4728-2000) ➢电源、电子元器件→图形符号 ➢导线→线段
件而言,电压的参考极性和电流参考方向的选择有四种可能的方式,
➢ 关联参考方向:电流参考方向从电压”+”极指向”-”极。
(a)、(b) 关联参考方向
(c)、(d) 非关联参考方向
二端元件电流、电压参考方向
37
第0章 绪论
关联参考方向标注
为分析方便,常使电流和电压的参考方向关联起来选为一致—— 电流参考方向由电压参考+极流入、-极流出——关联参考方向
➢电子信息系统中的信号——电信号——反映消息和信息 的电压或电流波形 ➢光信号 ➢量子信号 ➢生物信号 ➢…
第0章 绪论
信号(电信号)的分类 ➢模拟信号——时间上和数值上均具有连续性——电子电 路中的信号 ➢离散信号——时间上具有离散性,数值上具有连续性 ➢数字信号——时间上和数值上均具有离散性
第0章 绪论
②电压与电位 电压基本概念
电路中a、b两点间的电压——单位正电荷由a点移动到b点所失去的能量
u dw dq
a
b
式中,q的单位为C、w的单位为J、u的单位为V
uab ua ub
➢ 两点间电压与路径无关,仅与起点与终点位置有关:
30
第0章 绪论
与电压相关的几个名词
大小和方向均不随时间变化的电压——直流电压——用U表示
电子信息系统中的电子电路 ➢滤波电路——模拟信号的提取或抗干扰 ➢放大电路——模拟信号的放大 ➢运算电路——模拟信号的加、减、乘、除、积分、微分、 对数、指数等运算 ➢信号发生电路——产生正弦波、矩形波、三角波等模拟 信号 ➢偏置电源——交流电压→直流电压或电流(提供能量)
0.2 电子电路
第0章 绪论
32
第0章 绪论
电压具有极性,电压的实际极性规定为正电荷的高能量点为正、 低能量点为负——实际极性
为什么要规定电压参考方向: ➢电路分析与计算过程需要用到电压方向 ➢事先不能确定电压的实际方向 ➢时变电压的实际方向随时间不断变化
33 第0章 绪论
电位基本概念
电路中某点的电位——单位正电荷由某点移动到参考点所失去的能量 参考点——接地点——电位为零 电压——电位差
➢负载(load):将电能转化为其它形式的能量,或对信号 进行处理。
➢导线(line)、开关(switch)等:将电源与负载接成通路。
第0章 绪论
电子电路的作用 ➢信号的传输与处理
——电信号的获得、变换、放大、控制与处理…… 如电视机、电话、通信电路等,实现雷达信号处理、通信信号处理、生物 信号处理等。
i
a
b
+u -
第0章 绪论
小结
➢ 分析电路时必须首先选定电压和电流的参考方向。
➢ 参考方向一经选定,必须在图中相应位置标注 (箭 头、正负极性符号),在计算过程中不得任意改变。
➢ 参考方向选择不同,其表达式符号也不同,但实际方向不变。 ➢ 本课程今后的所有讨论,均在参考方向下进行。 ➢ 参考方向,也称“假定正方向”。
iR
iR
+
u

u = Ri
关联参考方向
+
u
-
u = -Ri
非关联参考方向
39 功率基本概念
第0章 绪论
③功率与能量 吸收功率——电路在单位时间内吸收的能量 关联参考方向条件下,单位时间内由a点移动到b点的正 电荷dq = idt,正电荷由a点移动到b点所失去的能量dw = udq——这些能量被电路吸收
电压源和电流源:表示将其它形式的能量转变成电能的元件。
上述基本的理想电路元件有三个特征: (a)只有两个端子; (b)可以用电压或电流按数学方式描述; (c)不能被分解为其他元件。
第0章 绪论
说明
① 具有相同的主要电磁性能的实际电路部件, 在一定条 件下可用同一电路模型表示,如灯泡、电炉等在低频电 路中都可用理想电阻表示。
图b非关联参考方向p 吸= -ui = -(-2sint)cost = 2sintcost = sin2t (W)
第0章 绪论
47
功率的计算
例2 U1=10V, U2=5V。 分别求电源、电阻的功率。
I5
I=UR/5=(U1–U2)/5=(10–5)/5=1 A
+ UR –
U1
U2
PR吸= URI = 5 1 = 5 PU1发= U1I = 10 1 = 10 PU2吸= U2I = 5 1 = 5
非关联参考方向条件下吸收功率的计算式? 关联参考方向条件下发出功率的计算式? 非关联参考方向条件下发出功率的计算式?
41
功率的计算 第0章 绪论
a
42 功率的计算
第0章 绪论
a
43理想电压源功率计算第0章 绪论
相关文档
最新文档