2018高中物理选修第一章知识点总结:简谐运动

合集下载

《简谐运动》 知识清单

《简谐运动》 知识清单

《简谐运动》知识清单一、什么是简谐运动简谐运动是一种理想化的机械运动模型。

它的定义是:如果一个物体所受到的力跟它偏离平衡位置的位移大小成正比,并且力的方向总是指向平衡位置,那么这个物体的运动就叫做简谐运动。

比如常见的弹簧振子,就是一种典型的简谐运动。

当弹簧一端固定,另一端连接一个物体,将物体拉离平衡位置后释放,它就会在平衡位置附近做往复运动,这种运动就是简谐运动。

二、简谐运动的特点1、受力特点物体所受的回复力F 与位移x 大小成正比,方向相反,即F =kx,其中 k 是比例系数,叫做回复力系数。

回复力是使物体回到平衡位置的力。

在弹簧振子中,回复力就是弹簧的弹力;在单摆中,回复力是重力沿圆弧切线方向的分力。

2、运动特点简谐运动是一种周期性运动,具有重复性和对称性。

(1)重复性:物体在相同的时间间隔内,重复相同的运动状态。

(2)对称性:关于平衡位置对称的两点,速度大小相等、方向相反;加速度大小相等、方向相反;位移大小相等、方向相反。

3、能量特点在简谐运动中,系统的机械能守恒。

当物体远离平衡位置时,动能减小,势能增大;当物体靠近平衡位置时,动能增大,势能减小。

但总的机械能保持不变。

三、简谐运动的表达式简谐运动的位移时间关系可以用正弦函数或余弦函数来表示:x =A sin(ωt +φ) 或 x =A cos(ωt +φ)其中,A 表示振幅,是物体离开平衡位置的最大距离;ω 是角频率,ω =2π/T,T 是周期;φ 是初相位,决定了运动的初始状态。

四、简谐运动的周期和频率1、周期完成一次全振动所需要的时间叫做周期,用 T 表示。

周期的大小由振动系统本身的性质决定,与振幅无关。

对于弹簧振子,T =2π√(m/k),其中 m 是振子的质量,k 是弹簧的劲度系数。

对于单摆,T =2π√(L/g),其中 L 是摆长,g 是重力加速度。

2、频率单位时间内完成全振动的次数叫做频率,用 f 表示。

频率与周期互为倒数,即 f = 1/T。

高中物理选修一 讲义 第1节 简谐运动

高中物理选修一 讲义 第1节 简谐运动

第1节简谐运动学习目标要求核心素养和关键能力1.知道什么是弹簧振子,理解振动的平衡位置和位移。

2.知道弹簧振子的位移—时间图像,知道简谐运动的过程及其图像。

3.会结合简谐运动的图像分析运动过程特点。

1.核心素养科学思维:理解弹簧振子的理想化模型和简谐运动的“对称性”思维。

2.关键能力物理建模能力和数形结合分析问题的能力。

知识点一弹簧振子钟摆来回摆动,水中浮标上下浮动,担物行走时扁担下物体的颤动,树梢在微风中的摇摆……在生活中我们会观察到很多类似这样的运动。

这些运动的共同点是什么?提示钟摆来回摆动,水中浮标上下浮动,扁担下物体的颤动、树梢的摇摆等都是以某个位置为中心来回往复运动。

❶机械振动物体或物体的一部分在一个位置附近的往复运动称为机械振动,简称振动。

❷平衡位置弹簧未形变时,物体所受的合力为0,处于平衡位置。

❸弹簧振子(1)组成:小球和弹簧组成的系统称为弹簧振子,简称振子(2)理想化模型弹簧振子是一种理想化模型,近似条件①弹簧的质量与小球相比可以忽略。

②小球运动时空气阻力很小,可以忽略。

③小球与杆之间无摩擦。

1.平衡位置振子不振动时,保持静止状态的位置;振子振动时,速度最大的位置。

2.振动特征(1)有一个“中心位置”,即平衡位置。

(2)运动具有往复性。

3.弹簧振子的位移及其变化位移指相对平衡位置的位移,由平衡位置指向振子所在的位置。

当振子从平衡位置向最大位移处运动时,位移增大;反之,位移减小。

4.运动学分析当振子从平衡位置向最大位移处移动时,位移在增大,速度在减小;当振子向平衡位置移动时,位移减小,速度增大,平衡位置处位移为零,速度最大;最大位移处速度为零。

【例1】(多选)弹簧上端固定在O点,下端连接一小球,组成一个振动系统,如图所示,用手向下拉一小段距离后释放小球,小球便上下振动起来,关于小球的平衡位置,下列说法正确的是()A.在小球运动的最低点B.在弹簧处于原长时的位置C.在小球速度最大时的位置D.在小球原来静止时的位置答案CD解析平衡位置是振动系统不振动时,小球(振子)处于平衡状态时所处的位置,可知此时小球所受的重力大小与弹簧的弹力大小相等,即mg=kx,也即小球原来静止的位置,故选项D正确,A、B错误;当小球处于平衡位置时,其加速度为零,速度最大,选项C正确。

简谐运动方程知识点总结

简谐运动方程知识点总结

简谐运动方程知识点总结1. 简谐运动的基本特征简谐运动是一种最基本的振动运动,它具有以下几个基本特征:(1)周期性:简谐运动是周期性的,即物体在受力作用下做往复振动,每个周期内物体都会经历相同的振动过程。

(2)恢复力的特性:简谐运动的振动是由一个恢复力(例如弹簧力或重力)驱动的,且恢复力的大小与物体的位移成正比。

(3)运动是否受到阻尼和驱动力的影响:简谐运动通常假设没有阻尼和驱动力的影响,即物体受到的唯一作用力是恢复力。

2. 简谐振动方程的一般形式简谐振动可以用一个二阶微分方程来描述,其一般形式如下:$$m\frac{d^2x}{dt^2}+kx=0$$其中,m为物体的质量,k为弹簧的弹性系数,x为物体的位移,t为时间。

上述方程也可以写成更常见的形式:$$\frac{d^2x}{dt^2}+\frac{k}{m}x=0$$这个二阶微分方程描述了简谐振动系统中物体的加速度与位移之间的关系。

该方程是一个线性齐次微分方程,它的解决方法通常是通过代数方法或微积分方法来求解。

3. 简谐振动方程的解法对于上述的简谐振动方程,可以通过代数或微积分方法来求解。

通常有以下几种解法:(1)代数方法:当简谐振动系统的质量m和弹簧的弹性系数k已知时,可以通过代数方法求解简谐振动方程的解析解。

这种方法通常涉及到代数运算和三角函数的应用,例如正弦函数和余弦函数。

(2)微积分方法:对于更一般的简谐振动问题,可以通过微积分方法来求解简谐振动方程。

这种方法通常涉及到微分方程的解法,例如特征方程法、特解法和叠加原理等。

(3)复数方法:简谐振动方程也可以通过复数方法进行求解。

这种方法通常利用复数的性质和欧拉公式来简化求解过程,从而得到方程的解析解。

4. 简谐振动方程的解析解当求解简谐振动方程时,通常可以得到一组解析解,它们可以用来描述简谐振动系统的振动特性。

一般而言,简谐振动方程的解析解可以分为如下几种情况:(1)无阻尼情况下的简谐振动:当简谐振动系统没有受到阻尼力的作用时,其解析解通常为正弦函数或余弦函数。

简谐运动知识点总结笔记

简谐运动知识点总结笔记

简谐运动知识点总结笔记一、简谐运动的基本概念1. 简谐运动的定义简谐运动是指物体沿着直线或者绕着某个固定轴线作往复振动的运动。

简谐运动有其特定的数学描述和物理规律,可以用简单的正弦或余弦函数来描述物体的运动规律。

2. 简谐运动的特点简谐运动具有周期性、相位一致、振幅恒定、运动轨迹为直线或圆周等特点。

对于弹簧振子、单摆等物体的振动运动都可以看作是简谐运动。

3. 简谐运动的数学描述简谐运动可以用如下的数学公式来描述:\[x(t) = A \cdot sin(\omega t + \phi)\]其中,\(x(t)\)表示物体在t时刻的位置,A表示振幅,\(\omega\)表示角频率,\(\phi\)表示初相位。

通过这个公式可以很清晰地描述出物体的振动规律。

二、简谐运动的基本物理规律1. 简谐运动的力学规律根据牛顿第二定律,对于简谐运动的物体,其受力与位移成正比。

设物体的位移函数为x(t),则其受力与位移的关系可以表示为\[F = -kx(t)\]其中,k为弹簧或摆的劲度系数,代表着弹簧或摆的刚度。

这个公式也被称为胡克定律,描述了弹簧振子的特点。

2. 简谐运动的能量规律对于简谐运动物体,其动能和势能之和保持不变。

设物体的位移函数为x(t),则其动能和势能可以表示为\[E = \frac{1}{2}m\omega^2A^2\]其中,m为物体的质量,\(\omega\)为角频率,A为振幅。

这个公式说明了简谐运动物体能量的守恒规律。

三、简谐运动的应用弹簧振子是最常见的简谐运动的例子,它的振动规律可以很好地用简谐运动的公式来描述。

由于弹簧振子的周期性和稳定性,因此在各个领域都有广泛的应用,比如钟表的摆动、汽车的避震器等。

2. 单摆单摆也是一个常见的简谐运动的例子,它的振动规律同样可以用简谐运动的公式来描述。

由于单摆的周期与摆长和重力加速度有关,因此可以通过单摆来测量重力加速度等物理量。

单摆也常用作物理实验中的展示装置。

简谐运动总结知识点

简谐运动总结知识点

简谐运动总结知识点
简谐运动的基本特点包括周期性、规律性和单一频率。

在简谐运动中,物体在一个固定的
时间内完成一个完整的振动周期,而且每个周期内的振幅和相位都是固定的。

简谐运动的
频率只有一个,并且与物体的质量和弹性系数有关。

简谐运动的一些重要的知识点包括振动的频率和周期、振幅、相位、动能和势能等。

振动
的频率和周期与物体的质量和弹性系数有关,可以通过公式f=1/T来计算。

振幅是指振动
的最大偏离位置,相位则是指振动的运动状态相对于一个参考点的位置。

简谐运动的动能
和势能在振动过程中会不断地转化,它们之间的转化关系可以用能量守恒定律来描述。

简谐运动的力学模型可以用弹簧振子和单摆来描述。

弹簧振子是指通过弹簧连接的质点,
在振动过程中会产生简谐运动。

单摆则是指通过一根绳索连接的质点,在重力的作用下会
产生简谐运动。

这些力学模型可以通过分析振动的力学方程和运动方程,来深入理解简谐
运动的物理规律。

简谐运动在日常生活和工程技术中有着广泛的应用。

比如,振动吸收器可以用于减小机械
设备的震动和噪音,提高设备的稳定性和工作效率。

简谐运动也是光学和电磁波的基本运
动形式,通过掌握简谐运动的理论知识,我们可以更好地理解和应用光学和电磁波的原理。

总的来说,简谐运动是物理学中一个重要的概念,它不仅具有理论意义,还有着广泛的实
际应用价值。

通过深入学习简谐运动的知识点,我们可以更好地理解自然界和工程技术中
的各种振动现象,为科学研究和技术创新提供重要的理论基础。

简谐运动知识点[整理]

简谐运动知识点[整理]

一讲简谐运动单摆和弹簧振子【知识梳理】一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。

也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。

不同于以前所讲的在一段时间内的位移。

(2)回复力是一种效果力。

是振动物体在沿振动方向上所受的合力(指向平衡位置)(3)“平衡位置”不等于“平衡状态”。

平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。

(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)但振子不振动则停留在平衡位置。

(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。

(1)由定义知:F∝x,方向相反。

(2)由牛顿第二定律知:F∝a,方向相同。

(3)由以上两条可知:a∝x,方向相反。

(4)v和x、F、a之间的关系最复杂:x的方向-背向平衡位置 F与a的方向-指向平衡位置x、F、a三者大小同步变化且与v异步(过同一位置v有两个方向)3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。

因此振动物体在空间的运动有一定的范围,用振幅A来描述;在时间上则用周期T来描述完成一次全振动所须的时间。

(1)振幅A是描述振动强弱的物理量。

(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T是描述振动快慢的物理量。

(频率f=1/T也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。

高中物理知识点总结-简谐运动

高中物理知识点总结-简谐运动

高中物理知识点总结-简谐运动
简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.。

简谐运动章节知识点总结(无实验)

简谐运动章节知识点总结(无实验)

简谐运动知识点汇总第一节 简谐运动一、弹簧振子1、定义:我们把小球(物块)和弹簧组成的系统统称为弹簧振子。

2、理想化条件:忽略摩擦力等各种阻力、小球看成质点、忽略弹簧质量、弹簧始终在弹性限度内3、平衡位置:振子在振动方向上合理为零的点,速度最大,振动位移、回复力、回复加速度为零4、振动位移:由平衡位置指向振子位置的有向线段。

5、振动图像(x -t 图像)图像信息:① 横坐标 —— 时间(周期)② 纵坐标 —— 位移和路程③ 斜率 —— 速度④ 平衡位置 —— 位移为0,速度最大⑤ 最大位移处 —— 位移最大,速度为0二、简谐运动1、定义:如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x -t 图像)是一条正弦曲线)sin(ϕω+=t A x ,这样的振动是一种简谐运动。

简谐运动是最基本的振动2、对称性: 关于平衡位置对称的两点位移大小相等,方向相反速度大小相等,方向可同可反时间对称第二节 简谐运动的描述一、振幅1、定义:振动物体离开平衡位置的最大距离,叫做振动的振幅,常用字母A 表示、是个标量。

2、说明:振子振动范围的大小是振幅的两倍----2A;振幅的大小直接反映了振子振动能量(E=EK+EP)的高低,振子质量一定时,振幅越大,振动系统能量越大。

二、周期频率三、圆频率:是一个与周期成反比,与频率成正比的量,叫作简谐运动的“圆频率”。

它也表示简谐运动的快慢f T ππω22== 四、相位、初相第三节 简谐运动的回复力和能量一、回复力1、定义:指向平衡位置使振子回到平衡位置的力2、特点:(1)回复力是效果力,由性质力充当,可以是一个力,可以是一个力的分力,可以是几个力的合力(2)回复力一定指向平衡位置且与位移方向相反3、公式F=-KX4、简谐运动定义2: 如果质点所受的力与它偏离平衡位置的位移大小成正比,即 F =-k x ,质点的运动就是简谐运动.第四节 单摆一、单摆:1、定义:细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略;球的直径与线的长度相比也可以忽略,这样的装置就叫做单摆2、特点(1)摆球:体积小,质量大可视为质点;(2)摆线:细长,不可伸长,质量忽略;(3)不计一切阻力(4)单摆是理想化模型(5)摆角一般小于5°3、回复力x L mg F -=回4、周期公式gl T π2=(注意等效摆长和等效重力加速度的换算)4、说明:单摆在平衡位置合力不为零(合力等于向心力),回复力为零第六节 受迫振动 共振一、固有振动和固有频率1、定义:振动系统在没有外力干预下的振动称为固有振动,也称自由振动,其频率称为固有频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高中物理选修第一章知识点总结:
简谐运动

件www.5yk
一.简谐运动
、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:(1)回复力不为零。

(2)阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:
在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:
(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。

3、描述振动的物理量
描述振动的物理量,研究振动除了要用到位移、速度、
加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。

(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

(4)频率f:振动物体单位时间内完成全振动的次数。

(5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

周期、频率、角频率的关系是:。

(6)相位:表示振动步调的物理量。

现行中学教材中只要求知道同相和反相两种情况。

4、研究简谐振动规律的几个思路:
(1)用动力学方法研究,受力特征:回复力F=-kx;加速度,简谐振动是一种变加速运动。

在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

(2)用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。

(3)用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。

(4)从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。

5、简谐运动的表达式
振幅A,周期T,相位,初相
6、简谐运动图象描述振动的物理量
.直接描述量:
①振幅A;②周期T;③任意时刻的位移t。

2.间接描述量:
③x-t图线上一点的切线的斜率等于V。

3.从振动图象中的x分析有关物理量
简谐运动的特点是周期性。

在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速运动;在时间上有周期性,即每经过一定时间,运动就要重
复一次。

我们能否利用振动图象来判断质点x,F,v,a的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。

小结:1.简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。

2.简谐运动图象反应了物体位移随时间变化的关系。

3.根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。

7、单摆
单摆周期公式
上述公式是高考要考查的重点内容之一。

对周期公式的理解和应用注意以下几个问题:①简谐振动物体的周期和频率是由振动系统本身的条件决定的。

②单摆周期公式中的L 是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。

例如图1中,三根等长的绳L1、L2、L3共同系住一个密度均匀的小球m,球直径为d,L2、L3与天花板的夹角<30。

若摆球在纸面内作小角度的左右摆动,则摆的圆弧的圆心在
o1外,故等效摆长为,周期T1=2;若摆球做垂直纸面的小角度摆动,叫摆动圆弧的圆心在o处,故等效摆长为,周期
T2=.
单摆周期公式中的g,由单摆所在的空间位置决定,还由单摆系统的运动状态决定。

所以g也叫等效重力加速度。

由可知,地球表面不同位置、不同高度,不同星球表面g值都不相同,因此应求出单摆所在地的等效g值代入公式,即
g不一定等于9.8m/s2。

单摆系统运动状态不同g值也不相同。

例如单摆在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线的回复力变大,摆球质量不变,则重力加速度等效值g=g+a。

再比如在轨道上运行的航天飞机内的单摆、摆球完全失重,回复力为零,则重力加速度等效值g=0,周期无穷大,即单摆不摆动了。

g还由单摆所处的物理环境决定。

如带小电球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直的电场合力在圆弧切向方向的分力,所以也有-g的问题。

一般情况下g值等于摆球静止在平衡位置时,摆线张力与摆球质量的比值。

8、受迫振动和共振Ⅰ
物体在周期性外力作用下的振动叫受迫振动。

受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。

当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。

共振是受迫振动的一种特殊情况。

9、机械波横波和纵波横波的图象Ⅰ
机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:
一是要有做机械振动的物体作为波源,二是要有能够传
播机械振动的介质。

横波和纵波:
质点的振动方向与波的传播方向垂直的叫横波。

质点的振动方向与波的传播方向在同一直线上的叫纵波。

气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。


件www.5yk。

相关文档
最新文档