高中数学解题方法之构造法(含答案)

合集下载

高中数学构造法求解题技巧

高中数学构造法求解题技巧

高中数学构造法求解题技巧高中数学构造法是一种解题思路和技巧,它通过构造适当的数学结构,使得问题的求解变得更加简单明了。

构造方法在高中数学中应用广泛,可以用于解决各类题型,包括代数题、几何题、概率题等等。

一、构造法的基本思想构造法是一种通过建立合适的数学结构,简化问题的解决方法和步骤的思想。

通过构造一些符合题意的数学对象,我们可以发现一些规律,从而提供问题的解答方式。

二、构造法的常见技巧1.构造等差数列或等比数列在解决一些代数问题时,我们可以尝试构造一个等差数列或者等比数列。

通过构造这样的数列,我们可以找到其中的规律,从而解决问题。

2.构造图形在解决几何问题时,我们可以尝试构造一个与原图形相似或者关联的图形。

通过构造这样的图形,我们可以将复杂的几何问题简化为一些基本的几何性质,从而解决问题。

3.构造排列组合在解决一些概率问题和组合问题时,我们可以尝试构造排列组合。

通过构造排列组合,我们可以得到一些计算公式或者规律,从而解决问题。

4.构造方程组在解决一些代数问题时,我们可以尝试构造一个方程组。

通过构造这样的方程组,我们可以得到一些方程之间的关系,从而解决问题。

5.构造递推公式在解决一些数列问题时,我们可以尝试构造一个递推公式。

通过构造递推公式,我们可以找到数列中的规律,从而解决问题。

三、构造法的实例分析1.构造等差数列例题:有一些连续的整数,它们的和是45,这些整数中最小的是多少?解析:我们可以假设这些连续的整数的首项是x,公差是1,那么这些整数的和可以表示为:x+(x+1)+(x+2)+...+(x+n)=45。

通过求和公式,我们可以得到(x+45)/(n+1)=45,进一步化简得到x=15-n。

我们可以发现,当n=30时,x=15-n=0,此时连续整数中的最小值为0。

2.构造图形例题:在平面直角坐标系中,有一条线l过点(0, 0)和(1, 2),线l与x轴、y轴以及x=y共同围成一个三角形,求这个三角形的面积。

高中数学解题方法系列⑦——构造法在导数中的应用

高中数学解题方法系列⑦——构造法在导数中的应用

解题方法系列⑦——构造法在导数中的应用素养解读:此类涉及到已知f (x )与f ′(x )的一些关系式,比较有关函数式大小的问题,可通过构造新的函数,创造条件,从而利用单调性求解. 类型一:f ′(x )g (x )±f (x )g ′(x )型 常用构造形式为F (x )=f (x )·g (x )或F (x )=f (x )g (x ),这类形式是对u ·v ,uv 型函数导数计算的推广及应用,u ·v 型导函数中体现的是“+”法,uv 型导函数中体现的是“-”法.因此当导函数形式中出现“+”法形式时,优先考虑构造u ·v 型,出现“-”法形式时,优先考虑构造uv 型.【典例1】 (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________.[切入点] (1)由f ′(x )-12<0,构造函数g (x )=f (x )-12x ;(2)由f ′(x )g (x )+f (x )g ′(x )构造函数F (x )=f (x )g (x ). [解析] (1)设g (x )=f (x )-12x , ∵f ′(x )<12,∴g ′(x )=f ′(x )-12<0, ∴g (x )为R 上的减函数,又f (1)=1, ∴f (lg x )>lg x +12=12lg x +12,即g (lg x )=f (lg x )-12lg x >12=g (1)=f (1)-12=g (lg10), ∴lg x <lg10,又y =lg x 为增函数, ∴0<x <10,则不等式的解集为(0,10). (2)设F (x )=f (x )g (x ),∵f ′(x )g (x )+f (x )g ′(x )>0,即F ′(x )>0.∴F(x)在(-∞,0)上递增,又∵f(x),g(x)分别是定义R上的奇函数和偶函数,∴F(x)为奇函数,关于原点对称,∴F(x)在(0,+∞)上也是增函数,∵f(-3)g(-3)=0,∴f(3)g(3)=0,∴F(x)=f(x)g(x)<0的解集为{x|x<-3或0<x<3}.[答案](1)(0,10)(2){x|x<-3或0<x<3}(1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x).(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x).特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx. (3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x).(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0).类型二:xf′(x)±nf(x)型(n为常数)在类型一中若g(x)=x或g(x)=x n,则F′(x)即为此种类型,我们可以思考形如此类函数的一般形式.F(x)=x n f(x),F′(x)=nx n-1f(x)+x n f′(x)=x n-1[nf(x)+xf′(x)];F(x)=f(x) x n,F′(x)=f′(x)·x n-nx n-1f(x)x2n=xf′(x)-nf(x)x n+1;结论:(1)出现nf(x)+xf′(x)形式,构造函数f(x)=x n f(x);(2)出现xf′(x)-nf(x)形式,构造函数F(x)=f(x) x n.我们根据得出的结论去解决典例2.【典例2】(1)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(2)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是()A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)[切入点](1)由xf′(x)-f(x)<0构造函数F(x)=f(x)x;(2)由xf′(x)+2f(x)>0想到g(x)=x2f(x)的导数及单调性.[解析](1)令F(x)=f(x)x,因为f(x)为奇函数,所以F(x)为偶函数,由于F′(x)=xf′(x)-f(x)x2,当x>0时,xf′(x)-f(x)<0,所以F(x)=f(x)x在(0,+∞)上单调递减,根据对称性,F(x)=f(x)x在(-∞,0)上单调递增,又f(-1)=0,f(1)=0,数形结合可知,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).故选A.(2)∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x),对任意正实数x满足xf′(x)>-2f(x),即xf′(x)+2f(x)>0.∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0,∴函数g(x)在(0,+∞)上单调递增,在(-∞,0)单调递减;由不等式g(x)<g(1),∴|x|<1且x≠0,得-1<x<0或0<x<1,故选D.[答案](1)A(2)D(1)对于xf′(x)+nf(x)>0型,构造F(x)=x n f(x),则F′(x)=x n-1[xf′(x)+nf(x)](注意对x n-1的符号进行讨论),特别地,当n=1时,xf′(x)+f(x)>0,构造F(x)=xf(x),则F′(x)=xf′(x)+f(x)>0.(2)对于xf′(x)-nf(x)>0(x≠0)型,构造F(x)=f(x)x n,则F′(x)=xf′(x)-nf(x)x n+1(注意对x n+1的符号进行讨论),特别地,当n=1时,xf′(x)-f(x)>0,构造F(x)=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0.类型三:f ′(x )±λf (x )(λ为常数)型在类型一中若g (x )=e x ,那么在F ′(x )中会出现e x 量,这时可以考虑构造F (x )=f (x )·e x 或F (x )=f (x )e x 型,一般地F (x )=e nxf (x ), F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )]; F (x )=f (x )e nx ,F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx ;结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x ); (2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )e nx . 我们根据得出的结论去解决典例3.【典例3】 (1)f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,则下列式子成立的是( ) A .f (a )<e a f (0) B .f (a )>e a f (0) C .f (a )<f (0)e aD .f (a )>f (0)e a(2)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( ) A .f (1)<f (0) B .f (2)>e 2f (0) C .f (3)>e 3f (0)D .f (4)<e 4f (0)[切入点] (1)由f ′(x )-f (x )>0构造函数g (x )=f (x )e x ;(2)由(x -1)[f ′(x )-f (x )]>0构造函数g (x )=f (x )e x . [解析] (1)令g (x )=f (x )e x ,∴g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x >0.∴g (x )在R 上为增函数.又∵a >0,∴g (a )>g (0),即f (a )e a >f (0)e 0,即f (a )>e a f (0).故选B. (2)令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x ,∵(x -1)[f ′(x )-f (x )]>0,∴当x <1时,f ′(x )-f (x )<0,∴g ′(x )<0, ∴g (x )在(-∞,1)上为减函数, ∴g (-1)>g (0),即f (-1)e -1>f (0)e 0=f (0), ∵f (2-x )=f (x )e 2-2x ,∴f (3)=f (-1)e 4>e -1f (0)·e 4=e 3f (0),故选C. [答案] (1)B (2)C(1)对于f ′(x )+nf (x )型构造F (x )=e nx f (x ),F ′(x )=e nx [f ′(x )+nf (x )]. 特别地n =1时,F (x )=e x f (x ),F ′(x )=e x [f ′(x )+f (x )]. (2)对于f ′(x )-nf (x )型构造F (x )=f (x )e nx ,F ′(x )=f ′(x )-nf (x )e nx .特别地n =1时,F (x )=f (x )e x ,F ′(x )=f ′(x )-f (x )e x .类型四:f ′(x )与sin x 、cos x 组合型类型一中当g (x )=sin x 或g (x )=cos x 时,F ′(x )会出现f ′(x )与sin x 、cos x 的结合形式,我们一起看看常考的几种形式. F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ; F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x ;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ; F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x我们根据得出的结论去解决典例4.【典例4】 (2019·湖南益阳调研)定义在⎝ ⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,恒有f ′(x )>f (x )·tan x 成立,则有( ) A.3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3B.3f ⎝ ⎛⎭⎪⎫π6>2cos1·f (1)C .2f ⎝ ⎛⎭⎪⎫π4<6f ⎝ ⎛⎭⎪⎫π6D.2f ⎝ ⎛⎭⎪⎫π4>f ⎝ ⎛⎭⎪⎫π3[切入点] 由f ′(x )>f (x )tan x ,构造函数g (x )=f (x )·cos x .[解析] 由于f ′(x )>f (x )tan x 且x ∈⎝ ⎛⎭⎪⎫0,π2,则f ′(x )cos x -f (x )sin x >0.设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )sin x >0,所以g (x )在⎝ ⎛⎭⎪⎫0,π2上是增函数,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π6,即f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π6cos π6,即f ⎝ ⎛⎭⎪⎫π3>3f ⎝ ⎛⎭⎪⎫π6.故A 正确.同理可得B ,C ,D 错误.故选A. [答案] A若导函数中出现了sin x 、cos x 、tan x 与f ′(x )的组合形式,根据F ′(x )的结构特点可考虑构造F (x )=f (x )sin x ,F (x )=f (x )cos x 等形式.1.(2020·太原十二中月考)设a >0,b >0,e 是自然对数的底数,则( ) A .若e a +2a =e b +3b ,则a >b B .若e a +2a =e b +3b ,则a <b C .若e a -2a =e b -3b ,则a >b D .若e a -2a =e b -3b ,则a <b[解析] 因为a >0,b >0,所以e a +2a =e b +3b =e b +2b +b >e b +2b .对于函数y =e x +2x (x >0),因为y ′=e x +2>0,所以y =e x +2x 在(0,+∞)上单调递增,因而a >b 成立.故选A. [答案] A2.若函数f (x )的定义域为R ,且满足f (2)=2,f ′(x )>1,则不等式f (x )-x >0的解集为________.[解析] 令g (x )=f (x )-x , ∴g ′(x )=f ′(x )-1.由题意知g ′(x )>0,∴g (x )为增函数. ∵g (2)=f (2)-2=0, ∴g (x )>0的解集为(2,+∞). [答案] (2,+∞)。

例谈“构造法”在高中数学解题中的应用

例谈“构造法”在高中数学解题中的应用

例谈 构造法 在高中数学解题中的应用曾㊀智(光泽县第一中学ꎬ福建南平354100)摘㊀要:高中数学新课程提出ꎬ高中数学的教学重点之一就是空间形式与数量关系ꎬ这两点数学知识是探讨研究自然规律与社会规律的基础工具.构造法ꎬ一方面ꎬ它是高中数学学习的一种重要方法ꎬ能够有效帮助学生理解空间形式与数量关系ꎻ另一方面ꎬ它也是培养学生 构造思维 的重要基础ꎬ是高中数学教育的关键之一.本文在此背景下ꎬ总结了在高中数学解题中应用 构造法 的原则ꎬ又进一步分类总结了具体应用 构造法 的解题案例ꎬ以期为我国高中数学教师开展 构造法 教学提供参考.关键词:构造法ꎻ高中数学ꎻ应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)03-0060-03收稿日期:2023-10-25作者简介:曾智(1984.1-)ꎬ男ꎬ福建省光泽人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀高中数学知识相对于初中而言难度更高ꎬ高中生在学习中不免会面临许多难以解决的问题ꎬ尤其是高中生本身解题经验较少ꎬ解题时常常会出现无法找到题目提供的各项条件与问题间的联系的情况ꎬ进而使解题变得十分艰难[1].这种情况一方面会导致学生解题效率降低ꎬ数学考试成绩下降ꎬ另一方面也会使学生长期承受较大的学习压力ꎬ导致对数学学习的兴趣降低ꎬ甚至抵触数学学习[2].此时ꎬ若学生掌握了 构造法 ꎬ则能够以新的角度审视难题ꎬ通过分析问题条件构造与题目本不相关的知识或模型ꎬ间接地解决难题[3].在这一过程中ꎬ高中生的数学思维能力与逻辑推理能力也得到了提高.因此ꎬ对 构造法 在高中数学解题中的应用进行研究ꎬ是具有一定的理论与现实价值的.1在高中数学解题中应用 构造法 的原则在高中数学解题中应用 构造法 是具有一定的原则的ꎬ其具体内容包括:相似性原则㊀在实际应用 构造法 进行解题时ꎬ需要仔细分析题目中提供的条件或题目本身特征ꎬ展开具有相似性的联想ꎬ进而构造出合理的数学对象ꎬ最终通过该数学对象完成数学解题[4].直观性原则㊀高中生在以 构造法 解题时ꎬ应遵循直观性原则ꎬ通过构造某种辅助解题的数学形式ꎬ使得题目中的条件与结论间形成直观的联系ꎬ进而快速地完成解题.熟悉化原则㊀这一原则指的是高中生在解题时应仔细分析题目的结构特征ꎬ并将其与自身熟悉的某种数学式㊁形㊁方程等进行对比ꎬ进而构造出能够与题目相对应的数学形式ꎬ从而解决问题[5].2应用 构造法 进行高中数学解题的案例应用 构造法 进行高中数学解题的重点在于:(1)应用 构造法 的目的ꎬ即想要通过该方法得到的结论是什么ꎻ(2)构造哪种数学形式才能实现应用 构造法 的目的.只有有效实现上述两个重点ꎬ高中生才能够应用 构造法 解决问题[6].本文通过展示几类高中数学常见问题的 构造法 解法ꎬ展示 构造法 的具体应用方法ꎬ如下所示.2.1 函数构造法 解题案例在高中数学学习中ꎬ函数是重点学习的内容之一ꎬ而在实际题目中ꎬ包含函数的题目往往还会与方06程㊁数列㊁图形等其他数学知识结合ꎬ使高中生解题难度增大.在这一类问题中应用 构造法 能够有效降低解题难度ꎬ进而加快学生解题速度[7].具体案例如下.案例1㊀求函数f(x)=lnx-x+1x-1ꎬ讨论f(x)的单调性ꎬ并证明f(x)有且仅有两个零点.解㊀f(x)的定义域为(0ꎬ1)ɣ(1ꎬ+¥)ꎬ因为fᶄ(x)=1x+2(x-1)2>0ꎬ则f(x)在0ꎬ1()和(1ꎬ+ɕ)这两个区间上单调递增.通过分析题意发现该函数有两个零点ꎬ因为f(e)=1-e+1e-1<0ꎬf(e2)=2-e2+1e2-1=e2-3e2-1>0ꎬ则f(x)在(1ꎬ+¥)有唯一零点x1ꎬ即f(x1)=0.又因为0<1x1<1ꎬ则f(1x1)=-lnx1+x1+1x1-1=-f(x1)=0.故f(x)在0ꎬ1()有唯一零点1x1.综上所述ꎬf(x)有且仅有两个零点.2.2 方程构造法 解题案例在 构造法 中ꎬ方程是一种较为常见的数学形式. 方程构造法 是高中数学解题中的常用方法之一ꎬ尤其是在函数相关题目的解题中.这种方法主要是通过分析题目中的数量关系或特征结构ꎬ构造出一组等量的关系式ꎬ并通过解析关系式找到题目中几个未知量间的关系ꎬ进而得到方程中包含的等量关系[8].具体案例如下.案例2㊀若a1ꎬa2ꎬa3ꎬa4均为非零的实数ꎬ且(a21+a22)a24-2a2(a1+a3)a4+a22+a23=0ꎬ证明四个非零实数中a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.证明㊀分析题目可推导得出ꎬ在四个非零实数中ꎬa4这一非零实数是一元二次方程(a21+a22)x2-2a2(a1+a3)x+(a22+a23)=0的实数根ꎬ则可以推出关系式:ә=4a22(a1+a3)2-4(a21+a22)(a22+a23)=4(2a1a22a3-a21a23-a42)=-4(a22-a1a3)2ȡ0ꎬ因此ꎬ只有当a22-a1a3=0时ꎬ关系式才能成立ꎬ则可推导出a22=a1a3ꎬ同时由于题中表明a1ꎬa2ꎬa3均为非零实数.则可得出a1ꎬa2ꎬa3能够形成等比数列.且通过构造的求根公式可知a4=2a2(a1+a3)2(a21+a22)=a2(a1+a3)a21+a1a3=a2a1ꎬ则a4为该等比数列的公比.综上所述可以证明a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.2.3 向量构造法 解题案例在高中数学的所有知识点中ꎬ向量的相关知识是教学与学习的重难点之一.在高中数学考试中ꎬ与这一知识点相关的题目大多相对简单ꎬ以选择题或填空题为主ꎬ但当这一知识点出现在解答题中时ꎬ常常与立体几何相联系ꎬ解题难度增加许多ꎬ对学生的数学能力要求也相对较高[9].应用 向量构造法 进行解题ꎬ能够引导高中生将日常学习的向量知识点与三角函数㊁复数㊁函数等知识点联系起来ꎬ进而更加轻松地解决问题ꎬ案例如下.案例3㊀已知cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ求sin2A+sin2B+sin2C的值.解㊀设P(cosAꎬsinA)ꎬQ(cosBꎬsinB)ꎬR(cosCꎬsinC)为单位圆上的三个点ꎬ则根据题意可以推导得出O是әPQR的外心.由此可以得到关系式:OPң=(cosAꎬsinA)ꎬOQң=(cosBꎬsinB)ꎬORң=(cosCꎬsinC).因为cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ则OPң+OQң+ORң=(cosA+cosB+cosCꎬsinA+sinB+sinC)=0ꎬ可以推导得出O是әPQR重心ꎬ也是әPQR的外心ꎬ则әPQR为正三角形.由此可得出关系式B=A+2π3+2kπꎬC=A-2π3+2kπꎬ则sin2A+sin2B+sin2C=sin2A+sin2A+2π3æèçöø÷+sin2A-2π3æèçöø÷=sin2A+sinAcos2π3+cosAsin2π3æèçöø÷2+sinAcos2π3-cosAsin2π3æèçöø÷216=sin2A+12sin2A+32cos2A=32综上所述可得ꎬsin2A+sin2B+sin2C=32.2.4 复数构造法 解题案例复数构造法 的应用ꎬ简单来说可以主要分为两类ꎬ一类题目本身就是复数问题ꎬ通过应用复数本身的性质就可以完成解题ꎻ另一类则是非复数问题ꎬ需要间接构造复数形式来完成解题[10].案例如下.案例4㊀求函数f(x)=(x-5)2+16+(x-1)2+4的最小值.证明:构造复数z1=5-x+4iꎬz2=x-1+2iꎬ则f(x)=z1+z2ȡz1+z2=4+6i=213.当z1=kz2ꎬ即5-x+4i=k(x-1)+2i[]时取等号ꎬ解得x=73ꎬ即x=73时ꎬf(x)有最小值213.2.5 图形构造法 解题案例数形结合思维是高中数学思维培养中的关键ꎬ这一思维的形成与 图形构造法 的应用有着密不可分的关系.应用 图形构造法 进行解题的案例具体如下所示.案例5㊀证明正弦两角和公式sin(α+β)=sinαcosβ+cosαsinβ.证明:如图1所示ꎬ在线段CD上任取一点Aꎬ以A为圆心ꎬ1为半径做圆弧分别过C点和D点ꎬ且和CD垂直的直线相交于点B与点Eꎬ令øBAC=αꎬøEAD=βꎬ则øBAE=π-(α+β)ꎬBC=sinαꎬAC=cosαꎬDE=sinβꎬAD=cosβ.图1㊀案例5证明示意图梯形BCDE=әABC+әADE+әABEꎬ考虑面积相等可得:12(sinα+sinβ)(cosα+cosβ)=12sinαcosα+12sinβcosβ+12ˑ12ˑsin(π-α-β)即(sinα+sinβ)(cosα+cosβ)=sinαcosα+sinβcosβ+sin(α+β)ꎬ展开整理得sin(α+β)=sinαcosβ+cosαsinβ即可得证.3结束语«普通高中数学课程标准»中提出ꎬ数学核心素养包含具有数学基本特征的思维品格和关键能力ꎬ是数学知识㊁技能㊁思想㊁经验及情感㊁态度㊁价值观的综合体现. 构造法 作为高中最常使用的数学思想方法之一ꎬ能够有效培养高中生的创造思维与创新意识ꎬ综合提升其数学学科思维ꎬ但目前我国高中生对于 构造法 的了解大多有限.本文探讨了 构造法 在高中数学解题中的应用ꎬ为 构造法 在我国高中的推广应用贡献力量.㊀参考文献:[1]吴玉辉.构造法在高中数学圆锥曲线解题中的应用[J].华夏教师ꎬ2021(35):31-32.[2]顾建华.基于 构造法 的高中数学解题思路探索[J].科学咨询(教育科研)ꎬ2020(10):166.[3]吴建文.构造法在高中数学教学中的应用[J].华夏教师ꎬ2019(19):40.[4]袁胜蓝ꎬ袁野.高中数学数列通项公式的几种求法[J].六盘水师范学院学报ꎬ2019ꎬ31(03):117-120.[5]杨丽菲.高中数学解题中应用构造法的实践尝试[J].科学大众(科学教育)ꎬ2018(12):7.[6]何婷.构造函数求解高中数学问题[J].科学咨询(科技 管理)ꎬ2018(06):144.[7]李正臣.高中数学解题中应用构造法之实践[J].科学大众(科学教育)ꎬ2018(02):34.[8]罗杰.分析高中数学三角函数的解题技巧[J].中国高新区ꎬ2017(22):102.[9]洪云松.高中数学圆锥曲线解题中构造法的使用[J].农家参谋ꎬ2017(13):160.[10]刘米可.构造函数法在高中数学解题中的应用[J].经贸实践ꎬ2016(23):226.[责任编辑:李㊀璟]26。

数学-导数压轴题之构造函数和同构异构详述(解析版)

数学-导数压轴题之构造函数和同构异构详述(解析版)

导数章节知识全归纳导数压轴题之构造函数和同构异构(详述版)一.考试趋势分析:由于该内容在高考内容中考试频率相对比较低,然而它却在我们平时考试或是诊断型考试中出现又较高,并且该内容属于高中数学里面导数的基本考试题型之一,基本上尖子生里面的基础题,又是一般学生里面的压轴题,所以老师你觉得讲还是不讲呢?针对这个情况,作者进行了多年研究和分析,这个内容一定要详细讲述,并且结合技巧性让学生能够熟练掌握,优生几秒钟,一般学生几分钟就可以完成该题解答,是设计这个专题的核心目的! 二.所用知识内容: 1.导数八大基本求导公式:①0;C '=(C 为常数) ②()1;nn xnx-'=③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x xe e '= ⑥()ln x xa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'= 2.常见构造:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()ex f x F x =,()2()f x f x '-,构造2()()e xf x F x =,……………… ()()f x nf x '-,构造()()enxf x F x =, 3.同构异构方法:1.顺反同构:顺即为平移拉伸后的同构函数,反即为乘除导致的凹凸反转同构函数. 2.同位同构:①加减同构是指在同构的过程中“加减配凑”,从而完成同构;②局部同构是指在同构过程中,我们可以将函数的某两个或者多个部分构造出同构式,再构造同构体系中的亲戚函数即可;③差一同构是指指对跨阶以及指数幂和对数真数差1,我们往往可考虑用同构秒杀之.三.导数构造函数典型题型: 1.构造函数之和差构造:例:1.已知定义在R 上的函数()f x 满足()220f =,且()f x 的导函数()f x '满足()262f x x >'+,则不等式()322f x x x >+的解集为( )A .{2}xx >-∣ B .{2}xx >∣ C .{2}xx <∣ D .{2∣<-xx 或2}x > 【答案】B 【分析】令函数()()322g x f x x x =--,求导,结合题意,可得()g x 的单调性,又()20g =,则原不等式等价于()()2g x g >,根据()g x 的单调性,即可得答案. 【详解】令函数()()322g x f x x x =--,则()()2620g x f x x =--'>',所以()g x 在R 上单调递增.因为()2g =()3222220f -⨯-⨯=,所以原不等式等价于()()02g x g >=,所以所求不等式的解集为{2}.xx >∣ 故选:B2.定义在()0,∞+上的函数()f x 满足()()10,42ln 2xf x f '->=,则不等式()xf e x <的解集为( ) A .()0,2ln 2 B .(),2ln 2-∞ C .()2ln 2,+∞ D .()1,2ln 2【答案】B 【分析】构造函数()()ln g x f x x =-,()0,x ∈+∞,先判断其导函数的正负,来确定该函数的单调性,再化简不等式为()()4xg e g <,根据单调性解不等式即可.【详解】设()()ln g x f x x =-,()0,x ∈+∞,则()()()110xf x g x f x x x'-''=-=>, 故()g x 在()0,∞+上单调递增,()()2l 4n 22ln 2404ln g f -===-,不等式()xf ex <,即()ln 0xxf e e-<,即()()4x g e g <,根据单调性知04x e <<,即ln 44x e e <=,得ln 4x <,即2ln 2x <,故解集为(),2ln 2-∞. 故选:B. 【点睛】 思路点睛:利用导数解不等式时,常常要构造新函数,新函数一方面与已知不等式有关,一方面与待求不等式有关,再结合导数判断单调性,利用单调性解不等式.变式:1.已知奇函数()f x 在R 上的导函数为()'f x ,且当(],0x ∈-∞时,()'1f x <,则不等式()()2101110102021f x f x x --+≥-的解集为( ) A .()2021,+∞ B .[)2021,+∞ C .(],2021-∞ D .(),2021-∞【答案】C 【分析】利用()'1f x <构造函数g (x ),即可得到函数g (x )的单调性,再将所解不等式转化为用g (x )表达的抽象函数不等式而得解. 【详解】因()'1f x <,即()10f x '-<,令()()g x f x x =-,则()0g x '<,()g x 在(,0]-∞上递减, 又()f x 是R 上的奇函数,则()g x 也是R 上的奇函数,从而有()g x 在R 上单调递减, 显然()()f x g x x =+,则有()()2101110102021f x f x x --+≥-(21011)(21011)[(1010)(1010)]2021g x x g x x x ⇔-+--+++≥-(21011)21011(1010)10102021g x x g x x x ⇔-+--+--≥- (21011)(1010)g x g x ⇔-≥+由()g x 在R 上单调递减得2101110102021x x x -≤+⇔≤, 所以所求不等式的解集为(],2021-∞. 故选:C 【点睛】关键点睛:解给定导数值特征的抽象函数不等式,根据导数值特征构造对应函数是解题的关键.2.构造函数之乘积构造:例:1.()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( ).A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <【答案】A 【分析】构造()2()f x g x x =,求导得3()2()0()xf x g x f x x '-'=>,知()2()f x g x x=在()0,∞+上为增函数,进而由(2022)(20221)g g >即可判断.【详解】令()2()f x g x x =,则243()()2()()2()x f x xf x xf x g x f x x x''--'==, 因为在()0,∞+上的导函数为()()2xf x f x '>,所以在()0,∞+上()0g x '>,即()2()f x g x x=在()0,∞+上为增函数. 所以()()()()22202220212022202120222021f f g g >⇒>,即()()222021202220222021f f >.故选:A.2.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞-B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞【答案】A 【分析】根据题目中信息其导函数为()f x ',若()2()0xf x f x '->可知,需构造函数2()()f x g x x =, 利用导函数判断函数()g x 的单调性,利用函数()g x 的单调性、奇偶性来解题,当0x > 时,即2()19f x x <,1()9g x <,当0x < 时,即2()19f x x >,1()9g x >. 【详解】构造函数2()()f x g x x =,43'()2()'()2()'()xf x f x xf x f x g x x x x --=⋅= , 当0x > 时,()2()0xf x f x '->,故'()0g x >,()g x 在(0,)+∞ 上单调递增, 又()f x 为偶函数,21y x =为偶函数, 所以2()()f x g x x =为偶函数,在,0()-∞ 单调递减. (3)1f -=,则(3)1f =,231(3)(3)39f g g -===(); ()19f x x x <, 当0x > 时,即2()19f x x <,1()(3)9g x g <=,所以(0,3)x ∈ ; 当0x < 时,即2()19f x x >,1()(3)9g x g >=-,所以(,3)x ∈-∞-. 综上所述,(,3)(0,3)x ∈-∞-⋃.故选:A 【点睛】需对题中的信息联想到构造函数利用单调性解不等式,特别是分为当0x > 时, 当0x < 时两种情况,因为两边同时除以x ,要考虑其正负.3.定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是( ) A .(0)0f =B .(0)0f <C .()0f π>D .02f ⎛⎫=⎪⎝⎭π【答案】C 【分析】设cos () ()e xx f x g x ⋅=,由条件可得()0g x '<,即()g x 在R 上单调递减,且02g π⎛⎫= ⎪⎝⎭,由此卡判断选项A ,B , C , 将2x π=代入条件可得02f π⎛⎫>⎪⎝⎭,可判断选项D. 【详解】由题可得cos ()sin ()cos ()xf x xf x xf x '-<,所以(cos ())cos ()xf x xf x '<,设cos () ()e x x f x g x ⋅=则(cos ())cos ()()0e xxf x xf x g x '-'=<, 所以()g x 在R 上单调递减,且02g π⎛⎫=⎪⎝⎭由(0)()2g g g ππ⎛⎫>>⎪⎝⎭可得() (0)0e f f ππ>>-, 所以(0)0f >,()0f π>,所以选项A 、B 错误,选项C 正确.把2x π=代入cos ()(cos sin )()xf x x x f x '<+,可得02f π⎛⎫> ⎪⎝⎭,所以选项D 错误,故选:C . 【点睛】关键点睛:本题考查构造函数,判断函数单调性判断函数值的符号,解答本题的关键是根据题意构造函数cos () ()e xx f x g x ⋅=,由条件得出其单调性,根据02g π⎛⎫= ⎪⎝⎭,判断选项,属于难题.变式:1.已知定义在0,2π⎛⎫⎪⎝⎭的函数()f x 的导函数为()f x ',且满足()()sin cos 0f x x f x x '-<成立,则下列不等式成立的是( )A64f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B.36f ππ⎫⎫⎛⎛<⎪ ⎪⎝⎝⎭⎭C43ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】B 【分析】 构造函数()()sin f x g x x=,求导后可确定其单调性,利用单调性比较大小可判断各选项. 【详解】设()()sin f x g x x =,则2()sin ()cos ()0sin f x x f x x g x x -''=<,所以()g x 在0,2π⎛⎫⎪⎝⎭上是减函数, 所以()()64sin sin 64f f ππππ>()()64f ππ>,A 错;()()63sin sin 63f f ππππ>()()63f ππ>,B 正确; ()()34sin sin43f f ππππ>()()43ππ>,C 错;3f π⎛⎫ ⎪⎝⎭3π⎛⎫ ⎪⎝⎭与23f π⎛⎫ ⎪⎝⎭大小不确定,D 不能判断.故选:B . 【点睛】关键点点睛:本题考查比较大小问题,解题关键是构造新函数()()sin f x g x x=,由导数确定其单调性,从而可比较函数值大小.变式:2。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种)一、 观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例:求函数()x 323y -+=的值域。

点拨:根据算术平方根的性质,先求出()x 3-2的值域。

解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。

点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。

练习:求函数()5x 0x y ≤≤=的值域。

(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例:求函数2x 1x y ++=的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数x-x -xx 10101010y ++=的值域。

(答案:{}1y 1-y |y 或)。

三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。

例:求函数()2x x-y 2++=的值域。

点拨:将被开方数配方成平方数,利用二次函数的值求。

解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。

此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:x 4-155-x 2y +=的值域。

(答案:{}3y |y ≤)四、判别式法:若可化为关于某变量的二次方程的分式函数或无理数,可用判别式法求函数的值域。

高中数学数列题型归纳及解题方法梳理

高中数学数列题型归纳及解题方法梳理

1数列典型例题分析【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an}的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得=, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n.(Ⅱ)由(Ⅰ)知=2n,由等比数列前n 项和公式得S m =2+22+23+ (2)==2n+1-2.小结与拓展:数列{}na 是等差数列,则数列}{na a 是等比数列,公比为da ,其中a 是常数,d 是{}na 的121d +1812d d++2ma 2(12)12n --公差。

(a>0且a≠1).【题型2】与“前n项和Sn与通项an”、常用求通项公式的结合例 2 已知数列{a n}的前三项与数列{b n}的前三项对应相同,且a1+2a2+22a3+…+2n-1a n=8n对任意的n∈N*都成立,数列{b n+1-b n}是等差数列.求数列{a n}与{b n}的通项公式。

解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ①当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n-1)(n∈N*) ②①-②得2n-1a n=8,求得a n=24-n,在①中令n=1,可得a1=8=24-1,∴a n=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2,2∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n -b n=-4+(n-1)×2=2n-6,+1法一(迭代法)b n=b1+(b2-b1)+(b3-b2)+…+(b n-b n-1)=8+(-4)+(-2)+…+(2n-8)=n2-7n+14(n∈N*).法二(累加法)即b n-b n-1=2n-8,b n-1-b n-2=2n-10,…b3-b2=-2,b2-b1=-4,b1=8,相加得b n=8+(-4)+(-2)+…+(2n-8)34 =8+(n -1)(-4+2n -8)2=n 2-7n +14(n∈N *).小结与拓展:1)在数列{a n }中,前n 项和S n 与通项a n 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n.是重要考点;2)韦达定理应引起重视;3)迭代法、累加法及累乘法是求数列通项公式的常用方法。

富有创新思想的数学解题方法——构造法

富有创新思想的数学解题方法——构造法

答案 : 选B 。
例4 : ( 0 6 年福建高考题 ) 已知数列 t a ) } 茼足 =1 , 口 : =3 ,
口 = 3 a + I 一 2 D . ( n E N’ ) 求数 列的 { 口 . 】 通 项公 式。 分析 : 二阶线性 递归 数列求通 项 可通过 其 对 应 的特 征方 程 的 根 位, 构造新 数列 : D + 2 一 p + l =a ( 口 . 1 一 口 ) 构造 特征方 程 。 = 3 x 一 2 = 批I = 1 , 2 = 2 口 + 2 - O , + l = 2 ( 口 + I 一 口 ) 令6 = 口 + 。 一 口 , 则 数列 { b 】 是以b 。 = 口 2 一o 。 = 2为首 项 , 公
( A ) 00 2 8 ( B ) 2 o 1 7 ( C ) 01 2 3 ( D ) 00 2 8 分析 : 联想到等差数列的通项公式 t 1 . =口 + d 则( m+1 ) 圆n =m @n 一1 可等价构 造数 列 - 0 . . . I . 一口 =一1 令, l = 1 , 则数列 l 口 _ . 。 } 是首项为 8 I . 1 =1 01= 2 , 公差 d=一1
话数外学 习
No . O 9 . 2 O l 3
Y u S h u Wa i X u e X i
2 0 1 3年第 9期
富 有 创 新 思 想 的数 学解 题 方 法—— 构造 法
马新 明
( 慈溪市 慈中书院, 浙江 慈溪 3 1 5 3 0 0 )
摘 要: 所谓 的构造 法是 指 某些数 学 问题 用常规 方法一 时难 以解 决 ( 或者 解 决起 来很 复 杂 ) 的情 况下 , 我 们根 据 命题 的条件 和 结

2018年中考数学方法技巧:专题四-构造法训练(含答案)

2018年中考数学方法技巧:专题四-构造法训练(含答案)

5.如图F4-3,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式0<kx+b<x的解为________.方法技巧专题四构造法训练构造法是一种技巧性很强的解题方法,它能训练思维的创造性和敏捷性.常见的构造形式有:1.构造方程;2.构造函数;3.构造图形.一、选择题图F4-11.如图F4-1,OA=OB=OC,且∠ACB=30°,则∠AOB的大小是()A.40°B.50°C.60°D.70°2.已知a≥2,m2-2am+2=0,n2-2an+2=0,则(m-1)2+(n-1)2的最小值是()A.6B.3C.-3D.03.设关于x的一元二次方程(x-1)(x-2)=m(m>0)的两根分别为α,β,且α<β,则α,β满足() A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>2二、填空题4.如图F4-2,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于________.图F4-213图F4-36.关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________.7.[2016·成都]如图F4-△4,ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB =________.图F4-48.如图F4-5,在四边形ABCD中,AB∥DC,E是AD的中点,EF⊥BC于点F,BC=5,EF=3.图F4-5(1)若AB=DC,则四边形ABCD的面积S=________;(2)若AB>DC,则此时四边形ABCD的面积S′________S(用“>”或“=”或“<”填空).三、解答题9.如图F4-6,直立于地面上的电线杆A B,在阳光下落在水平地面和坡面上的影子分别是BC,CD,测得BC=6m,CD=4m,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度.(结果保留根号)图F4-6参考答案1.C[解析]以点O为圆心,以OA为半径作⊙O.∵OA=OB=OC,∴点B,C在⊙O上.∴∠AOB=2∠ACB=60°.故选C.注:此题构造了圆.2.A[解析](1)当m=n时,(m-1)2+(n-1)2=2(m-1)2.此时当m=1时,有最小值0.而m=1时,代入原方程求得a=.=(m+n)2-2mn-2(m+n)+2=4a2-4-4a+2=4(a-)2-3.∵a≥2,∴当a=2时,(m-1)2+(n-1)2有最小值.∴(m-1)2+(n-1)2的最小值=4(2-)2-3=6.故选A.5.3<x<6[解析]作直线OA,易知直线OA的解析式为y=x.由图可知,不等式kx+b>0的解为x<6;不等式kx+b<x的解为x>3.所以不等式0<kx+b<x的解为3<x<6.注:此题构造了一次函数y=x.7.[解析]如图,作直径AE,连结CE,则∠ACE=90°.32∵不满足条件a≥2,∴舍去此种情况.(2)当m≠n时,∵m2-2am+2=0,n2-2an+2=0,∴m,n是关于x的方程x2-2ax+2=0的两个根.∴m+n=2a,mn=2,∴(m-1)2+(n-1)2=m2-2m+1+n2-2n+11212注:此题根据两个等式构造了一个一元二次方程.3.D[解析]一元二次方程(x-1)(x-2)=m(m>0)的两根实质上是抛物线y=(x-1)(x-2)与直线y=m两个交点的横坐标.如图所示,显然α<1且β>2.故选D.注:此题构造了二次函数.4.15[解析]分别将线段AB,CD,EF向两端延长,延长线构成一个等边三角形,边长为8.则EF=2,AF=4,故所求周长=1+3+3+2+2+4=15.注:此题构造了等边三角形.131133136.x1=-4,x2=-1[解析]根据方程的特点联想二次函数的顶点式.将函数y=a(x+m)2+b的图象向左平移2个单位得函数y=a(x+m+2)2+b的图象,因此将方程a(x+m)2+b=0的解x1=-2,x2=1分别减去2,即得所求方程的解.注:此题构造了二次函数.392∴=.∴AB=.∴AB==.∴AB=BE×tan E=(6+43)×3∵AH⊥BC,∴∠AHB=90°.∴∠ACE=∠AHB.∵∠B=∠△E,∴ABH∽△AEC.AB AH AE·AHAE AC AC∵AC=24,AH=18,AE=2OC=26,18×2639242注:此题构造了直角三角形.8.(1)15(2)=[解析](1)平行四边形的面积等于底乘高;(2)如图,连结BE,并延长BE交CD的延长线于点G,连结CE.易证△EAB≌△EDG.∴BE=EG.∴S四边形ABCD=△SBCG=2△SBCE=BC·EF=15.注:此题根据平行线间线段的中点构造了全等三角形.9.解:如图,延长AD交BC的延长线于E,过点D作DF⊥BE于F.∵∠BCD=150°,∴∠DCF=30°.∵CD=4,∴DF=2,CF=2 3.由题意得∠E=30°,∴DC=DE.∴CE=2CF=43.∴BE=BC+CE=6+4 3.3=23+4.答:电线杆的高度为(23+4)m.注:此题构造了直角三角形.三角函数只能应用于直角三角形中,因此用三角函数解决四边形或斜三角形的问题时,必须构造直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, ∴ymin=
七、构造几何图形
一般来讲,代数问题较为抽象,若能通过构造将之合理转化为几何
问题,利用“数形结合”这一重要思想方法,往往可增强问题的直观性,
使解答事半功倍或独具匠心。
【例8】、(见【例1】) 证:构造边长为1的正△ABC,D,E,F为边上三点, 并设BD=x,CE=y, AF=z,如图1 显然有S△BDE+S△CEF+S△ADF <
即m的最大值为,故,即
八、构造模型 数学和其它学科一样,要学以致用,“建模”思想就把数学这门高度
抽象的基础学科与实际生活紧密地联系在一起,在实际中渗透数学思 想,把数学中的理论作为工作,充分发挥其作用,因而许多问题可通过 构造模型来处理 【例10】(哥尼斯堡七桥问题)18世纪,东普鲁士首府,布勒尔河穿城 而过,河中间有两个小岛,如图。当地的居民常到这散步,“如何能不 重复地一次走遍这七座桥而返回出发地呢?”许多人均未成功,这便产 生了数学史上著名的“七桥问题”。1735年 欧拉对该问题进行抽象,构造 出图论中的“一笔画”模型才知该问题无解,这一模型的构造充分展示出 欧拉超人的智慧。近年来,构造模型的方法越来越被重视,并成为高考 中的一道独特的风景线。 B
四、构造代数式
代数式是数学的重要组成要素之一,有许多性质值得我们去发现和
应用。
【例5】、当时,求的值.
解:由条件得 所以 ,构造的因式y=
====1
五、构造数列
相当多的数学问题,尤其是证明不等式,尝试一下“构造数列”能产生意
想不到的效果。
【例6】证明:(n=1,2,3……)
分析此命题若直接证明,颇具难度,倘若构造数列x1=x2=…
九、构造情境 有一些问题看似简单,但真正处理起来非难则繁,如能合理、巧妙
地构造一些情境,不但易使问题“柳暗花明”,而且其新颖独特的解题模 式让人深刻感受到数学思想维的美妙。 【例11】如图4摆放的24张牌,全部反面朝上,以任意一张牌为起点翻 牌,一张挨一张翻,只能横着或竖着翻,不能斜着或跳着翻,问能否将 每一张牌全部翻过来?
= 所以 即
5、分析:条件式中次数是3次,而结论式中是1次,所以需要降幂。 又结论式是不等式,当且仅当时成立。于是考虑构造均值不等式。 解:由均值不等式得: …………… (1) 同理………………(2) 由(1)+(2)变形整理得: 6、证明:构造函数
易证在R上是奇函数且单调递增
+ ==lg1 = 0
分析:由于每翻一张牌,翻下一张牌又有若干不同的情况,于是情况尤 为复杂,难以一一尝试,我们可以用一特殊的方法来解决此题。构造如 下情境:假设各张牌如图5染上白色或黑色,使得黑白相间。这样,每 张牌的下一张牌就是不同色的。而由翻牌的规则可知翻完所有的牌时两 色牌至多相差一张,但由图5知白色牌比黑色牌多2张,显然不可办得 到。
从以上各例不难看出,构造法是一种极富技巧性和创造性的解题方 法,体现了数学中发现、类比、化归的思想,也渗透着猜想、探索、特 殊化等重要的数学方法。运用构造法解数学题可从中欣赏数学之美,感 受解题乐趣,更重要的是可开拓思维空间,启迪智慧,并对培养多元化 思维和创新精神大有裨益。
构造法体现了数学发现的思维特点,“构造”不是“胡思乱想”,不是 凭空“臆造”,而是要以所掌握的知识为背景,以具备的能力为基础,以 观察为先导,以分析为武器,通过仔细地观察、分析、去发现问题的各 个环节以及其中的联系,从而为寻求解法创造条件。
十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有 些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。 在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找 到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日 等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造 性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为 数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极 其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能 力和创造能力为前提,根据题目的特征,对问题进行深入分析,找 出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠 成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为 数、式、函数、方程、数列、复数、图形、图表、几何变换、对应、数 学模型、反例等,从下面的例子可以看出这些想法的实现是非常灵活 的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结规 律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二 要弄清楚问题的特点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: (构造函数) 2、若x > 0, y > 0, x + y = 1,则(构造函数) 3、已知,,求证: (构造图形、复数) 4、求证:,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:当且仅当时取等号。(构造图形)
由几何知识可知:AB+BC≥AC ∴+≥ 当且仅当A、B、C三点共线时等号成立,此时有 ,即ab+bc=ac 故当且仅当时取等号。
6、解:由根号下的式子看出且 故可联想到三角函数关系式并构造
所以 , 当即时,
示范性题组 一、构造函数
理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认 识上的飞跃。很多数 学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一 格,耐人寻味。 【例1】、已知x,y,z∈(0,1),求证:x(1-y)+y(1-z)+z(1-x)<1 (第15 届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨 用构造法一试。 证:构造函数f(x)=(y+z-1)x+(yz-y-z+1)∵y,z∈(0,1),∴f(0)=yz-y-z+1=(y-1) (z-1)>0,f(1)=(y+z-1)+(yz-y-z+1)=yz>0,而f(x)是一次函数,其图象是 直线,∴由x∈(0,1)恒有 f(x) >0,即(y+z-1)x+(yz-y-z+1)>0,整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程:
评注 欲证含有与自然数n有关的和的不等式f(n)>g(n),可以构造数列模 型,只需证明数列是单调递增,且.另外,本题也可以用数学归纳法证
明,但用构造数列模型证明简洁.
9、解:
其几何意义是平面内动点P(,0)到两定点 M(2,3)和 N(5,-1)的距离之和(如图1) 为求其值域只要求其最值即可, 易知当M,N,P三点共线(即P在线段MN上)时, 取得最小值, ,无最大值,故得函数的值域为 10、分析:从几何意义上考虑把原解析式看作是动点P与定点Q(3,0)连 线的斜率,为此构造一个单位圆。探究单位圆上动点P与定点Q(3,0)直 线的斜率问题。
复数是实数的延伸,一些难以解决的实数问题通过构造转化为复数 问题,虽然数的结构会变复杂,但常使问题简明化,正所谓“退一步海 阔一空”。 【例4】、a,b,x,y∈{正实数},且x2+y2=1,求证:+=≥a+b
证:设z1=ax+byi,
z2=bx+ayi,则+=∣Z1∣
+∣Z2∣≥∣Z1+Z2∣=∣(a+b)x+(a+b)yi∣=(a+b)=a+b,不等式得证:
=xn=1+,xn+1=1
利用平均ห้องสมุดไป่ตู้不等式≥ ,顿使命题明朗化。
六、构造向量
新教材的一个重要特点是引入向量,代数、几何、三角中的很多问
题都可以利用向量这一工具来解决.
【例7】已知a,b,c为正数,求函数y=的最小值.
解: 构造向量=(x,a),=(c-x,b),则原函数就可化为:y=││+││≥│+│
巩固性题组 1、已知x > 0,求证: (构造函数)
2、若,且,则(构造函数)
3、记,,则(构造图形)
4、求证:(构造向量)
5、正数满足,求证:(巧用均值不等式)
6、求证:如果,那么(构造函数) 7、已知数列{}, , 求(构造数列)
8、求证:(其中nN+).(构造数列)
9、求函数的值域(构造图形)
即x(1-y)+ y(1-z)+ z(1-x)< 这道竞赛题能如此简洁、直观地证明,真是妙不可言。 【例9】、求证: 简析:的结构特点,使我们联想到椭圆方程及数形结合思想。 解:令 ,
则其图象是椭圆的上半部分,设y2x=m,于是只需证, 因 m为直线y=2x+m在y轴上的截距,由图可知: 当直线 y = 2 x+m 过点(,0)时,m有最小值为m=; 当直线y =2x+m与椭圆上半部分相切时,m有最大值。 由 得:13x2 + 4mx + m2 – 4 = 0 令△= 4(52-9m2)=0 得:或(舍)
6、求函数的最大值(构造三角函数) 再现性题组简解: 1、解:设 则,用定义法可证:f (t)在上单调递增,令:3≤ 则 ∴ 2、解:左边 令 t = xy,则,在上单调递减 ∴ 3、解:构造单位正方形,O是正方形内一点,O到AD, AB的距离为a, b, 则|AO| + |BO| + |CO| + |DO|≥|AC| + |BD|, 其中,
又: ∴
另解:从不等式左边的结构特点容易联想到复数的模,将左边看成 复数Z1=x+y i , Z2 = x +(1- y)i ,Z3 = 1- x + y i ,Z4 = 1- x +(1- y)i 模的和, 又注意到Z1+Z2+Z3+Z4=2+2 i ,于是由 +++≥可得 4、解:不等式左边可看成与 x 和与两两乘积的和,从而联想到数量积 的 坐标表示,将左边看成向量=(,)与=( x, )的数量积,又, 所以 当且仅当=λ (λ>0) 时等号成立,故由得:x=,λ=1,即 x =时,等号成立。 5、解:从三个根式的结构特点容易联想到余弦定理,于是可构造如下 图形: 作OA=a,OB=b,OC=c,∠AOB=∠BOC=60° 如图(1) 则∠AOC=120°,AB=,BC=,AC=
相关文档
最新文档