异步电机有三种运行状态
异步电机的三种运行状态和条件

一、异步电机的基本原理和结构异步电机是一种常见的交流电动机,其工作原理是利用交流电产生的旋转磁场来驱动转子实现动力输出。
异步电机的结构包括定子和转子两部分,定子绕组接通交流电源,产生旋转磁场;转子则受到旋转磁场的作用而转动,从而驱动负载工作。
二、异步电机的运行状态异步电机在运行过程中,可以根据其工作状态和条件分为三种类型,分别为:1. 恒定转速状态:在恒定转速状态下,电机的转速维持在一个恒定值不变,通常用于一些对稳定转速要求较高的场合。
2. 变速状态:在变速状态下,电机的输出转速可以根据需要进行调节,通常通过变频器或直流调速器来实现,适用于需要频繁改变转速的场合。
3. 负载变化状态:在负载变化状态下,电机的输出转矩和转速根据负载的变化而变化,通常用于负载波动较大的场合,需要根据具体负载情况调整电机的工作状态。
三、异步电机的运行条件异步电机能够正常运行需要满足一定的条件,包括:1. 供电电源的稳定性:电机工作时需要稳定的供电电源,电压波动过大或频率不稳定都会影响电机的正常运行。
2. 机械部件的良好状况:电机的轴承、油封、绝缘等机械部件需要保持良好的状态,否则会影响电机的工作效果甚至损坏电机。
3. 合理的负载匹配:电机的输出功率和转速需要与负载匹配,过大或过小的负载都会影响电机的运行效果和寿命。
4. 良好的通风散热条件:电机在运行过程中会产生热量,需要良好的通风散热条件来保持电机的温度在合理范围内。
四、异步电机各种运行状态和条件的应用不同的运行状态和条件适用于不同的场合和需求,具体应用包括但不限于:1. 恒定转速状态适用于一些需要稳定转速输出的场合,如风机、泵等。
2. 变速状态适用于需要频繁改变转速的场合,如输送带、提升机等。
3. 负载变化状态适用于负载波动较大的场合,如破碎机、混合机等。
总结:异步电机具有多种运行状态和条件,通过合理选择和配置可以满足不同场合和需求的工作要求。
在使用过程中需要注意保持电机和供电环境的稳定和良好,以保证电机的正常运行和延长其使用寿命。
三相绕线式异步电动机各种运行状态下的机械特性

三相绕线式异步电动机各种运行状态下的机械特性原理简述机械特性是指其转速与转矩间的关系,一般表示为。
由于三相异步电动机的机械特性呈非线性关系,所以函数表达式以转速为自变量,转矩为因变量,写为更为方便。
又因转差率s也可以用来表征转速,而且用s表示的机械特性表达式更为简洁,所以对三相异步电动机一般用来表示机械特性,同时将作为横坐标,这样和原的图形是一致的。
一、三相异步电动机机械特性的表达式三相异步电动机机械特性的表达式一般有三种:1.物理表达式其中为异步电机的转矩常数;为每极磁通;为转子电流的折算值;为转子回路的功率因数。
2.参数表达式其中。
3.实用表达式其中为最大转矩,为发生最大转矩时的转差率。
三种表达式其应用场合各有不同,一般物理表达式适用于定性分析与及间的关系,参数表达式可以分析各参数变化对电动机运行性能的影响,而实用表达式最适合用于进行机械特性的工程计算。
二、三相异步电动机的机械特性1.固有机械特性固有机械特性是指异步电动机在额定电压、额定频率下,电动机按规定方法接线,定子及转子回路中不外接电阻(电抗或电容)时所获得的机械特性,如图15-1所示。
图15-1 三相异步电动机的固有机械特性下面对机械特性上反映其特点的几个特殊点进行分析:(1)起动点:其特点是:,,起动电流;(2)额定运行点:其特点是:,,;(3)同步速点:其特点是:,,,,点是电动状态与回馈制动的转折点;(4)最大转矩点:电动状态最大转矩点,其特点是:,;回馈制动最大转矩点,其特点是:,;由公式可以看出,。
2.人为机械特性由三相异步电动机机械特性的参数表达式可见,异步电动机的电磁转矩在某一转速下的数值,是由电源电压、频率、极对数及定转子电路的电阻、电抗、、、决定的。
因此人为的改变这些参数,就可得到不同的人为机械特性。
现介绍改变某些参数时人为机械特性的变化:(1)降低电压不变,不变,因为,,,所以降低电压时,、、均减小,其人为机械特性见图15-2。
异步电机1-异步电机的基本理论

I1
r1
x1
U1
E1
m1, N1, kw1, f1
I2 sx20 r2 E2 m2 , N2 , kw2 , f2
17
二、什么是异步电动机的频率折算?
✓异步电动机转子的频率为 f2=s f1为了统一电路,必须先统一频率。 ✓转子堵转时s =1,f2 = f1 。 ✓用一个不动的转子代替一个 转差率为 s 的实际旋转转子,就可以统一频率。 ✓ 折算的方法是:将异步电动机的转子电阻增加到 r2/s 。 ✓ 转子电阻的增加量为 r2/s - r2 = (1-s)r2 / s 。 ✓ 这一电阻称为附加电阻。分析证明:附加电阻上消耗的电功率等于电机的机械功率。
x20
r2
P1 U1
rm
PM
1s s r2
P
P2
xm
P1 m1U1I1 cos 1 PM P1 pCu1 pFe pCu2 m1I22r2
PCu1 m1r1I12
PFe
m1rm
I
2 m
m1
I
2 2
r2 s
P
m1I22 1 s s r2
P2 P p p
22
二、异步电动机的功率平衡方程是怎样的?
P1 m1U1I1 cos 1 PM P1 pCu1 pFe pCu2 m1I22r2
解: (1)从负载转速判断,其定子旋转磁场的转速为1500r/min,其极数为:
(2)转差率:
2 p 2 60 f 4 n1
s n1 n 0.0267 n1
(3)工作电流估算: ( cosj = 0.8 , cosNN
11
13-3 异步电动机电势平衡
I1L
I2 ki
16
第九章 三相异步电动机的机械特性及各种运转状态 第一节 三相异步电动机机械特性的三种表达式

U
2 X
(10 17)
R12
(X1
X
' 2
)
2
正号对应于电动机状态,而负号则适用于发电机状态 考虑 R1 << ( X1 + X2') ,可得:
Sm
R2'
X1
X
' 2
(10 18)
Tm
m1U
2 X
20 ( X1
X
' 2
)
(10 19)
可以看出:
4.几点规律
1)当电动机各参数及电源频率不变时, Tm 与 UX2 成正比,sm 因与 UX 无关而保持不变
二.异步电动机机械特性的参数表达式
采用参数表达式可直接建立异步电动机工作时转矩和转速关系并 进行定量分析
E
' 2
2f1W1kW1 m (10 5)
0
2f
p
(10 6)
T
m1 0
E
' 2
I
' 2
c
os
' 2
(10 7)
E
' 2
I
' 2
Z
' 2
(10 8)
R2'
c
os
' 2
PT
3I
2 2
R2 R f s
(10 44)
转子轴上机械功率为
P2 PT (1 s) (10 45)
s > 1,P2 为负值,即电动机由轴上输入机械功率 转子电路的损耗为
DP2 PT (1 s) (10 45)
DP2 数值上等于 PT 与 P2 之和,所以反接制动时能量损耗极大 3)用途 可以用于稳定下放位能性负载
异步电机的习题

1.异步电动机的转子有哪两种类型?各有什么特点?解:一种为绕线型转子。
转子上有与定子绕组相似的三相绕组,接成Y 接,三根引出 线通过集电环和电刷引出,以备接电阻或直接短路。
另一种为鼠笼转子。
转子绕组为笼形,导条嵌于槽内,两端各有一个端环将导条短路。
2.异步电机有哪三种运行状态?这三种运行状态的电功率和机械功率的流向如何?如何 根据转速来判断是哪种运行状态?解:设1n 代表同步转速,n 代表电机转速。
(1)电动机状态:01≥≥n n电机吸收电功率,输出机械功率;(2)发电机状态:1n n ≥电机吸收机械功率,输出电功率;(3)电磁制动状态:0≤n电机吸收电功率和机械功率,转化为电机内部的损耗。
3.已知一台三相异步电动机,,77.0cos ,380,4===N N N V U kW P φmi n /960,84.0r n N N ==η,求该电动机的额定电流。
解: )(4.977.084.03803104cos 33A U P I N N N N N =⨯⨯⨯⨯==φη4.一台三相绕线型异步电动机,A I V U N N 35,380==,定、转子绕组均为Y 接,每相 串联匝数和绕组因数为93.0,170,945.0,3202211====dp dp k N k N 。
求:(1)这台电机的变比i e k k ,;(2)当转子绕组开路且处于静止状态时,定子加额定电压,求转子每相感应电动势;(3)当转子绕组短路且处于静止状态时,定子接电源,量得定子电流为额定值,求 转子每相电流(忽略定子电流中的励磁成分)。
解:(1) 913.193.0170945.03202211=⨯⨯==dp dp e k N k N k913.193.01703945.03203222111=⨯⨯⨯⨯==dp dp i k N m k N m k (2)此时,电机相当于一台空载的变压器,因此,)(2203380311V U U E N===≈)(115913.122012V k E E e === (3)此时,电机相当于一台短路的变压器,在忽略励磁电流的情况下,有0'21=+∙∙I I所以)(6735913.11'22A I k I k I i i =⨯===5.一台笼型转子三相异步电动机,定子绕组:902.0,11411==dp k N ;转子导条数为 422=Q 。
电机与拖动复习题

《电机学》复习题一、填空1. 按功用电机可分为()、()、()、();按电力机械运行情况分()、()。
2. 变压器是利用()原理将一种等级的交变电压变为()的另一等级的交变电压的静止电器。
3. 铁磁材料的重要特性是指()特性;()特性;()特性。
4. 短路阻抗标幺值z k*=(),从运行角度看希望z k*(),但其值(),变压器短路电流太大,可能损坏变压器。
5. 同步发电机在并网后要进行()和()调节。
6. 直流电机按励磁方式分为()、()、()、()。
7.削弱高次谐波的方法有()、()、()、()。
8.同步发电机负载对称运行时,典型的电枢反应为()、()和()。
二、判断题1. 当异步电机轻载高速运转时,其转速可以达到旋转磁场同步转速的速度。
()2. 用空载实验测变压器的短路电抗和短路电阻;用短路实验测变压器的励磁电抗和励磁电阻。
()3. 灯光旋转法能判断发电机频率比电网频率的高或低。
()4. 要改变异步电动机转向,就要改变三相电源的相序。
()5. 绕组进行折算时,仅保持折算前后磁势不变即可。
()6. 直流电机的定子,又称为电枢。
()7. 异步电动机等效电路中的附加电阻不可以用电感或电容代替。
()8. 三相交流鼠笼异步电动机定子和转子相数不同。
()9. 额定线电压的标幺值也为1。
()10. 隐极式发电机的额定功率角越接近90°越好。
()11.隐极式发电机的额定功率角越接近90°越好。
()三、选择题1. 短距元件的电势比整距元件的电势()。
a. 小;b.大;c. 相等;d. 不可比。
2. 变压器油的功用为()。
a. 冷却;b.冷却,绝缘;c.绝缘;d. 助燃。
3. 当f=50Hz时,磁极数为4的异步电机的旋转磁场的转速为()。
a. 1000r/min;b. 3000r/min;c. 1500r/min;d. 750r/min;4. 电机的极对数是2,则定子内腔整个圆周有()电角度。
三相异步电动机械特性及各种运行状态

n
n0
a1
O
T
-n0
机械功率Pm
第 十 章 异步电动机的电力拖动
(2) 转子反向的反接制动 ——下放重物
① 制动原理
n
定子相序不变,转子 电路串联对称电阻 Rb。 低速提 a 点 惯性 b 点(Tb<TL),升重物
n↓ c 点 ( n = 0,Tc<TL )
n0
a
b
e TL
Oc
1 T
在TL 作用下 M 反向起动
由参数表达式可知,改变定子电压U1、 定子频率f1、极对数p、定子回路电阻 r1和电抗x1、转子回路电阻r2ˊ和电抗 x2ˊ,都可得到不同的人为机械特性。
(1)降低定子电压的人为机械特性
在参数表达式中,保持其它参数不变, 只改变定子电压U1的大小,可得改变 定子电压的人为机械特性。
讨论电压在额定值以下范围调节的人 为特性(为什么?)
Pe = m1—I2'—2 R定2'子+s 发Rb出'<电0功率,向电源回馈电能。
Pm=
(1-s ) ——
轴Pe上<输0入机械功率(位能负载的位能)。
PCu2 = Pe-Pm
|Pe | = |Pm|-PCu2
—— 机械能转换成电能(减去转子铜损耗等)。
第 十 章 异步电动机的电力拖动
制动效果 Rb →下放速度 。
第 十 章 异步电动机的电力拖动
(3) 能耗制动过程 —— 迅速停车 2
① 制动原理
b
n
a1
制动前:特性 1。
制动时:特性 2。
a 点 惯性 b 点 (T<0,制动开始)
O TL
T
n↓ 原点 O (n = 0,T = 0),制动过程结束。
电机与拖动技术 项目2 异步电机4

U1 W2
V1 U2
W1 V2
U1 W2
V1 U2
W1 V2
Y联结
D联结
工作制
是对电机各种负载,包括空载、停机和断电及其持续时间和先后次序 情况的说明。
分类:
连续工作制(S1)
额定条件下,能长时间连续运行。适用于风机、水泵、纺织机等。
短时工作制(S2)
额定条件下,在限定时间内短时运行,如15min、30min、60min、 90min。适用于水闸闸门启闭机等。
定子绕组
机
座
二、转子部分
1、转子铁心
转子铁心也是电机磁路的组成部分,并用来固定转子绕组。铁 心材料也用0.5mm或0.35mm厚的硅钢片冲制叠压而成,故通常用冲 制定子铁芯冲片剩余下来的内圆部分制作。转子铁芯固定在转轴上, 其外圆上开有槽,用来嵌放转子绕组。
2、转子绕组——根据转子绕组的结构型式可分为
若要改变电机定子旋转磁动势的转向,只要改 变三相交流电流的相序,即把三相电源接到电机三 相绕组的任意两根导线对调,三相绕组中的电流相 序就将改变为U-W-V,旋转磁动势随之变为反方向 旋转。
(5)三相合成磁通势F 单相交流电通入单相绕组时即产生磁通势,其 大小与电流成正比,磁通势的方向由右手定则来判 断。磁通势的计算公式为:
2、极距
电角度 p 机械角度
两个相邻磁极轴线之间沿定子铁心内表面的距离。若定子的 槽数为Z,磁极对数为p,则极距: 注:一个极距τ占有180° Z = 空间电角度。 2p 3、线圈节距 y 一个线圈的两个有效边之间所跨的距离称为线圈的节距。 y 的绕组为整距绕组 . y 的绕组为短距绕组 .
由上可知:磁通势的大小和方向取决于线圈中 电流的大小和方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异步电机有三种运行状态,可运行在发电机状态、电动机状态和电磁制动状态。
当转差率在S<0时,异步电机处于发电机状态;当转差率0<S1时,处于电磁制动状态。
也就是说,当异步电机转子的转速高于同步转速,此时转子的转向与定子旋转磁场的转向相同,处于发电机状态;当转子转向与旋转磁场同方向且转速低于同步转速,处于电动机状态;当转子转向与旋转磁场方向相反,处于电磁制动状态。
根据这一原理,只要用原动机把转子按旋转磁场的方向拖动,加速到超过同步转速,就可使异步电机成为发电机了。
1 异步电机发电的特点
由于使用异步电机发电在并网与调速两个主要方面有其独有的特点,因此近年来被风力发电领域所广泛使用。
1.1并网方面
不需要同期设备,只需象投电动机那样合闸就行。
电机的容量较大,可用软启动或变频启动等方式。
1.2调速方面
异步电机运转时,不象同步电机那样,转速与频率有着严格的对应关系。
异步电机的转速与频率没有严格的对应关系,理论上异步发电机的转差率在-∞<S<0范围内都是发电运行状态。
因此特别适合原动机不好控制的情况。
< P>
1.3短路方面
从异步发电机负荷特性曲线可知,异步发电机的负荷电流增加到临界值时,发电机电压急剧下降,直至崩溃。
异步发电机三相短路时情况和此相似。
所以当异步发电机发生三相短路时,电压将急剧下降,直至电压崩溃,不会有很大的短路电流。
当发电机发生不对称短路,如单相短路,此时该相绕组相当于一个短路绕组,它将产生去磁效应,最终使电压崩溃。
从以上分析可见,异步发电机无需装设任何形式的短路保护。
2 异步发电机的运行方式
和其它发电方式一样,异步机在发电时也有两种运行方式,独立运行与并网运行。
2.1异步发电机独立运行
异步发电机独立运行时,由于电机的铁芯中通常会有一些剩磁存在,当电机转子被原动机拖动时,与定子绕组的磁场相互作用,导体中就有感应电流。
载流导体在磁场中运动,又在定子绕组中产生感应电动势。
如果在定子绕组加一组电容,使闭合回路的总阻抗呈容性,那么电流产生的磁通就与剩磁的磁通同相叠加而得到加强,使总磁场变强,进而使感应电动势增大。
如此反复,最后因铁芯达到饱和状态而使电动势不再增加。
此时的端电压已达到额定值,就可以带负载,达到发电的目的。
带负荷之后,还得根据负荷的变化投切相应的辅助电容器组。
这种励磁建压方式类似于同步发电机的自励方式。
如果铁芯中没有剩磁,可以事先用蓄电池接在电机某一相的绕组上,通电几秒钟对铁芯进行磁化,或称充磁。
这种运行方式,被用于自成供电体系的农村微小型电站。
2.2异步发电机并网运行
异步发电机并网运行时,情况可以更简单些。
因为电网中的无功电流就可为电机建起旋转磁场,所以可以省去励磁所需的电容。
运行时只要把电机投入电网、把转子的转速提高到超过同步转速就可开始发电。
这种励磁建压方式类似于同步发电机的它励方式。
在实际的设计技术操作环节上,往往是在把转子速度加速到同步转速附近(如90%~95%额定转速)的同时,通过软启动装置或变频启动装置把电机并入电网,以减低启动电流对电网造成的影响。
这种运行方式,不需要同期装置,是被风力发电广为采用的原因之一。
3 异步发电机的调速
风力发电选择异步电机作为发电机另一个主要原因是,因为异步电机的转速与频率没有严格的对应关系。
这个特点对于调速环节的考虑十分重要。
风力发电不象水力发电和火力发电那样,可以预先对水池水位或锅炉压力进行调节。
风力的随机瞬变性会使得保持风力发电机的转速不易恒定。
但正是由于异步电机有此特点,可以使风力发电放弃调速环节。
其机理大致是,当原动机有加速趋向或者说原动机输入的机械功率增加时,有加速趋势的转子会被以恒定速度旋转着的定子磁场所阻止,通过气隙磁场转化成为电磁功率、以有功的形式输入到电网。
通俗讲就是:电网在定子中建立的磁场形成的电磁转矩,对转子的加速企图有阻止作用。
所以宏观上看,风轮的转速不论风大风小看不出有什么不同;而在微观方面分析,转差率或输出功率已经有了明显变化。
4 异步发电机的弊端
以风力发电机为例,风力的随机瞬变性会使得发电机出力不稳,这与电力系统要求的可靠性、稳定性的原则相悖。
的确,风力发电机出力变动造成的波动是需要电网中其它发电机组去调节平衡的。
但风力发电机的容量一般占系统容量的比例较小,通常小于10%,即便全投或全切,电网也完全有调节能力,是不会对电网稳定性产生影响。
也有学者通过实验分析,得出了风力发电的容量占到系统容量比例的30%时,电网仍能稳定运行的理论。
其实风力发电机引起的电网波动,也要综合分析处于所在节点上其它电厂机组的容量和调节能力。
投入电网运行的异步发电机,要依靠从电网吸取容性无功来励磁,风力发电研究部门曾做过简单的测试,所需要的励磁电流一般可达到额定电流的20%~30%左右,最大可达40%,这会使得电网的功率因数降低。
解决的办法是增加集中或分散补偿
装置。
如果异步发电机建造的地理位置恰处于某长线路末端、容性无功充足,那就最理想不过了。
其次由于风力的随机性较大,目前还没好的办法来控制风力大小,异步风力发电机在电网运行中,不能像一般同步发电机那样,应根据网上负荷情况随时调节导叶片进行负荷的增减。
这也是异步风力发电机容量占系统容量比例较低的原因之一。
近年来风力发电作为洁净能源发展较快,而异步发电机以它独有的特点被风力发电广泛使用。