SAS-属性数据分析
手把手教你使用SAS进行数据分析

手把手教你使用SAS进行数据分析SAS(Statistical Analysis System)是一款强大的数据分析和统计软件,广泛应用于学术研究、商业分析、医学统计等领域。
本篇文章旨在手把手教读者如何使用SAS进行数据分析,并将内容按照类别划分成不同章节,以便提供更具体且丰富的内容。
第一章:SAS基础本章将介绍SAS的安装和基本设置,帮助读者快速上手。
首先,读者需要从SAS官方网站下载并安装SAS软件。
安装完成后,可以根据需要进行个性化设置,例如选择语言和界面风格等。
此外,还将介绍SAS的基本语法和常见命令,让读者了解如何打开、保存和导入数据集。
第二章:数据处理与清洗数据处理是数据分析的首要步骤,本章将详细介绍如何使用SAS进行数据处理和清洗。
首先,会介绍如何检查数据集的完整性,包括数据类型、缺失值和异常值等。
然后,会讲解如何进行数据变换,例如数据排序、合并和拆分等。
最后,会介绍如何处理缺失值,包括插补和删除处理。
第三章:数据探索和可视化数据探索和可视化是数据分析的关键环节,本章将重点介绍如何使用SAS进行数据探索和可视化。
首先,会介绍如何计算和描述性统计量,例如均值、中位数和标准差等。
然后,会讲解如何绘制常见的数据图表,例如直方图、散点图和箱线图等。
此外,还将介绍如何使用SAS进行数据透视和交叉分析,以便更深入地挖掘数据关系。
第四章:统计分析统计分析是数据分析的核心步骤,本章将介绍如何使用SAS进行常见的统计分析。
首先,会介绍基本的假设检验,例如t检验和方差分析等。
然后,会讲解回归分析的基本原理和应用,包括线性回归和逻辑回归等。
此外,还将介绍如何使用SAS进行聚类分析和因子分析等高级统计技术。
第五章:预测建模预测建模是数据分析的高级技术,本章将介绍如何使用SAS进行预测建模。
首先,会讲解时间序列分析的基本原理和应用,包括趋势分析和季节性分析等。
然后,会介绍如何使用SAS进行机器学习建模,例如决策树和随机森林等。
sas数据分析报告

sas数据分析报告摘要:本文介绍了基于SAS软件进行的数据分析报告。
首先,对数据进行了简要的介绍和处理,并对数据进行了可视化处理。
然后我们使用SAS建立了模型,并对模型进行了评估。
最后,我们对结果进行了解释和分析,并提出了相关的建议。
关键词:SAS,数据分析,模型建立,可视化,结果解释1. 简介SAS是一款广泛应用于数据分析领域的统计软件,其丰富的统计函数和数据可视化功能使得它成为了数据分析师不可或缺的工具。
本文使用SAS对某公司的销售数据进行分析,以帮助公司管理者更好地了解企业的经营情况和预测未来的发展趋势。
2. 数据处理与可视化我们先对数据进行了初步的清理和整理,去除了缺失值和异常值,并对数据进行了标准化处理。
然后,我们使用SAS的数据可视化功能对数据进行了可视化处理,包括制作散点图、直方图和箱线图等,以便更好地了解数据的分布情况和相关性。
3. 模型建立与评估我们基于数据建立了模型,并使用SAS对模型进行了评估。
在模型建立过程中,我们采用了多元线性回归模型,考虑了各个变量之间的相互关系和影响。
在模型评估过程中,我们采用了交叉验证和R方值等指标,对模型的预测能力进行了评估。
4. 结果解释与分析根据模型的预测结果,我们对数据进行了解释和分析,并提出了相关的建议。
我们确定了销售额、广告投放、促销活动等因素对销售额的影响,根据模型结果提出了优化销售策略的建议。
同时,我们进一步分析了销售额的趋势,预测了未来的销售情况,为公司的经营决策提供了有力的支持。
结论:本文基于SAS进行了数据分析报告,利用SAS的数据处理、可视化、模型建立和评估等功能,全面分析了某公司的销售数据。
通过对数据的解释和分析,我们提出了相关的建议,为公司的经营决策提供了参考。
这表明SAS在数据分析领域的应用效果显著,对于企业的发展和决策具有重要的意义。
如何使用SAS进行数据分析

如何使用SAS进行数据分析数据分析在现代社会中变得越来越重要。
从业务领域到学术研究,许多领域都需要对大量数据进行分析和解释。
数据分析可以让人们更了解他们的业务、客户和市场,以及发现潜在的趋势和模式。
在这个过程中,数据处理和统计软件起着至关重要的作用。
SAS就是一个被广泛使用的数据处理和统计工具包。
在本文中,我们将深入了解如何使用SAS进行数据分析。
1. 数据准备数据准备是进行数据分析的首要任务。
数据准备包括数据清洗、转换、选取和缺失值处理。
SAS提供了众多命令和函数,可以轻松地进行数据准备工作。
除此之外,SAS还提供了一个方便的用户界面,SAS Enterprise Guide,可以帮助用户快速准确地进行数据处理。
2. 描述性分析描述性分析是对数据进行初步分析的过程。
在这个过程中,对数据的各种属性进行了解和描述,包括数据的集中趋势、分散趋势和分布形状。
SAS提供了多种统计方法和图形工具,可以帮助用户更轻松地进行描述性分析。
例如,PROC UNIVARIATE和PROC MEANS命令可以计算数据的平均值、标准差、最值和百分位数等统计数据,并输出相应的表格和图形。
此外,图形工具包括直方图、箱形图和散点图等,可以帮助用户更形象地理解数据的分布情况。
3. 探索性分析探索性分析是深入了解数据的过程。
在这个过程中,用户将使用多种方法和技术来探索数据之间的关系和可视化。
SAS提供了多种探索性分析工具。
PROC CORR和PROC REG命令可以帮助用户计算两个或多个变量之间的相关系数和回归系数,并绘制相关图形。
PROC FACTOR和PROC PRINCOMP命令可以帮助用户进行因子分析和主成分分析等多变量分析。
此外,SAS还提供了交互式可视化工具,如SAS Visual Analytics和SAS Visual Statistics,可以帮助用户更方便快速地进行探索性分析。
4. 统计建模在对数据进行描述性分析和探索性分析后,用户可以利用统计建模技术进行预测和分类分析。
学习使用SAS进行数据分析的基础教程

学习使用SAS进行数据分析的基础教程一、SAS介绍与安装SAS(全称Statistical Analysis System,统计分析系统)是一种非常强大的数据分析软件。
它提供了丰富的统计分析、数据挖掘和数据管理功能。
在学习使用SAS之前,首先需要下载并安装SAS软件。
在安装过程中,需要根据操作系统选择相应的版本,并按照安装向导进行操作。
安装完成后,可以通过启动菜单找到SAS软件并打开它。
二、SAS基本语法与数据集1. SAS语法基础SAS语法是一种类似于编程语言的语法。
在SAS中,每一个语句都以分号作为结尾。
常用的SAS语句包括DATA、PROC和RUN。
DATA语句用于创建数据集,PROC语句用于执行数据分析过程,RUN语句用于执行SAS语句的运行。
2. SAS数据集SAS数据集是SAS中最重要的数据组织形式。
它可以包含多个数据变量,并且每个变量可以拥有不同的数据类型,如字符型、数值型、日期型等。
通过DATA语句可以创建一个新的SAS数据集,并通过INPUT语句指定每个变量的属性。
使用SET语句可以将现有的数据集读入到SAS数据集中,以供后续分析使用。
三、SAS数据清洗与变换1. 数据清洗数据清洗是数据分析的第一步,其目的是去除数据中的错误或无效信息,保证数据质量。
在SAS中,可以使用IF和WHERE语句来筛选出符合条件的数据观测值,并使用DELETE和KEEP语句删除或保留特定的变量。
2. 数据变换数据变换是对原始数据进行转换,以满足具体的分析需求。
在SAS中,常用的数据变换操作包括缺失值处理、变量重编码、数据排序和数据合并等。
可以使用IF、ELSE和DO语句进行逻辑判断和循环操作,通过FORMAT语句对数据进行格式化。
四、SAS统计分析1. 描述统计分析描述统计分析是对数据的基本特征进行分析,包括均值、标准差、中位数、分位数和频数等。
在SAS中,可以使用PROC MEANS进行基本统计分析,使用PROC FREQ进行频数分析。
sas数据分析

sas数据分析标题:SAS数据分析与决策支持引言:在当今信息化的时代,数据已经成为企业决策的重要依据。
然而,海量的数据如何进行有效地整理和分析已经成为企业面临的挑战。
SAS作为一个强大的数据分析工具,通过其丰富的功能和灵活的应用,为企业提供了一种有效的决策支持方法。
本文将详细介绍SAS数据分析的概念、应用和优势,以及它如何为企业决策提供支持。
一、SAS数据分析的概念SAS(Statistical Analysis System)是一种常用的统计分析软件,它通过收集、整合、管理和分析数据,帮助用户在决策过程中作出有效的预测和判断。
SAS数据分析可以应用于各个领域,包括市场营销、金融风险评估、医疗保健、生物信息学等。
二、SAS数据分析的应用1. 市场营销决策支持:SAS数据分析可以帮助企业对产品销售进行预测和监测,分析市场竞争对手的策略,并优化企业的市场定位和营销策略。
2. 金融风险评估:SAS数据分析可以对金融数据进行建模和分析,帮助金融机构评估风险、监控市场波动,并制定相应的风险管理策略。
3. 医疗保健决策支持:SAS数据分析可以通过分析大量的医疗数据,辅助医疗机构提供个性化的诊断和治疗方案,提高医疗效率和病人满意度。
4. 生物信息学研究:SAS数据分析可以处理大规模的生物数据,帮助生物学家解决基因组学、蛋白质组学等领域的问题,加速科学研究的进展。
三、SAS数据分析的优势1. 数据整合能力:SAS可以集成多种类型的数据,并通过其强大的数据处理功能进行统一管理和整合,使得数据的利用更加高效和便捷。
2. 统计分析功能:SAS提供了丰富的统计分析方法和模型,可以通过这些方法和模型对数据进行深入分析和挖掘,从而发现数据背后的规律和关联。
3. 可视化分析:SAS提供了强大的可视化分析功能,可以通过图表、图像和地图等形式呈现数据分析结果,帮助用户更加直观地理解和解释数据。
4. 高性能计算:SAS具备较强的计算能力,可以处理大规模的数据和复杂的计算任务,加速数据分析和决策过程。
学会使用SAS进行数据分析

学会使用SAS进行数据分析引言:随着大数据时代的到来,数据分析成为了一项越来越重要的技能。
而SAS(Statistical Analysis System)作为业界著名的数据分析工具,具备强大的数据处理与分析能力,被广泛应用在各个行业中。
本文将介绍SAS的基本操作和常用功能,帮助读者初步学会使用SAS进行数据分析。
一、SAS的基本操作SAS作为一个统一的数据分析平台,具备了数据导入、数据清洗、数据分析、数据可视化等一系列功能,下面将介绍几个基本操作。
1. 数据导入:SAS支持多种数据格式,如CSV、Excel、SPSS等,可以通过简单的命令将数据导入到SAS中。
2. 数据清洗:在数据分析之前,我们通常需要对数据进行清洗,去除重复值、空值,以及进行数据转换等操作。
SAS提供了丰富的数据清洗函数,通过简单的命令就能实现。
3. 数据分析:SAS内置了大量的数据分析函数和算法,如描述统计、回归分析、聚类分析等,这些函数可以帮助用户快速进行数据分析并得出结论。
4. 数据可视化:通过SAS的图形模块,用户可以轻松地将数据进行可视化展示,如绘制直方图、散点图、折线图等。
这样可以更加直观地分析数据,并发现其中的规律和关联。
二、SAS常用功能除了基本操作之外,SAS还有一些常用功能,下面将介绍其中几个。
1. SAS Macro:宏是SAS中非常强大的功能,它可以在程序中定义和调用一系列命令,从而简化复杂的分析流程。
宏可以帮助用户提高工作效率,减少重复性工作。
2. 数据整合:在实际的数据分析中,我们通常需要从多个数据源中整合数据。
SAS提供了灵活的数据连接和合并操作,可以轻松实现数据整合。
3. 大数据处理:随着大数据时代的到来,传统的数据处理方式已经无法满足需求。
SAS提供了分布式计算的功能,可以进行高效的大数据处理,帮助用户更好地应对大数据挑战。
4. 数据挖掘:SAS也是一款强大的数据挖掘工具,它提供了各种经典的数据挖掘算法,如决策树、关联规则等。
SAS系统和数据分析SAS系统简介

第一课SAS系统简介一、SAS系统1.SAS系统的功能SAS系统是大型集成应用软件系统,具有完备的以下四大功能:●数据访问●数据管理●数据分析●数据呈现它是美国软件研究所(SAS Institute Inc.)经多年的研制于1976年推出。
目前已被许多国家和地区的机构所采用。
SAS系统广泛应用于金融、医疗卫生、生产、运输、通信、政府、科研和教育等领域。
它运用统计分析、时间序列分析、运筹决策等科学方法进行质量管理、财务管理、生产优化、风险管理、市场调查和预测等等业务,并可将各种数据以灵活多样的各种报表、图形和三维透视的形式直观地表现出来。
在数据处理和统计分析领域,SAS系统一直被誉为国际上的标准软件系统。
2.SAS系统的支持技术在当今的信息时代中,如何有效地利用业务高度自动化所产生的巨量宝贵数据,挖掘出对预测和决策有用的信息,就成为掌握竞争主导权的关键因素。
因此,SAS系统始终致力于应用先进的信息技术和计算机技术对业务和历史数据进行更深层次的加工。
经过二十多年的发展,SAS系统现在是以下三种技术的主要提供者:●数据仓库技术(Data Warehouse)数据仓库是用于支持管理决策过程的面向主题的、集成的、随时间而变化的、持久的(非易失的)数据集合。
通俗地说,可以将数据仓库理解为“将多个生产数据源中的数据按一定规则统一集中起来,并提供灵活的观察分析数据手段,从而为企业制定决策提供事实数据的支持”。
数据仓库最大的用途是能够提供给用户一种全新的方式从宏观或微观的角度来观察多年积累的数据,从而使用户可以迅速地掌握自己企业的经营运转状况、运营成本、利润分布、市场占有率、发展趋势等对企业发展和决策有重要意义的信息,使用户能制定更加准确科学的决策迅速对市场做出反应。
利用数据仓库技术可以使大企业运作的像小企业一样灵活,也可以使小企业像大企业一样规范。
从目前情况来看,许多企业和机构已经建立了相对完善的生产数据库系统。
SAS系统和数据分析SAS数据集

第三课SAS数据集一、SAS数据集的结构SAS数据集是关系型的,它通常分为两部份:描述部份——包括了一些关于数据属性的信息数据部份——包括数据值SAS的数据值被安排在一个矩阵式的表状结构中,如图3-1所示。
表的列称之为变量(Variable),变量类似于其他文件类型的域或字段(Field)表的行称之为观看(Observation),观看相当于记录(Record)变量1 变量2 变量3 变量4Name Test1 Test2 Test3 观察1 Xiaoer 90 86 88观察2 Zhangsan 100 98 89观察3 Lisi 79 76 70观察4 Wangwu 68 71 64观察5 Zhaoliu 100 89 99图3.1 一个SAS数据文件二、SAS数据集形式SAS系统中共有两种类型的数据集:SAS 数据文件(SAS data files)SAS 数据视窗(SAS data views)SAS 数据文件不仅包括描述部份,而且包括数据部份。
SAS 数据视窗只有描述部份,没有数据部份,只包括了与其他数据文件或其他软件数据的映射关系,能使SAS的所有进程可访问到,事实上并非包括SAS 数据视窗内的数据值。
自始至终,在SAS语言中,“SAS数据集”与这两种形式中之一有关。
在下面的例子中,PRINT进程用相同方式处置数据集,而忽略它的形式:PROC PRINT DATA=三、SAS数据集的名字SAS数据集名字包括三个部份,格式如下:(库标记)──这是SAS数据库的逻辑名字data-set-name(数据集名字)──这是SAS数据集的名字membertype(成员类型)──SAS数据集名字的这一部份用户使历时没必要给出。
SAS 数据文件的成员类型是DATA;SAS数据视窗的成员类型是VIEW例如,上面例子中的那个SAS数据集名字,aaa是库标记,abc是数据集名字,成员类型没有写出,应该是DATA或VIEW中的一个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配对样本的McNemar检验
假设我们想知道禁烟广告对人们吸烟态度影响有多大 ,先调查100个测试者对吸烟的态度(支持或反对),然后 给他们播放禁烟广告,再次询问他们对吸烟的态度。因为同 一个测试者在两种不同条件下(看广告前和广告后)对同一 个问题做出的两次回答,所以这个实验叫做配对实验设计。 由于数据之间并不独立,不能采取卡方检验,这里只能采用 配对样本的McNemar检验。
Piston rings
上海财经大学统管院
Oral Contraceptives
data the_pill; input caseuse $ contruse $ n; datalines; Y Y 10 Y N 57 N Y 13 N N 95 ; run;
proc freq data=the_pill order=data; tables caseuse*contruse / agree; 输出McNemar检验 weight n; run;
FREQ(频数)过程--频数表是变量取值分布的描述
PROC FREQ DATA=数据集名; TABLES 变量; RUN;
一般是分类变量
PROC FREQ DATA=数据集名; TABLES 变量*变量 变量*变量 . . ./ nocol norow nocum nofreq nopercent missing list out=数据集 outpct ; WETGHT 变量名; BY 变量名; RUN;
上海财经大学统管院
Oral Contraceptives
上海财经大学统管院
Oral caners
data lesions; length region $8.; input site $ 1-16 n1 n2 n3; region='Keral'; n=n1; output; region='Gujarat'; n=n2; output; region='Anhara'; n=n3; output; drop n1-n3; datalines; Buccal Mucosa 8 1 8 Labial Mucosa 0 1 0 Commissure 0 1 0 Gingiva 0 1 0 Hard palate 0 1 0 Soft palate 0 1 0 Tongue 0 1 0 Floor of mouth 1 0 1 Alveolar ridge 1 0 1 ; run; proc freq data=lesions order=data; tables site*region /exact; weight n; run;
上海财经大学统管院
卡方独立性检验、Fisher精确性检验、McNemar检验(配对数据) 和高维列联表Cochran-Mantel-Haenszel检验
• SAS分析
freq过程—频数过程
• 参考资料
1. 2. 王静龙,梁小筠. 定性数据分析,华东师范大学出版社,2005 张尧庭 译 离散多元分析:理论与实践,中国统计出版社,1998 上海财经大学统计与管理学院 版权所有:吴纯杰
上海财经大学统管院
Particulates and Bronchitis
level 频数
bronch |Y |N
| 合计
--------+--------+--------+ H | 42 | 881 | 923 --------+--------+--------+ L | 22 | 517 | 539 --------+--------+--------+ 上海财经大学统管院 合上海财经大学统管院
Acacia Ants
上海财经大学统管院
Piston Rings
data pistons; input machine site $ n; proc freq data=pistons order=data; datalines; tables machine*site / chisq deviation cellchi2 1 North 17 norow nocol nopercent; 1 Centre 17 weight n; 1 South 12 run; 2 North 11 注:order选项为按照数据录入的顺序排序,一般按字 2 Centre 9 母或数字顺序排序。 2 South 13 norow,nocol,nopercent:不输出对应的信息,压缩输 3 North 11 出结果 3 Centre 8 deviation:输出格子估计的残差 3 South 19 cellchi2:输出格子贡献的卡方值 4 North 14 4 Centre 7 4 South 28 ; 上海财经大学统管院 run;
死亡人数限为1555,划归两类城市 水硬度设定39,划归硬度高低两类城 市;进一步做列联表分析 /chisq 添加卡方独立性检验选项 tables后指定行变量和列变量,两者 用星号分开。
上海财经大学统管院
数据集water-mortal与hardness关联分析
上海财经大学统管院
Sandflies
Acacia Ants
data ants; input species $ invaded $ n; datalines; A no 2 A yes 13 B no 10 B yes 3 ; run; proc freq data=ants; tables species*invaded / chisq expected; weight n; run; 刺槐(A 或B),是否被蚁群侵入, 侵入的种群数目
数据集 之后(after) 反对 之前 (before) 反对(Negative) 支持(Positive) 32 30 支持 15 23
上海财经大学统管院
配对样本的McNemar检验
数据步: Data mcnemar; input before $ after $ n; Datalines; 过程步: Proc freq data=mcnemar; p p 23 Title ‘McNemar’s test for paired samples’; p n 30 Tables before*after /agree; n n 32 Weight n; n p 15 Run; ; 输出结果: run; McNemar卡方统计量为5.0,相应p值为0.0253,可 以认为禁烟广告有助于改变人们对吸烟的态度。
riskdiff计算行变量各类比重差-(基 于二项分布)此处计算雌蝇和雄 蝇在低空和高空所占比重是否有 差异的检验。 使用weight语句表示重复数的变量为 n。如果为原始基本情况的数据, 则不需要weight语句。
上海财经大学统管院
Sandflies
上海财经大学统管院
Sandflies
上海财经大学统管院
假设检验:
H0:列变量与行变量独立 H1:存在关联
上海财经大学统管院
数据归类处理-以water为例
data water; /* Chapter 3 */ set water; /* having created the water data set as above for chapter 2 */ mortgrp=mortal > 1555; hardgrp=hardness > 39; run; proc freq data=water; tables mortgrp*hardgrp /chisq; run;
稀疏性列联表做精确性fisher检验,对于2×2 列联表默认做Fisher检验,而超过2×2的 上海财经大学统管院 表需要添加exact选项。
Oral Cancers
上海财经大学统管院
Particulates and Bronchitis
data bronchitis; proc freq data=bronchitis input agegrp level $ bronch $ n; order=data; datalines; tables agegrp*level*bronch / cmh noprint; 1 H Y 20 weight n; 1 H N 382 run; 1LY9 注:做Cochran-Mantel-Haenszel检验 1 L N 214 表 - level * bronch 2 H Y 10 2 H N 172 2LY7 2 L N 120 3 H Y 12 3 H N 327 3LY6 3 L N 183 ; level bronch 频数 |Y |N | 合计 --------+--------+--------+ H | 42 | 881 | 923 --------+--------+--------+ L | 22 | 517 | 539 --------+--------+--------+ 合计 64 1398 1462
定性数据分析
• 数据描述
沙蝇低空和高空捕捉数与雌雄关系、槐蚁入侵与槐树品种关系、 机器不同方位活塞环失效数与方位关系、血凝块病人控制前后 是否继续口服某药物研究、印度不同地区口腔疾病分布研究和 支气管炎与空气颗粒含量关系研究。
• 问题提出
列变量和行变量是否具有关联性?(Association)
• 方法描述--列联表分析
data sandflies; input sex $ height n; datalines; m 3 173 m 35 125 f 3 150 f 35 73 ; run; proc freq data=sandflies; tables sex*height /chisq riskdiff; weight n; run; 按雌雄、捕捉高度和捕捉数目录入
2
数据描述与问题提出