如何用SAS作统计分析

合集下载

手把手教你使用SAS进行数据分析

手把手教你使用SAS进行数据分析

手把手教你使用SAS进行数据分析SAS(Statistical Analysis System)是一款强大的数据分析和统计软件,广泛应用于学术研究、商业分析、医学统计等领域。

本篇文章旨在手把手教读者如何使用SAS进行数据分析,并将内容按照类别划分成不同章节,以便提供更具体且丰富的内容。

第一章:SAS基础本章将介绍SAS的安装和基本设置,帮助读者快速上手。

首先,读者需要从SAS官方网站下载并安装SAS软件。

安装完成后,可以根据需要进行个性化设置,例如选择语言和界面风格等。

此外,还将介绍SAS的基本语法和常见命令,让读者了解如何打开、保存和导入数据集。

第二章:数据处理与清洗数据处理是数据分析的首要步骤,本章将详细介绍如何使用SAS进行数据处理和清洗。

首先,会介绍如何检查数据集的完整性,包括数据类型、缺失值和异常值等。

然后,会讲解如何进行数据变换,例如数据排序、合并和拆分等。

最后,会介绍如何处理缺失值,包括插补和删除处理。

第三章:数据探索和可视化数据探索和可视化是数据分析的关键环节,本章将重点介绍如何使用SAS进行数据探索和可视化。

首先,会介绍如何计算和描述性统计量,例如均值、中位数和标准差等。

然后,会讲解如何绘制常见的数据图表,例如直方图、散点图和箱线图等。

此外,还将介绍如何使用SAS进行数据透视和交叉分析,以便更深入地挖掘数据关系。

第四章:统计分析统计分析是数据分析的核心步骤,本章将介绍如何使用SAS进行常见的统计分析。

首先,会介绍基本的假设检验,例如t检验和方差分析等。

然后,会讲解回归分析的基本原理和应用,包括线性回归和逻辑回归等。

此外,还将介绍如何使用SAS进行聚类分析和因子分析等高级统计技术。

第五章:预测建模预测建模是数据分析的高级技术,本章将介绍如何使用SAS进行预测建模。

首先,会讲解时间序列分析的基本原理和应用,包括趋势分析和季节性分析等。

然后,会介绍如何使用SAS进行机器学习建模,例如决策树和随机森林等。

如何使用SAS进行数据分析

如何使用SAS进行数据分析

如何使用SAS进行数据分析数据分析在现代社会中变得越来越重要。

从业务领域到学术研究,许多领域都需要对大量数据进行分析和解释。

数据分析可以让人们更了解他们的业务、客户和市场,以及发现潜在的趋势和模式。

在这个过程中,数据处理和统计软件起着至关重要的作用。

SAS就是一个被广泛使用的数据处理和统计工具包。

在本文中,我们将深入了解如何使用SAS进行数据分析。

1. 数据准备数据准备是进行数据分析的首要任务。

数据准备包括数据清洗、转换、选取和缺失值处理。

SAS提供了众多命令和函数,可以轻松地进行数据准备工作。

除此之外,SAS还提供了一个方便的用户界面,SAS Enterprise Guide,可以帮助用户快速准确地进行数据处理。

2. 描述性分析描述性分析是对数据进行初步分析的过程。

在这个过程中,对数据的各种属性进行了解和描述,包括数据的集中趋势、分散趋势和分布形状。

SAS提供了多种统计方法和图形工具,可以帮助用户更轻松地进行描述性分析。

例如,PROC UNIVARIATE和PROC MEANS命令可以计算数据的平均值、标准差、最值和百分位数等统计数据,并输出相应的表格和图形。

此外,图形工具包括直方图、箱形图和散点图等,可以帮助用户更形象地理解数据的分布情况。

3. 探索性分析探索性分析是深入了解数据的过程。

在这个过程中,用户将使用多种方法和技术来探索数据之间的关系和可视化。

SAS提供了多种探索性分析工具。

PROC CORR和PROC REG命令可以帮助用户计算两个或多个变量之间的相关系数和回归系数,并绘制相关图形。

PROC FACTOR和PROC PRINCOMP命令可以帮助用户进行因子分析和主成分分析等多变量分析。

此外,SAS还提供了交互式可视化工具,如SAS Visual Analytics和SAS Visual Statistics,可以帮助用户更方便快速地进行探索性分析。

4. 统计建模在对数据进行描述性分析和探索性分析后,用户可以利用统计建模技术进行预测和分类分析。

SAS统计分析教程方法总结

SAS统计分析教程方法总结

对定量结果进行差异性分析1.单因素设计一元定量资料差异性分析1.1.单因素设计一元定量资料t检验与符号秩和检验T检验前提条件:定量资料满足独立性和正态分布,若不满足则进行单因素设计一元定量资料符号秩和检验。

1.2.配对设计一元定量资料t检验与符号秩和检验配对设计:整个资料涉及一个试验因素的两个水平,并且在这两个水平作用下获得的相同指标是成对出现的,每一对中的两个数据来自于同一个个体或条件相近的两个个体。

1.3.成组设计一元定量资料t检验成组设计定义:设试验因素A有A1,A2个水平,将全部n(n最好是偶数)个受试对象随机地均分成2组,分别接受A1,A2,2种处理。

再设每种处理下观测的定量指标数为k,当k=1时,属于一元分析的问题;当k≥2时,属于多元分析的问题。

在成组设计中,因2组受试对象之间未按重要的非处理因素进行两两配对,无法消除个体差异对观测结果的影响,因此,其试验效率低于配对设计。

T检验分析前提条件:独立性、正态性和方差齐性。

1.4.成组设计一元定量资料Wilcoxon秩和检验不符合参数检验的前提条件,故选用非参数检验法,即秩和检验。

1.5.单因素k(k>=3)水平设计定量资料一元方差分析方差分析是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。

这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。

方差分析的假定条件为:(1)各处理条件下的样本是随机的。

(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。

(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。

(4)各处理条件下的样本方差相同,即具有齐效性。

1.6.单因素k(k>=3)水平设计定量资料一元协方差分析协方差分析(Analysis of Covariance)是将回归分析与方差分析结合起来使用的一种分析方法。

在这种分析中,先将定量的影响因素(即难以控制的因素)看作自变量,或称为协变量(Covariate),建立因变量随自变量变化的回归方程,这样就可以利用回归方程把因变量的变化中受不易控制的定量因素的影响扣除掉,从而,能够较合理地比较定性的影响因素处在不同水平下,经过回归分析手段修正以后的因变量的样本均数之间的差别是否有统计学意义,这就是协方差分析解决问题的基本计算原理。

学会使用SAS进行数据分析

学会使用SAS进行数据分析

学会使用SAS进行数据分析引言:随着大数据时代的到来,数据分析成为了一项越来越重要的技能。

而SAS(Statistical Analysis System)作为业界著名的数据分析工具,具备强大的数据处理与分析能力,被广泛应用在各个行业中。

本文将介绍SAS的基本操作和常用功能,帮助读者初步学会使用SAS进行数据分析。

一、SAS的基本操作SAS作为一个统一的数据分析平台,具备了数据导入、数据清洗、数据分析、数据可视化等一系列功能,下面将介绍几个基本操作。

1. 数据导入:SAS支持多种数据格式,如CSV、Excel、SPSS等,可以通过简单的命令将数据导入到SAS中。

2. 数据清洗:在数据分析之前,我们通常需要对数据进行清洗,去除重复值、空值,以及进行数据转换等操作。

SAS提供了丰富的数据清洗函数,通过简单的命令就能实现。

3. 数据分析:SAS内置了大量的数据分析函数和算法,如描述统计、回归分析、聚类分析等,这些函数可以帮助用户快速进行数据分析并得出结论。

4. 数据可视化:通过SAS的图形模块,用户可以轻松地将数据进行可视化展示,如绘制直方图、散点图、折线图等。

这样可以更加直观地分析数据,并发现其中的规律和关联。

二、SAS常用功能除了基本操作之外,SAS还有一些常用功能,下面将介绍其中几个。

1. SAS Macro:宏是SAS中非常强大的功能,它可以在程序中定义和调用一系列命令,从而简化复杂的分析流程。

宏可以帮助用户提高工作效率,减少重复性工作。

2. 数据整合:在实际的数据分析中,我们通常需要从多个数据源中整合数据。

SAS提供了灵活的数据连接和合并操作,可以轻松实现数据整合。

3. 大数据处理:随着大数据时代的到来,传统的数据处理方式已经无法满足需求。

SAS提供了分布式计算的功能,可以进行高效的大数据处理,帮助用户更好地应对大数据挑战。

4. 数据挖掘:SAS也是一款强大的数据挖掘工具,它提供了各种经典的数据挖掘算法,如决策树、关联规则等。

SAS数据分析常用操作指南

SAS数据分析常用操作指南

SAS数据分析常用操作指南在当今数据驱动的时代,数据分析成为了企业决策、科学研究等领域的重要手段。

SAS 作为一款功能强大的数据分析软件,被广泛应用于各个行业。

本文将为您介绍 SAS 数据分析中的一些常用操作,帮助您更好地处理和分析数据。

一、数据导入与导出数据是分析的基础,首先要将数据导入到 SAS 中。

SAS 支持多种数据格式的导入,如 CSV、Excel、TXT 等。

以下是常见的导入方法:1、通过`PROC IMPORT` 过程导入 CSV 文件```sasPROC IMPORT DATAFILE='your_filecsv'OUT=your_datasetDBMS=CSV REPLACE;RUN;```在上述代码中,将`'your_filecsv'`替换为实际的 CSV 文件路径,`your_dataset` 替换为要创建的数据集名称。

2、从 Excel 文件导入```sasPROC IMPORT DATAFILE='your_filexlsx'OUT=your_datasetDBMS=XLSX REPLACE;RUN;```导出数据同样重要,以便将分析结果分享给他人。

可以使用`PROC EXPORT` 过程将数据集导出为不同格式,例如:```sasPROC EXPORT DATA=your_datasetOUTFILE='your_filecsv'DBMS=CSV REPLACE;RUN;```二、数据清洗与预处理导入的数据往往存在缺失值、异常值等问题,需要进行清洗和预处理。

1、处理缺失值可以使用`PROC MEANS` 过程查看数据集中变量的缺失情况,然后根据具体情况选择合适的处理方法,如删除包含缺失值的观测、用均值或中位数填充等。

2、异常值检测通过绘制箱线图或计算统计量(如均值、标准差)来检测异常值。

对于异常值,可以选择删除或进行修正。

3、数据标准化/归一化为了消除不同变量量纲的影响,常常需要对数据进行标准化或归一化处理。

SAS的基本统计分析

SAS的基本统计分析

SAS的基本统计分析SAS(统计分析系统)是一种广泛使用的统计分析软件,被广泛应用于数据分析和建模。

它提供了各种强大的统计分析功能,包括描述性统计、推断统计、回归分析、多元分析等。

在本文中,我们将介绍SAS的一些基本统计分析功能。

1.描述性统计分析:描述性统计是对数据集的基本特征进行分析和总结。

SAS提供了各种描述性统计分析功能,包括计算均值、中位数、百分位数、方差、标准差等。

例如,我们可以使用SAS的`MEANS`过程计算数据集中的变量的均值和标准差。

2.推断统计分析:推断统计分析是根据样本数据推断总体的参数估计和假设检验。

SAS提供了一系列的推断统计分析功能,包括参数估计、置信区间估计、假设检验等。

例如,我们可以使用SAS的`TTEST`过程进行两个样本的t检验,或者使用`ANOV`过程进行方差分析。

3.回归分析:回归分析用于研究自变量与因变量之间的关系,并建立预测模型。

在SAS中,我们可以使用`REG`过程进行回归分析。

该过程提供了许多回归模型,如一元线性回归、多元线性回归、逻辑回归等。

我们可以通过回归分析来了解变量之间的关系,发现影响因变量的重要因素,并进行预测。

4.多元分析:多元分析是一种分析多个自变量对因变量的影响的方法。

SAS提供了多种多元分析的方法,如多元方差分析(MANOVA)、主成分分析(PCA)、因子分析等。

我们可以使用SAS的`GLM`过程进行多元方差分析,或者使用`FACTOR`过程进行因子分析。

5.时间序列分析:时间序列分析是一种对时间相关数据进行建模和预测的方法。

SAS提供了一些时间序列分析的功能,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

我们可以使用SAS的`ARIMA`过程进行时间序列分析,拟合ARIMA模型并进行预测。

6.非参数统计分析:非参数统计分析是一种不需要对总体进行任何假设的统计分析方法。

SAS提供了一些非参数统计分析的功能,如Wilcoxon秩和检验、Kruskal-Wallis检验等。

sas统计分析_利用SAS解决两个独立样本的t检验

sas统计分析_利用SAS解决两个独立样本的t检验

利用SAS解决两个独立样本的t检验班级:学号:指导教师:姓名:目录1. SAS简介 (2)1.1 SAS的设计思想 (2)1.2 SAS的功能 (2)1.3 SAS的特点 (3)2. 方法及原理——两个独立样本的t检验 (4)2.1假设检验的思想和步骤 (4)2.2 t检验的原理与方法 (4)2.3 检验统计量t的公式 (5)2.4两个独立样本的t检验的步骤 (5)3.SAS常用命令 (6)4.题目与解答 (6)4.1题目 (6)4.2解答与分析 (6)1. SAS简介SAS是美国使用最为广泛的三大著名统计分析软件(SAS,SPSS和SYSTAT)之一,是目前国际上最为流行的一种大型统计分析系统,被誉为统计分析的标准软件。

SAS为“Statistical Analysis System”的缩写,意为统计分析系统。

它于1966年开始研制,1976年由美国SAS软件研究所实现商品化。

1985年推出SAS PC 微机版本,1987年推出DOS下的SAS6.03版,之后又推出6.04版。

以后的版本均可在WINDOWS下运行,目前最高版本为SAS6.12版。

SAS集数据存取,管理,分析和展现于一体,为不同的应用领域提供了卓越的数据处理功能。

它独特的“多硬件厂商结构”(MV A)支持多种硬件平台,在大,中,小与微型计算机和多种操作系统(如UNIX,MVS WINDOWS 和DOS等)下皆可运行。

SAS 采用模块式设计,用户可根据需要选择不同的模块组合。

它适用于具有不同水平于经验的用户,处学者可以较快掌握其基本操作,熟练者可用于完成各种复杂的数据处理。

目前SAS已在全球100多个国家和地区拥有29000多个客户群,直接用户超过300万人。

在我国,国家信息中心,国家统计局,卫生部,中国科学院等都是SAS系统的大用户。

SAS以被广泛应用于政府行政管理,科研,教育,生产和金融等不同领域,并且发挥着愈来愈重要的作用。

数据分析(SAS描述性统计分析过程)

数据分析(SAS描述性统计分析过程)

var
变量列表 ;
by
变量列表 ;
freq
变量 ;
weight 变量 ;
id
变量列表 ;
output <out=输出数据集名> <统计量关键字=变量名列表> <pctlpts= 百分位数 pctlpre=变量前缀名 pctlname=变量后缀名>;
run;
proc uiate过程旳主要控制语句如下:
proc means(5)
SAS程序 data examp1; input x @@; cards; 70.4 72.0 76.5 74.3 76.5 77.6 67.3 72.0 75.0 74.3 73.5 79.5 73.5 74.7 65.0 76.5 81.6 75.4 72.7 72.7 67.2 76.5 72.7 70.4 77.2 68.8 67.3 67.3 67.3 72.7 75.8 73.5 75.0 72.7 73.5 73.5 72.7 81.6 70.3 74.3 73.5 79.5 70.4 76.5 72.7 77.2 84.3 75.0 76.5 70.4 ; proc means data=examp1 n mean cv skewness kurtosis range median ; var x; run;
mode sumwgt max min range median t prt clm lclm uclm
众数,出现频数最高旳数 权数和 最大值 最小值 极差,max—min 中间值 总体均值等于0旳t统计量 t分布旳双尾p值 置信度上限和下限
置信度下限
置信度上限
kurtosis
对尾部陡平旳度量——峰度
------Quantile-----Percent Observed Estimated
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Var 1 Var 2 ? Var n
Obs 1 x 11
x 12
?
x 1n
Obs 2 x 21
x 22
?
x 2n
.
... ... ... ...
.
... ... ... ...
Obs m x m1
x m2
...
x mn
计算统计量
7
统计量(Statistics)
❖ 子样
总体
❖ 描述
推断
❖ 统计量--由样本运算而得到的量:
Statistical Analysis
24
Analyst Application
❖ 在Analyst中,可对SAS数据集进行 ❖ 数据输入和浏览 ❖ 移动变量显示次序 ❖ 建立新的变量 ❖ 按某个变量的值进行排序 ❖ 选取子集 ❖ 转置数据集
25
变量取值的宏观描述
❖ 分布全面地描述了变量取值的概况 分布:变量取什麽值,各占多少比例
❖ SAS 既可由编程也可用图形界面交互式 地实现分析功能
❖ SAS 将各种专门分析方法融入为用户提 供的直接使用的专用系统中
4
了解学习SAS的分析决策功能
❖ 会找: 针对问题和数据选用合适的 分析工具
❖ 会用:选PROC,选Option, 写Statement
❖ 会解释:对SAS提供的计算结果给出 解释和分析
❖ 字符型变量:用表列举其取值和比例或 用 柱状图,拼花图(Mosaic)
❖ 随时为用户提供数据、图形和分析结果 三方面的内容,便于用户发现奇异数据 及包含在数据中的模式或规律,探索性 地使用各种统计分析方法并观察分析结 果。它为用户提供一种全新的使用统计 分析方法的环境。
19
SAS/INSIGHT
❖ 如何在SAS系统中进入SAS/INSIGHT ❖ 键入命令 INSIGHT ❖ 用下拉菜单 Globals Analyze
❖ 它将常用的统计方法按描述统计,表分析, 假设检验,方差分析和回归分析等栏目提 供菜单,也有制图和建表的功能菜单
❖ 它对所进行的每项分析都提供按菜单设定 的要求自动生成的程序
❖ 它对分析的过程和结果建立项目并进行管

23
Analyst Application
❖ 在SAS中进入Analyst: ❖ 键入命令ANALYST ❖ 用下拉菜单Globals Analyze
❖ 用编程实现各种任务
❖ 用SAS提供的菜单系统实现各种任务 ❖ 用SAS/ASSIST ❖ 用STATISTICAL ANALYST
发命令analyst
❖ 用SAS/INSIGHT 发命令insight
18
SAS/INSIGHT
❖ 是一个可视化的数据探索工具。将统计 方法与交互式地图形显示融合在一起
方差
s2
标准差
s
10
抽样的随机性
总体
子样 子样 子样 子样 子样
对同一个总体可以获得多个不同的样本 这些样本的观测值不全相同,相应的统计
量也不一样,这是由抽样偶然性引起的 但当样本的容量增大时,不同样本间的差
异逐渐缩小,这是统计的规律性
11
抽样的随机性
OBS
1 2 3 4 5 6 7 8 9 10
❖ 均值,方差
❖ 中位数,极差
❖ 直方图,经验分布
❖ 统计量能集中样本某一方面的信息
8
统计模型
母体(分布及其它特征)

抽样
子样(分布及其它特征)
计算统计量
描述
推断
统计量

9
统计模型
❖ 参数是总体的特征。
❖ 统计量是由样本观测值计算而得到的。
❖ 统计量可用于估计总体的参数。
总体参数样本统计量
均值
X
用SAS作统计分析
基本概念和方法浏览
vSAS Institute (Shanghai) Co., Ltd.
1
统计的作用
❖对数据作出概要的描述
❖基于数据作出推断 (包括评价推断的有效性)
2
SAS系统提供有力的统计分析 功能
❖ Base SAS 和 SAS/GRAPH 包含常规的 分析功能
❖ SAS 有专用于各种分析功能的模块
数值型
区间型
字符型
列名型
21
SAS/INSIGHT
对数据集的操作
❖ 在SAS/INSIGHT中,可对SAS数据集进行 ❖ 数据输入和浏览 ❖ 修改测量水平 ❖ 移动变量显示次序 ❖ 建立新的变量 ❖ 按某个变量的值进行排序 ❖ 选取子集
22
Analyst Application
❖ 分析员应用(Analyst Application)是在SAS 系统中进行基本统计分析菜单界面系统
X1
3Байду номын сангаас18 -0
1 10 -0 -9 -11
6 -7
X2
19 40
0 -1
14 -15
4 7 3
-9
X3
3 -3 1 -7 -38 30 1
6 -3
8
X4
-9 13 -14 -46 -7 13 18
0 8 -1
X5
1 13 -5 45
0 19 -9 4 19 -16
MEAN
7.4 16. -7.6 -5.6 -8.
Interactive data analysis ❖ 通过 SAS/ASSIST 或提交 Proc insight
20
SAS/INSIGHT
❖ 在SAS/INSIGHT中,变量按其测量水平分
为:
以连续变化尺度测量 具有可进行分析的数值
区间型的(Interval)
有数值或字符值
列名型的(Nominal) 用于作分类变量
5
总体(母体 Population)
❖ 关心的对象全体
❖ 关心对象的某些指标(Variable) Var1, Var2, . . . ,Var n
❖ 总体的分布:这些变量取什麽值, 各占多大比例
❖ 总体的分布的特征:均值,方差(及其他 参数)

抽样
6
样本(子样 Sample )
❖ 样本:取自总体的若干(有代表性)的个体
5.4 7. 5. 10.6 -7. 2.3
8.3
STD
13.3 15.5 18.5 33.4 3.1 1.8 15.4 1.7 1.6
9.1
17.6
12
抽样的随机性
13
抽样的随机性
14
抽样的随机性
15
抽样的随机性
16
抽样的随机性
17
用SAS作常规统计 的几种常用做法
❖ 用SAS作常规统计分析,在交互式运行方 式下常用的做法有:
STAT, QC, ETS, OR
INSIGHT, LAB, ASSIST
IML
❖ SAS 将其分析功能与其数据管理功能结 合成强大的决策支持系统
3
SAS分析的特点
❖ SAS 将常用的统计方法用程序实现,是 一个高品位的程序系统
❖ SAS 是一个迅速发展的系统:融入最新 的方法,不断适应用户的新需求
相关文档
最新文档