初三用频率估计概率的方法,九年级上册数学用频率估计概率经典题型专项训练及答案解析

合集下载

初三数学第一学期第25章:用频率估计概率_练习题和答案

初三数学第一学期第25章:用频率估计概率_练习题和答案

用频率估计概率一、填空题(每题3分,共30分) 1.“抛出的蓝球会下落”,这个事件是 事件.(填“确定”或“不确定”)2.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为 的概率最大,抽到和大于8的概率为 . 3.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,则她在该次预测中达标的概率是 .4.两位同学进行投篮,甲同学投20次,投中15次;乙同学投15次,投中9次,命中率高的是 ,对某次投篮而言,二人同时投中的概率是 .5.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%.25%和40%,估计口袋中黄色玻璃球有 个.6.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是31,则摸出一个黄球的概率是 . 7.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 .8.甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由._________________________________.9.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有 个黑球. 10.如图,创新广场上铺设了一种新颖的石子图案,它由五个过同一点且半径不同的圆组成,其中阴影部分铺黑色石子,其余部分铺白色石子.小鹏在规定地点随意向图案内投掷小球,每球都能落在图案内,经过多次试验,发现落在一、三、五环(阴影)内的概率分别是0.04,0.2,0.36,如果最大圆的半径是1米,那么黑色石子区域的总面积约为 米2(精确到0.01米2). 二、选择题(每题3分,共24分) 11.下列模拟掷硬币的实验不正确的是 ( )A .用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B .袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C .在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D .将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上12.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 ( )A .21 B .51 C .361 D .3611 13.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )(第10题)(第16题)A .32B .21C .41D .3114.如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他能一次选对路的概率是( )A .21B .31C .41D .015.如图,两个用来摇奖的转盘,其中说法正确的是( ) A .转盘(1)中蓝色区域的面积比转盘(2)中的蓝色区域面积要大,所以摇转盘(1)比摇转盘(2)时,蓝色区域得奖的可能性大B .两个转盘中指针指向蓝色区域的机会一样大C .转盘(1)中,指针指向红色区域的概率是31 D .在转盘(2)中只有红.黄.蓝三种颜色,指针指向每 种颜色的概率都是31 16.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A .21 B .31 C .41 D .5117.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A .41 B .61 C .51 D .203 18.如图,高速公路上有A 、B 、C 三个出口,A 、B 之间路程为a 千米,B 、C 之间的路程为b 千米,决定在A 、C 之间的任意一处增设一个服务区,则此服务区设在A 、B 之间的概率是( )A .a bB .b aC .b a a +D .ba b+三、选择题(每题3分,共24分) 19.(7分)小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回. (1)若小明恰好抽到黑桃4.①请绘制这种情况的树状图;②求小华抽的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不分胜负,你认为这个游戏是否公平?说明你的理由. 20.(8分)某商场设立了一个可以自由转动的转盘,并做如下规定:顾客购物80元以上就获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据.小明家公园(第14题)(第14题)A B C (第18题)(1)计算并完成表格;(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动该盘一次,你获得洗衣粉的概率约是多少?(4)在该转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少?(精确到1°)21.(7分)某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由.22.(8分)王强与李刚两位同学在学习“概率”时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:向上点数 1 2 3 4 5 6出现次数 6 9 5 8 16 10 (1)请计算出现向上点数为3的频率及出现向上点数为5的频率.(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”请判断王强和李刚说法的对错.(3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.23.(8分)有一个“摆地摊”的赌主,他拿出2个白球和2个黑球,放在一个袋子里,让人摸球中奖,只要交1元钱,就可以从袋里摸2个球,如果摸到的2个球都是白球,可以得到4元的回报,请计算一下中奖的机会,如果全校一共2400人,有一半学生每人摸了一回,赌主将从学生身上骗走多少钱?24.(8分)六个面上分别标有1、1、2、3、3、5六个数字的均匀立方体的表面展开图如图6所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数为该点的纵坐标.按照这样的规定,每掷一次该小立方体,就得到平面内一个点的坐标.(1)掷这样的立方体可能得到的点有哪些?请把这些点在如下给定的平面直角坐标系中表示出来.(2)已知小明前两次掷得的两个点确定一条直线l,且这条直线经过点P(4,7),那么他第三次掷得的点也在直线l上的概率是多少?参考答案一、填空题 1.答案:确定解析:根据生活常识可判断 2.答案:6,3253.答案:25解析:解:小敏记录了他预测时2分钟跳的次数共5次,有2次达标,故他在该次测试中达标的概率是P=. 4.答案:甲,920解析:解:甲的命中率是,乙的是,所以甲的命中率高.如果甲投20次,乙投15次,那么投篮结果就有20×15=300种,其中同时投中的有15×9=135种,所以二人同时投中的概率是.5.答案:18解析:解:∵红球和蓝球的频率分别是35%和40%,∴估计口袋中黄色玻璃球的数目=72×(1-35%-40%)=72×25%=18个. 6.答案:257.答案:15解析:解:因为每次只摸出一只小球时,布袋中共有小球10个,其中红球2个, 所以第10次摸出红球的概率是=. 8.答案:不公平 9.答案:48解析: 求出5次共摸出黑球40个,设袋中有x 个黑球,则∴x=48.10.答案:1.88 二、选择题 11.答案:D解析: A 、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下,正确,不合题意;B 、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,正确,不合题意;C 、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,正确,不合题意;D 、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上,由于奇数与偶数个数不相同,故不能模拟掷硬币的实验,故符合题意. 故选:D . 12.答案D同时投掷两个骰子,可能出现的结果有如下36种:12 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,50 (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由此可得:满足至少有一个骰子的点数是2的结果有11种,所求概率为P= 1136故选:D13.答案D解析:解:∵有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,且是3的倍数的有6与9,∴从中任意抽取1张,那么这张牌正面上的数字是3的倍数的概率为:.故选D .14.答案:B解析: 解:∵有三个路口, ∴小明一次能走对路的概率是 . 故答案为:. 15.答案:B解析:由图可知(1)(2)中蓝色区域面积都是圆盘总面积的41. 故两个转盘中指针指向蓝色区域的机会一样大. 故选B.16.答案:B解析: 解:图上共有15个方格,黑色方格为5个, 在黑色方格上的概率是,即.故选B .17.答案:B解:因为20个商标有5个中奖,翻了两个都中奖,所以还剩18个,其中还有3个会中奖,所以这位观众第三次翻牌获奖的概率是.故选B . 18.答案:D 三、解答题 19.(1)①图略,②23;(2)这个游戏公平 20.(1)0.68 0.74 0.68 0.69 0.705 0.701;(2)0.7;(3)0.7;(4)25221.都可以.最后一个三分球由甲来投,因甲在平时训练中3分球的命中率较高;最后一个3分球由乙来投,因为在本场比赛中乙的命中率更高,投入最后一个球的可能性更大 22.(1)出现向上点数为3的频率为554,出现向上点数为5的频率为827;(2)都错;(3)1323.400元24.(1)(1,1)、(1,1)、(2,3)、(3,2)、(3,5)、(5,3);(2)通过描点和计算可以发现,经过(1,1),(2,3),(3,5)三点中的任意两点所确定的直线都经过点P (4,7),所以小明第三次掷得的点也在直线l 上的概率是46=23。

初三数学用频率估计概率同步练习及答案

初三数学用频率估计概率同步练习及答案

初三数学用频率估计概率同步练习及答案用频率估量概率一、仔细心细,记载自信1.公路下行驶的一辆汽车车牌为偶数的频率约是( )A.50%B.100%C.由各车所在单位或团体定D.无法确定2.实验的总次数、频数及频率三者的关系是( )A.频数越大,频率越大B.频数与总次数成正比C.总次数一定时,频数越大,频率可到达很大D.频数一定时,频率与总次数成正比3.在一副(54张)扑克牌中,摸到A的频率是( )A. B. C. D.无法估量4.在做针尖落地的实验中,正确的是( )A.甲做了4 000次,得出针尖触地的时机约为46%,于是他断定在做第4 001次时,针尖一定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把资料、外形及大小都完全一样的图钉,随意朝上悄然抛出,然后统计针尖触地的次数,这样大大提高了速度C.教员布置每位同窗回家做实验,图钉自在选取D.教员布置同窗回家做实验,图钉一致发(完全一样的图钉).同窗交来的结果,教员挑选他满意的停止统计,他不满意的就不要二、认仔细真,书写快乐5.经过实验的方法用频率估量概率的大小,必需要求实验是在的条件下停止.6.某灯泡厂在一次质量反省中,从2 000个灯泡中随机抽查了100个,其中有10个不合格,那么出现不合格灯泡的频率是,在这2 000个灯泡中,估量有个为不合格产品.7.在红桃A至红桃K这13张扑克牌中,每次抽出一张,然后放回洗牌再抽,研讨恰恰抽到的数字小于5的牌的概率,假定用计算机模拟实验,那么要在的范围中发生随机数,假定发生的随机数是,那么代表出现小于5,否那么就不是.8.抛一枚平均的硬币100 次,假定出现正面的次数为45次,那么出现正面的频率是 .三、心平气和,展现智慧9.一个口袋中有10个红球和假定干个白球,请经过以下实验估量口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不时重复上述进程.实验中总共摸了200次,其中有50次摸到红球.10.如图,某商场设立了一个可以自在转动的转盘,并规则:顾客购物10元以上就能取得一次转动转盘的时机,当转盘中止时,指针落在哪一区域就可以取得相应的奖品.下表是活动停止中的一组统计数据:(1)计算并完成表格:转动转盘的次数n 100 150 200 500 800 1 1000落在铅笔的次数m 68 111 136 345 564 701落在铅笔的频率(2)请估量,当n 很大时,频率将会接近多少?(3)假设你去转动转盘一次,你获的铅笔的概率是多少?28.3用频率估量概率一、1~4.ADBB二、5.相反或同等(意思相近即可) 6.0.1,200 7.1~13,1,2,3,48.0.45三、9.30个.10.(1)0.68,0.74,0.68,0.69,0.705,0.701;(2)接近0.7;(3)0.7.。

九年级数学上册25.3用频率估计概率大全

九年级数学上册25.3用频率估计概率大全

九年级数学上册25.3用频率估计概率大全1、下列平面图形中,既是中心对称图形,又是轴对称图形的是A.等腰三角形 B.等边三角形C.等腰梯形D.菱形答案D 解析2、某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为:A.21元B.19.8元答案A 解析3、某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15 答案B 解析4、(2013?海淀区二模)下列图形可以由一个图形经过平移变换得到的是()A.B.C.D.答案B 解析试题分析:根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解:A、图形的方向发生变化,不符合平移的性质,不属于平移得到,故此选项错误;B、图形的大小没有发生变化,符合平移的性质,属于平移得到,故此选项正确;C、图形的方向发生变化,不符合平移的性质,不属于平移得到,故此选项错误;D、图形的大小发生变化,不属于平移得到,故此选项错误.故选:B.点评:本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.5、如图,在数轴上点A和点B之间的整数是; 答案?2 解析6、小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是答案A 解析7、不等式的解集是()A.-<x≤2B.-3<x≤2C.x≥2D.x<-3 答案B 解析8、下列图中是太阳光下形成的影子是答案A 解析考点:平行投影.分析:根据平行投影特点在同一时刻,不同物体的物高和影长成比例可知.解:在同一时刻,不同物体的物高和影长成比例且影子方向相同.B、D的影子方向相反,都错误;C中物体的物高和影长不成比例,也错误.故选A.9、若a>b,则下列各式中一定成立的是(;) A.3a<3 答案C 解析10、据相关报道,三峡水库的防洪库容约为22150000000m3,相当于50000个A型水库库容,则A型水库库容约为答案C 解析考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.解答:解:根据题意:22 150 000 000/50000=443000m3,用科学记数法可记作4.43×10m3.故选C.点评:用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).11、已知二次函数的图象如图所示,有下列4个结论,其中正确的结论是(答案B 解12、-3的绝对值等于A.-3B.3C.-D.答案B 解析考点:绝对值.专题:计算题.分析:根据绝对值的性质解答即可.解答:解:|-3|=3.故选B.点评:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.13、把27430按四舍五入取近似值,保留两个有效数字, 并用科学记数法表示应是]A.2.8×104B.答案D 解析14、若一个数的算术平方根等于它的本身,则这个数是答案D 解析15、有一个数值转换器,原理如下:当输入的x为64时,输出的y是答案B 解析16、下列计算正确的是( )A.B.C.D.答案C 解析17、下列图中,左边的图形是立方体的表面展开图,把它折叠成立方体。

人教版九年级上册数学同步练习《用频率估计概率》(习题+答案)

人教版九年级上册数学同步练习《用频率估计概率》(习题+答案)

25.3用频率估计概率内容提要1.一般地,在大量重复试验中,如果事件A发生的频率mn稳定于某个常数p,那么事件A发生的概率()P A p=.2.即使试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等,我们也可以通过试验的方法去估计一个随机事件发生的概率.只要试验的次数n足够大,且频率m n 稳定于某个常数,频率mn就可以作为概率P的估计值.基础训练1.在“抛骰子”的游戏中,如果抛了100次,出现点数1的频率为19%,这是()A.可能的B.确定的C.不可能D.以上都不正确2.下列说法正确的是()A.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨B.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等C.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖D.一颗质地均匀的骰子已经连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点3.某个事件发生的概率是12,这意味着()A.在两次重复实验中该事件必有一次发生B.在一次实验中没有发生,下次肯定发生C.在一次实验中已经发生,下次肯定不发生D.每次实验中事件发生的可能性是50%4.晓辉为练习射击,共射击600次,其中380次击中靶子,由此可以估计,晓辉射击一次击中靶子的概率约是()A.38% B.60% C.63% D.65%5.为了估计池塘里有多少条鱼,从池塘里捕捞了100条鱼做上标记,然后放回池塘里,经过一段时间等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼条.6.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据,请估计盒子里的白球个数为.(1)计算各次检查中“优等品”的频率,填入表中:)该厂生产乒乓球优等品的概率约为(精确到8.某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(2)请估计,当转动转盘的次数很大时,频率将会接近多少(精确到0.1)?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?9.不透明的袋中有4个大小相同的小球,其中2个为白色,1个为红色,1个为绿色,每次从袋中摸一个球,然后放回搅匀再摸,在摸球试验中得到下列表中部分数据:摸球次数 1 5 10 20 40 50 100 110 150 160 190 200 出现红球的频数 1 2 3 5 13 18 27 28 39 40 49 51 出现红球的频率(2)摸球5次和摸球10次所得频率值的误差是多少?100次和110次之间,190次和200次之间呢?从中你发现了什么规律?(3)根据以上数据你能估计红球出现的概率吗?是多少?(4)你能估计白球出现的概率吗?你能估计绿球出现的概率吗?能力提高1.小新抛掷一枚质地均匀的硬币,连续抛10次,有7次正面朝上,如果他第11次抛硬币,那么硬币正面朝上的概率为()A.12B.14C.1 D.342.小明在一个装有红色球和白色球各一个的口袋中摸出一个球,然后放回搅匀再摸出一个球,反复多次实验后,发现某种“状况”出现的机会约为50%,则这种状况可能是()A.两次摸到红色球B.两次摸到白色球C.两次摸到不同颜色的球D.先摸到红色球,后摸到白色球3.甲、乙两名同学在一次用频率估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率4.修正液中含有铅、苯、钡等对人体有害的化学物质,为了让同学们真正认识修正液,九年级(1)班同学分成几个小组在中学生中展开调查“你知道修正液的主要成分吗?”调查数据统计如下表:调查人数200 400 800 1200 1600 2000 知道 6 10 15 23 33 41不知道98 390 785 1177 1567 1959 请根据这些数据估计“中学生知道修正液主要成分”的概率为(精确到5.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率估计值为.(2)该地区已经移植这种树苗5万棵,①估计这种树苗成活万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约万棵.6.电脑程序小组的同学在计算机中制作了一个“虚拟骰子”(均匀的正方体),6个面中每个面都写有数字1,2,3,4之中的一个,通过10000次电脑投掷试验所得结果是:出现数字“1”的频率是33%,出现数字“2”的频率是17%,出现数字“3”的频率是34%,出现数字“4”的频率是16%,则6个面上数字之和为.7.某湿地自然保护区有大量白鹭,为掌握该区生态环境变化,科学家想了解白鹭群的数量及性别分布,现随机抓取45只白鹭做上标记再放飞,一个星期后随机抓回100只,记录结果如下:无记号有记号白鹭特征雄性雌性雄性雌性数量29 68 1 28.如图,均匀的正四面体的各面依次标有1,2,3,4四个数字,小明做了60次投掷实验,结果统计如下:数字 1 2 3 4数字朝下的次数16 20 14 10(1)计算上述实验中“4朝下”的频率是.”的说法正确吗?为什(2)“根据实验结果,投掷一次正四面体,出现2朝下的概率是13么?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.9.一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,试估计出现“和为7”的概率.(2)根据(1)的结果,x的值可能是6吗?请说明理由.(3)若x是不等于2,3,4的自然数,试求x的值.拓展探究1.学校举办“跳蚤市场”活动,九年级(1)班的同学决定批发一款笔袋在跳蚤市场出售.该款笔袋有红、蓝两种颜色,在采购的时候两名同学进行了如下的讨论:甲:每个人喜欢的颜色都不同,所以两款颜色都采购相同数量;乙:哪种颜色更多人喜欢就应该采购更大的数量;于是争执不下的两人回到学校针对笔袋的颜色做了一份调查,下表是一组统计数据:选“红色”的人数34 62 88 122 151 181选“红色”的频率(2)根据调查估计选红色的概率为多少(精确到0.1)?若按这一比例共采购200只笔袋,该笔袋进价为每只7元,为了获得较大利润将红色款定价为10元,蓝色款定价为9元,则200只笔袋共可获得多少元?2.现在初中课本里所学的概率计算问题只有以下两种类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验.第二类是用试验或者模拟试验的数据计算频率,并且频率估计概率的概率计算问题,比如掷图钉的试验.解决概率计算问题,可以直接利用模型,也可以转化后再利用模型.请解决以下问题:(1)下图是由边长均为1的正三角形、正方形、正六边形镶嵌而成的木板,利用该图形开展寻宝游戏,若宝物随机钉在木板后任意一点,则宝物钉在正方形区域后的概率是多少(精确到0.001)?(2)在1~9中随机选取3个整数,若以这3个整数为边长构成三角形的情况如下表:试验组别第1组试验第2组试验第3组试验第4组试验第5组试验构成锐角三角形次数86 158 250 337 420数学应用应用1甲、乙两人扔三个骰子,规定若三个骰子点数之和是奇数为甲获胜,三个骰子点数之和是偶数为乙获胜,请问这个游戏公平吗?请同学们通过实验,用频率估计概率的方法得出问题答案.应用2在中国象棋比赛中,两只不同颜色的“车”只要在同一条线上就可以相互“吃掉”.和你的同学一起借助中国象棋盘上的格子,研究在中国象棋盘上随机放一只红“车”及一只蓝“车”,它们正好可以相互“吃掉”的概率.应用3用应用2的思考方法,和你的同学一起借助中国象棋盘上的格子,研究在中国象棋盘上随机放一只红“马”及一只蓝“马”,它们正好可以相互“吃掉”的概率.整理归纳1.分清三个事件:学习概率的有关知识,必须了解随机现象,根据事件发生可能性的大小正确判断出给定的事件到底是什么事件,不可能事件是指每次都一定没有机会发生;必然事件是指每次一定发生;随机事件是指有时候会发生,有时候不发生.2.理清概率与频率的关系.频率是指每个对象出现的次数与总次数的比值,而概率是指大量重复试验中,事件A发稳定下来所接近的某个常数.因此说,我们可用大量重复试验时的频率来估计概生的频率mn率,但不能说频率等于概率,因为它们是两个不同的概念,概率伴随着随机事件客观存在着,只要有一个随机事件存在,那这个随机事件的概率就一定存在;而频率是通过试验得到的,它随试验次数的变化而变化,虽然多次试验的频率能稳定于其理论概率,但无论做多少次试验,试验频率总是理论频率的一个近似值,接近而不相等.3.概率的计算.(1)有限等可能事件概率的计算:一般地,若在一次试验中有n种可能的结果,且它们发生的可能性都相等,事件A包含其中的m种结果,则事件A发生的概率为()m=.可P An 见,计算概率的关键是探寻出m和n,常用的方法有列表法和树状图法,其中列表法适用于一次试验要涉及两个因素且可能出现的结果数目较多的情况;树状图法适用于一次试验要涉及三个或更多的因素的情况.(2)当随机试验可能出现的结果有无限多个,或者各种可能结果发生的可能性不相等时,可通过统计频率来估计概率.其做法是通过大量重复实验,用事件发生的稳定频率值来估计事件的概率,实验的次数越多,估计的效果就越好.数学实践密码锁安全吗?增城石滩镇港侨中学九(1)班万婉珊指导老师曹雪勇每次见爸爸出差,总少不了那些重要的文件,你可别小看这些文件,它关系到公司的生死存亡、职员的利益,所以爸爸每次出差总是十分紧张,这已成了爸爸最伤脑筋的事啦!最近妈妈建议爸爸购买一个配有密码锁的公事包,但爸爸、妈妈却因为公事包的安全性问题展开了激烈的争论,爸爸认为:“只要知道那几个小小的数字就可以非常巧妙地打开,密码锁不安全.”其实密码锁是十分安全的,现在就让我们用数学知识来论证一下吧.假如数字密码锁是三位数□□□,而每一格都有可能出现0,1,2,3,4,5,6,7,8,9十个数字,这样排出三位数共有1010101000⨯⨯=个.而在这1000个数字当中只有一组密码号才能打开,因此打开此锁的概率是0.1%.不知道密码的人,想偷偷打开密码锁,就得一个不漏地一个一个去试,先000,001,002,003,…,一直试到999.由于心理紧张,还会重复已试过的数,并且即使试到了正确的密码号而没有去拉一下,这样又会“溜”过去了,因此可能要试1000多个数才有机会打开.如果每试一个数要花去10秒钟,那么试1000个数要花费:()⨯÷÷≈时.1000106060 2.8如果密码锁是七位的,那么不知道密码的人要想偷偷打开密码锁花的时间就会更多了.七位数的数字锁□□□□□□□同三位数的数字锁一样,每一格都有可能出现0,1,2,3,4,5,6,7,8,9十个数字,这样排出的七位数共有:7101010101010101010000000⨯⨯⨯⨯⨯⨯==个.而在10000000个数字中只有1个密码号才能打开密码锁,那么打开密码锁的概率为7=.1/100.00001%同样,不知密码的人想打开密码锁就得一个不漏地一个一个去试,做贼毕竟会心虚,再加上心理紧张,还会不自觉地重复试号,这样试号就会超过710个,假如每试一个号需要7⨯÷÷≈时.的时间也按10秒计算,打开密码锁一般需要花费:1010606027778即使不知密码的人每天不眠不休,也约需要38个月才有机会打开密码锁,所以密码锁是十分安全的.如果将密码锁改为字母密码锁将能更大地增加它的安全性.字母密码锁一般是五位字母的,而每一格都有可能出现A,B,C,D,…,26个字母,这样排出的五位字母共有5⨯⨯⨯⨯==个.26262626262611881376而在11881376个字母组合中同样只有1个字母组合密码号才能打开密码锁.那打开密码锁的概率为1/11881376=0.000008416%,那么想偷偷打开密码锁的人花费的时间就更长,安全性能就更高了.由上述的分析我们可知密码锁是十分安全的.学业评价25.3 参考答案:基础训练1.A 2.B 3.D 4.C 5.2 000 6.24 7.(1)0.90.920.910.890.9(2)0.9 8.(1)0.680.740.680.690.7050.701.(2)当转动转盘的次数很大时,频率将会接近0.7.(3)获得铅笔的概率约是0.7.(4)圆心角的度数约为0.7360252⨯︒=︒.9.(1)1 0.40.30.250.3250.360.270.2550.260.250.2580.255(2)0.10.0150.003随着实验次数的增多,频率之间的误差会变得更小,因为频率逐渐稳定.(3)能,0.25(4)白球出现的概率是0.5,绿色出现的概率是0.25.能力提高1.A 2.C 3.B 4.0.025.(1)0.90.9(2)①4.5②15 6.147.雌雄比例为3:7,共1 500只.8.(1)16(2)不正确.(3)列表:由表格可知投掷正四面体两次,共有16种可能性,两次朝下的数字之和大于4共有10种可能性,105 168∴=.9.(1)0.33(2)不可能,如果x是6,可求得“和为7”的概率是6,不是0.33(3)5 拓展探究1.(1)0.680.620.590.610.600.60(2)0.6,可共获利520元.2.(1)0.536(2)0.22数学应用应用1 公平应用21789应用3 若其中一“马”在点1A ,1J ,9A ,9J 时(共4个点),互吃的概率为289;若其中一“马”在点2A ,1B ,1I 2J ,8A ,9B ,8J ,9I 时(共8个点),互吃的概率为389;若其中一“马”在点37A A ~,37J J ~,11C H ~,99C H ~,2B ,2I ,8B ,8I 时(共26个点),互吃的概率为489;若其中一“马”在点22C H ~,37B B ~,88C H ~,37I I ~时(共22个点),互吃的概率为689;若其中一“马”在其余30个点上时,互吃的概率为889.。

【精品讲义】人教版九年级数学(上)专题25.3 用频率估计概率-(知识点+例题+练习题)含答案

【精品讲义】人教版九年级数学(上)专题25.3 用频率估计概率-(知识点+例题+练习题)含答案

第二十五章 概率初步25.3 用频率估计概率用频率估计概率连续抛掷一枚质地均匀的硬币10次、20次、30次、40次、50次……分别记录每轮试验中硬币“正面向上”和“反面向上”出现的次数,求出“正面向上”和“反面向上”的频率,分析数据,可探索出频率的变化规律.用频率估计概率(1)从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率. (2)一般地,在大量重复试验中,如果事件A 发生的频率mn稳定于某个常数p ,那么事件A 发生的概率P (A )=p .n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为A.0.3 B.0.7C.0.4 D.0.6【答案】A【解析】∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选A.【名师点睛】一般地,在大量重复试验中,如果事件A发生的频率mn稳定于某个常数p,那么估计事件A发生的概率P(A)=p.试验得出的频率只是概率的估计值.概率是针对大量重复试验而言的,大量重复试验反映出的规律并非在每一次试验中都发生.(1)将表格补充完成;(精确到0.01)(2)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【解析】(1)153÷300=0.51,252÷500≈0.50;故答案为:0.51,0.50;(2)估计这名同学投篮一次,投中的概率约是0.5;(3)622×0.5=311(次).所以估计这名同学投篮622次,投中的次数约是311次.1.关于频率和概率的关系,下列说法正确的是A.频率等于概率B.当试验次数很大时,概率稳定在频率附近C.当试验次数很大时,频率稳定在概率附近D.试验得到的频率和概率不可能相等2.随机事件A出现的频率mn满足A.mn=0 B.mn=1C.mn>1 D.0<mn<13.两人各抛一枚硬币,则下面说法正确的是A.每次抛出后出现正面或反面是一样的B.抛掷同样的次数,则出现正、反面的频数一样多C.在相同条件下,即使抛掷的次数很多,出现正、反面的频数也不一定相同D.当抛掷次数很多时,出现正、反面的次数就相同了4.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有A.60个B.50个C.40个D.30个5.在一个不透明的袋中装有黑色和红色两种颜色的球共15个,每个球除颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为__________.6.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=__________;(2)“摸到白球”的概率的估计值是__________(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少个?7.某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?1.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色后放回……如此大量摸球试验后,小新发现从布袋中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是A.①②③B.①②C.①③D.②③2.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为A.500B.800C.1000D.12003.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有________个白球.4.一鱼池里有鲤鱼,鲫鱼,鲢鱼共1000尾,一渔民通过多次捕捞试验后发现,鲤鱼,鲫鱼出现的概率约为31%和42%,则这个鱼池里大概有鲤鱼______尾,鲫鱼______尾,鲢鱼______尾.5.某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣中抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?6.小明抛硬币的过程(每枚硬币只有正面朝上和反面朝上两种情况)见下表,阅读并回答问题:(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完10次时,得到__________次反面,反面出现的频率是__________;(2)当他抛完5000次时,反面出现的次数是__________,反面出现的频率是__________;(3)通过上表我们可以知道,正面出现的频数和反面出现的频数之和等于__________,正面出现的频率和反面出现的频率之和等于__________.1.(2019•湖北襄阳)下列说法错误的是A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.(2019•江苏泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20 B.300C.500 D.8003.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是A.0.85 B.0.57 C.0.42 D.0.154.(2019•柳州)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是__________(结果精确到0.01).5.(2019•长沙)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是__________.(结果保留小数点后一位)6.(2019•雅安)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?1.【答案】C【解析】概率是一个确定的数,频率是一个变化量,当试验次数很大时,频率会稳定在概率附近.由此可得,选项C 正确.故选C . 2.【答案】D【解析】大量重复试验中具有某种规律性的事件叫做随机事件,故频率mn的含义是在n 次试验中发生m 次,即必有0<mn<1.故选D . 3.【答案】C【解析】抛硬币是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料.故选C . 4.【答案】C【解析】∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球, ∴白球与红球的数量之比为1:4, ∵白球有10个,∴红球有10×4=40(个), 故选C . 5.【答案】6【解析】黑球个数为:150.69⨯=,红球个数:1596-=.故答案为:6.【名师点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键. 6.【解析】(1)a =290500=0.58,故答案为:0.58; (2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60; (3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白球的个数=20×0.6=12(个),黑球20−12=8(个). 答:黑球8个,白球12个.【名师点睛】本题考查利用频率估计概率,事件A 发生的频率等于事件A 出现的次数除以实验总次数;在实验次数非常大时,事件A 发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.7.【解析】(1)如图,(2)()10.9420.9460.9510.9490.9485⨯++++=1 4.7365⨯=0.9472≈0.95. (3)P (摸出一个球是黄球)=551322++=18.(4)设取出了x 个黑球,则放入了x 个黄球,则551322x +++=14,解得x =5.答:取出了5个黑球.【名师点睛】本题考查利用频率估算概率,数量较大、批次较多时用求平均值的方法更接近概率,理解题意灵活运用概率公式是解题关键.1.【答案】B【解析】∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1–20%–50%=30%,故此选项正确; ∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选B.【名师点睛】此题主要考查了利用频率估计概率,根据频率与概率的关系得出是解题关键.2.【答案】C【解析】抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选C.【名师点睛】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.【答案】12【解析】∵共试验40次,其中有10次摸到黑球,∴白球所占的比例为:40103 404-=,设盒子中共有白球x个,则344xx=+,解得x=12,经检验,x=12是原方程的根,故答案为:12.【名师点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.4.【答案】310;420;270【解析】根据所给数据可得:鲤鱼:1000×31%=310(尾);鲫鱼:1000×42%=420(尾);鲢鱼:1000–310–420=270(尾).故答案为:310;420;270.5.【答案】(1)0.06;(2)36件【解析】(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,P(抽到次品)=931550=0.06.(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:至少准备36件正品衬衣供顾客调换.6.【答案】(1)7;70%;(2)2502;50.04%;(3)抛掷总次数;1【解析】(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完 10次时,得到7次反面,反面出现的频率是710=0.7=70%; (2)当他抛完5000次时,反面出现的次数是5000–2498=2502,反面出现的频率是2502÷5000=0.5004=50.04%;(3)通过上面我们可以知道,正面出现的频数和反面出现的频数之和等于抛掷总次数,正面出现的频率和反面出现的频率之和等于1.1.【答案】C【解析】A 、必然事件发生的概率是1,正确;B 、通过大量重复试验,可以用频率估计概率,正确;C 、概率很小的事件也有可能发生,故错误;D 、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选C .2.【答案】C【解析】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C .3.【答案】D【解析】样本中身高不低于180cm 的频率==0.15,所以估计他的身高不低于180cm 的概率是0.15.故选D .4.【答案】【解析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.95.5.【解答】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.6.【解析】(1)由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”占15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60–(9+21+3)=27(人);15100(2)如图:(3)所求概率为.=6927035。

湖北省丹江口市人教版九年级数学上册:25.3用频率估计概率专题训练试题(含答案)

湖北省丹江口市人教版九年级数学上册:25.3用频率估计概率专题训练试题(含答案)

25.3用频率估计概率一、填空题1、黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是________ kg.2、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________3、一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球____个.4、为了估算湖里有多少条鱼,从湖里捕上100条做上标记,然后放回湖里,经过一段时间待标记的鱼全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,我们可以估算湖里有鱼条.5、.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.6、在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.7、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为个.8、在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.9、在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球有4个,黑、白色小球的数目相同,小明从布袋右随机摸出一球,记下颜色放回布袋中,搅匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小明发现其中摸出红球频率稳定于20%,由此可以估计布袋中的黑色小球有________个.10、小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.11、在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是12、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为.二、选择题13、一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球大约多少只?()A、8只B、12只C、18只D、30只14、在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:摸球的次数n100 150 200 500 800 1000摸到白球的次数m58 96 116 295 484 601摸到白球的频率0.58 0.64 0.58 0.59 0.605 0.601请估算口袋中白球约是( )只.A.8 B.9 C.12 D.1315、在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.2116、在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是( )A.10个B.15个 C.20个D.25个17、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条18、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24 B.18 C.16 D.619、2015年4月30日,苏州吴江蚕种全部发放完毕,共计发放蚕种6460张(每张上的蚕卵有200粒左右),涉及6个镇,各镇随即开始孵化蚕种,小李所记录的蚕种孵化情况如表所示,则可以估计蚕种孵化成功的概率为()累计蚕种孵化总数/粒200 400 600 800 1000 1200 1400孵化成功数/粒181 362 541 718 905 1077 1263A.0.95 B.0.9 C.0.85 D.0.820、为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条 B.380条 C.400条 D.420条21、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( )A.3 B.4 C.5 D.622、在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个 B.20个 C.30个 D.35个参考答案一、填空题1、5602、103、84、800 条.5、15 个.6、12 个.7、15 个.8、109、810、2 100个11、10.12、0.600 .二、选择题13、B14、C15、B16、B17、C18、C19、B20、C21、B22、D。

用频率估计概率 同步练习 2022—2023学年北师大版数学九年级上册【有答案】

用频率估计概率 同步练习 2022—2023学年北师大版数学九年级上册【有答案】

北师大版九上 3.2 用频率估计概率一、选择题(共9小题)1. 用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指( )A. 连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B. 连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C. 抛掷2n次硬币,恰好有n次“正面朝上”D. 抛掷n次,当n越来越大时,正面朝上的频率会越来越趋近于0.52. 将A,B两位篮球运动员在一段时间内的投篮情况记录如下,下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767;②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750;③当投篮达到200次时,B运动员投中次数一定为160次.其中合理的是( )A. ①B. ②C. ①③D. ②③3. 在大量重复试验中,关于随机事件发生的频率和概率,下列说法正确的是( )A. 频率就是概率B. 频率与试验次数无关C. 在相同的条件下进行试验,如果试验次数相同,则各实验小组所得频率的值也会相同D. 随着试验次数的增加,频率一般会逐步稳定在概率数值附近4. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( )A. ①B. ②C. ①②D. ①③5. 气象台预报“本市明天降水概率是80%”,对此消息,下面几种说法正确的是( )A. 本市明天将有80%的地区降水B. 明天降水的可能性比较大C. 本市明天降有80%的时间降水D. 明天肯定下雨6. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A. 3000条B. 2200条C. 1200条D. 600条7. 在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从,那么m的值是( )中随机摸出一个球,恰好是红球的概率为15A. 12B. 15C. 18D. 218. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A. 28个B. 30个C. 36个D. 42个9. 在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有( )A. 34个B. 30个C. 10个D. 6个二、填空题(共8小题)10. 在一个不透明的盒子中装有 n 个小球,它们只有颜色上的区别,其中有 2 个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于 0.2,那么可以推算出 n 大约是 .11. 在一个不透明的盒子中装有 n 个球,它们除了颜色之外其他都没有区别,其中含有 3 个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在 0.03,那么可以推算出 n 的值大约是 .12. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .13. 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”, 在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .14. 大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为 2 cm 的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在 0.6 左右,据此可以估计黑色部分的总面积约为 cm 2.15. 在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入 3 个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在 0.85 左右,则袋中红球约有 个.16. 一个不透明的袋子中装有若干个除颜色外都相同的小球,小明每次从袋子中随机摸出一个球,记录下颜色,然后放回,重复这样的试验 3000 次,记录结果如下:实验次数n 100200300500800100020003000摸到红球次数m 6512417830248162012401845摸到红球频率m n0.650.620.5930.6040.6010.6200.6200.615 估计从袋子中随机摸出一个球恰好是红球的概率约为 .(精确到 0.1)17. 小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球3000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是 个.三、解答题(共5小题)18. 一只不透明的袋中装有一定数量的红球和黄球(它们除颜色外,其余完全相同),小明设计了一个摸球游戏,他摸了10次,每次摸出1个球,记录其颜色后把球放回袋中,再摸下一次,每次摸球前都把球搅匀.结果有7次摸到黄球,3次摸到红球,于是小明说:“袋中的红球一定比黄球少.”你认为他的结论合理吗?说明你的理由.19. 全班同学一起做摸球试验,不透明的布袋中共有除颜色外其余均相同的红球和黄球共5个,每次摸出一球,记下颜色后放回摇匀.一共摸了200次,其中123次是红球,77次是黄球,请你求出摸到红球的频率;布袋中有红球和黄球各多少个?20. 小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆,如图①,蒙上眼睛在一定距离外向圈内掷石子,若落在阴影内,则小红胜,若落在小圆内,则小明胜.(1)你认为这个游戏公平吗?为什么?(2)游戏结束,小明边走边想:“能否用频率估计概率的方法,来估算不规则图形的面积呢?”他发现地上有一个不规则的封闭图形ABC,如图②.为了知道它的面积,小明在封闭图形内画了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:掷石子次数50150300石子落在圆内的次数m114393石子落在阴影内的次数n1985186你能帮小明估计封闭图形的面积吗?试试看.21. 小明从一本书中随机抽取了6页,在累计1页至6页中的“的”字和“了”字出现的次数后,分别求出了它们出现的频率,并绘制了如下统计图(如图中页数3对应的频率是三页中累计的结果).(1)随着统计页数的增加,这两个字出现的频率是如何变化的?(2)你认为该书中的“的”和“了”两个字出现的频率哪个高?22. 某班“红领巾义卖”活动中设立了一个可以自由转动的转盘,如图.规定:顾客购物20元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的统计数据.转动转盘的次数n1002003004005001000落在"书画作品"区域的次数m60122180298a6040.60.610.6b0.590.604落在"书画作品"区域的频率mn(1)a=,b=;(2)估计当n很大时,落在“书画作品”区域的频率为,转动该转盘一次,获得“书画作品”的概率约是;(结果全部精确到0.1)(3)如果要使获得“手工作品”的可能性不小于获得“书画作品”的可能性,则表示“手工作品"区域的扇形的圆心角的度数至少还要增加多少度?。

人教版九年级数学上册《25.3 用频率估计概率》练习题及答案

人教版九年级数学上册《25.3 用频率估计概率》练习题及答案

人教版九年级数学上册《25.3 用频率估计概率》练习题及答案班级: 姓名: 学号: 分数:一、选择题1.下列说法正确的是( )A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法2.班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( )A.16B.13C.12D.233.如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到的卡片上算式正确的概率是( )A.14B.12C.34D.1 4.甲、乙两名同学在一次大量重复试验中,统计了某一结果出现的频率,绘制出的统计图如图所示,符合这一结果的试验可能是( )A.掷一枚质地均匀的骰子,出现1点朝上的频率B.任意写一个正整数,它能被3整除的频率C.抛一枚硬币,出现正面朝上的频率D.从一个装有2个白球和1个红球的袋子中任取一球,取到白球的频率5.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是( )A.0.1B.0.2C.0.3D.0.46.从一批电视机中随机抽取10台进行质检,其中一台是次品,下列说法正确的是( )A.次品率小于10%B.次品率大于10%C.次品率接近10%D.次品率等于10%7.在一个不透明的盒子里装着若干个白球,小明想估计其中的白球数,于是他放入10个黑球,搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,得到如下数据:摸球的次数n 20 40 60 80 120 160 200摸到白球的次数m 15 33 49 63 97 128 158摸到白球的频率0.75 0.83 0.82 0.79 0.81 0.80 0.79m/n估计盒子里白球的个数为( )A.8B.40C.80D.无法估计8.绿豆在相同条件下的发芽试验,结果如下表所示:则绿豆发芽的概率估计值是( )A.0.96B.0.95C.0.94D.0.909.在同样的条件下对某种小麦种子进行发芽试验,统计发芽种子数,获得如下频数表,由表估计该麦种的发芽概率是( )试验种子数50 200 500 1000 3000(粒)发芽频数m 45 188 476 951 2850发芽频率m/n 0.9 0.94 0.952 0.951 0.95A.0.8B.0.9C.0.95D.110.小明统计了他家今年5月份打电话的次数及通话时间,并列出了如下的频数分布表:通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次20 16 9 5数)则通话时间不超过15 min的频率为( )A.0.1B.0.4C.0.5D.0.9二、填空题11.袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.12.某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.13.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.14.下表记录了某种幼树在一定条件下移植成活情况由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).15.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n) 50 100 150 200 250 300 500投中次数(m) 28 60 78 104 123 152 251投中频率(m/n) 0.56 0.60 0.52 0.52 0.49 0.51 0.5016.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的1000 1500 2500 4000 8000 15000 20000 30000 棵数n成活的865 1356 2220 3500 7056 13170 17580 26430 棵数m成活的0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881 频率m/n估计该种幼树在此条件下移植成活的概率为_________.三、解答题17.研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:(1)请你估计第一小组和第二小组所得的概率分别是多少?(2)你认为哪一个小组的结果更准确?为什么?18.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球.怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次随机摸出一个球,放回盒中,再继续.活动结果:摸球试验一共做了50次,统计结果如下表:球的颜色无记号有记号红色黄色红色黄色摸到的次数18 28 2 2推测计算.由上述的摸球试验可推算:(1)盒中红球、黄球各占总球数的百分比是多少?(2)盒中有红球多少个?19.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(如图所示).下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1 000落在“铅笔”区域的次数m 68 111 136 345 564 701落在“铅笔”区域的频率(1)计算并完成表格.(2)请估计,当n很大时,落在“铅笔”区域的频率将会接近多少?(3)假如你去转动该转盘一次,你获得哪种奖品的机会大?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?20.小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验.(1)她们在一次试验中共掷骰子60次,试验的结果如下:①填空:此次试验中“5点朝上”的频率为________;②小红说:“根据试验,出现5点的概率最大.”她的说法正确吗?为什么?(2)小颖和小红在试验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表法或画树状图法加以说明,并求出其概率.21.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档