大数据思维
大数据思维模式

大数据思维模式随着信息技术的飞速发展和互联网的普及,大数据已经成为当今社会最重要的资源之一。
大数据思维模式作为一种全新的思维方式,以数据为核心,通过挖掘和分析海量数据,为决策提供科学依据。
本文将介绍大数据思维模式的定义、特点以及在不同领域的应用。
一、大数据思维模式的定义大数据思维模式是一种基于大数据技术和数据分析的思维方式,它通过收集、存储、处理和分析大量数据,发现数据背后的规律和价值,并以此为基础进行决策。
大数据思维模式的核心是将数据视为一种资源,通过科学的方法和工具,从中发现信息,提取价值,并运用于实际问题的解决。
二、大数据思维模式的特点1. 数据驱动:大数据思维模式以数据为驱动力,通过获取、整理和处理大量的数据,实现对问题的深入认识和理解。
数据成为了决策的基础,而不再仅仅依靠个人经验和主观判断。
2. 综合分析:大数据思维模式强调综合分析,将各种数据进行整合和比较,以获取全貌和深度的认识。
通过将结构化数据和非结构化数据相结合,挖掘数据之间的关联和潜在规律,实现对问题的多角度分析。
3. 实时决策:大数据思维模式借助实时数据处理和分析技术,能够实时监测和反馈数据,从而使决策过程更加即时和灵活。
决策者能够根据最新的数据情况进行调整和优化,提高决策的精准性和效果。
4. 预测能力:大数据思维模式依靠历史数据和趋势分析,能够对未来进行预测和预测。
通过挖掘数据中的模式和规律,发现潜在的趋势和风险,为决策者提供预先的指导和策略。
三、大数据思维模式的应用领域1. 商业领域:大数据思维模式在商业领域的应用广泛,包括市场营销、销售预测、用户画像等。
通过分析海量的用户数据和市场数据,企业能够更好地了解用户需求和市场趋势,制定精准的营销策略和产品规划。
2. 健康医疗领域:大数据思维模式在健康医疗领域的应用有助于个性化医疗的实现。
通过收集和分析患者的生理指标、病历数据和基因信息,医生能够提供更加准确和精细化的诊断和治疗方案,提高患者的治疗效果和生活质量。
大数据思维的概念

大数据思维,也被称为数据驱动思维,是一种以数据为基础,通过分析和解读数据来驱动决策、创新和优化的思维方式。
这种思维方式强调的是数据的收集、处理、分析和应用,而不仅仅是数据的存储和管理。
首先,我们需要理解什么是大数据。
大数据是指在传统数据处理应用软件不足以处理的大或复杂的数据集。
这些数据集通常包括结构化数据(如数据库中的数据)和非结构化数据(如社交媒体帖子、电子邮件、视频等)。
大数据的特点通常被描述为“五V”:体积(Volume)、速度(Velocity)、多样性(Variety)、真实性(Veracity)和价值(Value)。
大数据思维的核心是数据驱动。
这意味着我们不再依赖直觉或经验来做决策,而是依赖于数据。
我们通过收集和分析数据,找出其中的规律和趋势,然后用这些信息来指导我们的行动。
这种方法可以帮助我们更准确地预测未来,更有效地解决问题,更快地创新和优化。
大数据思维的另一个重要特点是跨学科性。
在处理大数据时,我们需要运用统计学、计算机科学、数学、信息科学、经济学等多种学科的知识和方法。
这要求我们具备跨学科的知识和技能,能够从不同的角度看待问题,找到最佳的解决方案。
大数据思维还强调数据的实时性和动态性。
在大数据时代,数据是实时生成和更新的,我们需要能够实时收集和处理数据,以便及时发现和应对新的问题和机会。
同时,我们也需要能够动态地调整我们的策略和行动,以适应不断变化的环境。
总的来说,大数据思维是一种以数据为基础,通过分析和解读数据来驱动决策、创新和优化的思维方式。
它强调数据的收集、处理、分析和应用,以及跨学科的知识和技能。
在大数据时代,大数据思维是我们应对复杂问题和抓住新机会的重要工具。
大数据思维的特性

大数据思维的特性随着信息时代的到来,大数据已经成为了我们生活中不可或缺的一部分。
而在处理和利用这些海量数据的过程中,人们逐渐形成了一种独特的思维方式,即大数据思维。
大数据思维是指基于海量数据进行分析、挖掘和应用的一种思维方式。
它与传统的思维方式有所不同,并具有一些独特的特性。
1. 数据驱动大数据思维的核心是以数据为驱动。
传统的思维方式往往靠经验和直觉来做决策,而大数据思维则更加注重数据的分析和挖掘。
通过对大数据的收集、清洗和分析,人们可以从中发现规律、趋势和模式,从而做出更具科学性和准确性的决策。
2. 跨界融合大数据思维是一种跨界融合的思维方式。
大数据涉及到多个领域的数据收集和处理,因此在进行大数据分析时需要各个领域的专业知识进行交叉融合。
例如,在医疗领域中,大数据思维需要结合医学、统计学和计算机科学等多方面的知识来进行数据分析和医疗决策。
3. 实时性大数据思维注重对数据的实时分析和处理。
传统的思维方式可能依赖于历史数据的分析,而大数据思维则更关注当前和即时的数据。
通过实时收集和分析大数据,可以及时获取最新的信息和趋势,做出及时的反应和决策。
4. 个性化大数据思维强调对个体的精准分析和个性化服务。
在大数据时代,个人的数据越来越丰富和多样化,通过对个体的数据进行分析和挖掘,可以更好地理解和满足个体的需求。
例如,在电商领域中,通过对用户的浏览记录、购买记录和评价数据的分析,可以为用户提供个性化的推荐和服务。
5. 创新性大数据思维鼓励创新和突破传统的思维方式。
通过对大数据的挖掘和分析,可以发现新的模式、新的趋势和新的关联关系,从而带来创新的思路和想法。
大数据思维的应用已经在许多领域中展现出了巨大的创新潜力,如智能交通、智慧城市等。
在大数据时代,大数据思维的特性成为了处理和利用海量数据的重要方式。
数据驱动、跨界融合、实时性、个性化和创新性是大数据思维的重要特点。
通过应用大数据思维,人们可以更好地理解和利用数据,做出更科学、准确和创新的决策。
大数据思维的五种思维方式

大数据思维是指一种基于数据驱动的思维方式,它强调通过收集、分析和利用大量数据来揭示事物的本质和规律,从而更好地理解和解决问题。
以下是大数据思维的五种思维方式:
1. 数据驱动思维:大数据思维强调以数据为基础,通过数据分析和挖掘来发现问题、解决问题和做出决策。
2. 全样本思维:传统的数据分析往往基于抽样调查,但大数据思维则强调全样本分析,即通过收集和分析所有可用数据来获取更全面和准确的信息。
3. 相关性思维:大数据思维强调关注数据之间的相关性,而不仅仅是因果关系。
通过分析数据之间的相关性,可以发现一些以前难以察觉的规律和趋势。
4. 开放性思维:大数据思维鼓励开放的数据共享和合作,通过共享数据和知识,可以更好地发挥数据的价值,促进创新和发展。
5. 快速迭代思维:大数据思维强调快速迭代和实验,通过不断尝试和改进,可以更快地找到最佳的解决方案。
总之,大数据思维是一种以数据为中心的思维方式,它强调通过数据分析和挖掘来发现问题、解决问题和做出决策,具有全样本、相关性、开放性、快速迭代等特点。
大数据思维是哪四个(一)2024

大数据思维是哪四个(一)引言概述:在当今信息时代,数据已经成为各个领域决策和创新的基础。
大数据思维作为一种重要的思维模式,成为了越来越多企业和组织所追求的目标。
本文将介绍大数据思维的四个重要方面,以帮助读者更好地理解和运用大数据思维。
正文:一、数据整合与共享1. 数据收集:通过各种渠道和方式收集大量的数据,包括从内部系统和外部来源获取的结构化和非结构化数据。
2. 数据清洗和处理:对收集到的数据进行清洗和预处理,消除噪声和不一致性,确保数据的质量和一致性。
3. 数据整合:将来自不同源头和不同格式的数据整合为一个统一的数据集,以便更好地进行数据分析和挖掘。
4. 数据共享:通过建立数据共享平台,促进不同部门和组织之间的数据共享,以达到资源优化和协同创新的目的。
5. 数据安全和隐私保护:采取措施保护数据的安全性和隐私,包括数据加密、访问控制和身份验证等。
二、数据分析和挖掘1. 数据探索和可视化:通过数据分析工具和技术,对数据进行可视化和探索,发现数据的规律和潜在模式。
2. 数据建模和预测:利用统计学和机器学习算法,构建数学模型并预测未来趋势和结果,以辅助决策和规划。
3. 关联分析和推断:通过关联分析和推理技术,找出数据之间的关联关系和因果关系,识别隐藏的业务规则和问题。
4. 实时分析和决策:利用实时数据分析和大数据平台,为决策者提供及时的、准确的和全面的决策支持。
5. 数据驱动的运营和管理:基于数据分析的结果,优化业务流程和资源分配,提高运营和管理的效率和效果。
三、创新和发展模式1. 数据驱动的创新:根据数据分析的结果,发现市场机会和潜在的创新点,推动企业和组织的创新和发展。
2. 个性化和定制化服务:基于对个体用户的数据分析,提供更个性化和定制化的产品和服务,满足用户的需求和期望。
3. 用户参与和共创:通过用户数据的收集和分析,与用户进行互动和合作,共同创造价值和解决问题。
4. 数据驱动的商业模式:将数据作为核心资源和竞争优势,构建以数据为基础的商业模式,创造新的商业价值。
大数据思维的原理主要有

大数据思维的原理主要有
大数据思维的原理主要有以下几个方面:
1. 数据驱动:大数据思维强调以数据为核心,通过收集、分析和利用大量的数据来进行决策和解决问题。
这意味着要做到数据获取全面、数据质量高、数据分析准确,从而支持决策和创新的需求。
2. 跨界整合:大数据思维强调不同领域和学科之间的融合与整合,将技术、商业、经济、社会等多个维度的知识和资源相结合,用于解决实际问题。
这要求不同领域的专家和团队进行合作和沟通,以实现全局视野和创新的目标。
3. 实时响应:大数据思维要求能够快速地获取、分析和反馈数据,以实现实时的决策和行动。
这意味着要拥有高效的数据处理和分析能力,以及快速的决策执行机制,以及时应对市场变化和挑战。
4. 用户导向:大数据思维强调以用户为中心,通过深入了解用户需求和行为,从而提供个性化的产品和服务。
这要求能够收集和分析大量的用户数据,并将其转化为洞察力,以满足用户的需求和提供更好的用户体验。
5. 创新驱动:大数据思维要求通过运用大数据分析技术和工具,发现新的模式、趋势、机会和挑战,从而用新的方式解决问题和创造价值。
这要求具有创新的思维和方法,以及良好的数据分析和应用能力。
综上所述,大数据思维的原理主要包括:数据驱动、跨界整合、实时响应、用户导向和创新驱动。
这些原理帮助人们更好地利用大数据进行决策和创新,提高效率和竞争力。
大数据带来的四种思维(一)

大数据带来的四种思维(一)引言概述:在当今数字化时代,大数据已经成为了各行各业的核心竞争力之一。
它的出现不仅给企业带来了巨大的商业机会,同时也对传统的思维方式提出了挑战。
在本文中,我们将探讨大数据带来的四种新的思维方式,以及它们对企业的影响。
正文内容:一、数据驱动思维1. 数据驱动决策的意义:通过对大量数据的分析和利用,可以更准确地进行决策,避免主观臆断。
2. 多维度数据分析:借助大数据技术,可以从不同维度对数据进行分析,揭示隐藏在数据背后的规律和趋势。
3. 实时数据反馈:大数据技术的快速处理能力,使得实时数据反馈成为可能,帮助企业更加及时地做出调整和优化。
二、创新思维1. 探索新的商业模式:通过深度挖掘数据,企业可以发现潜在的新市场和商业机会,从而开辟出全新的商业模式。
2. 提供个性化产品和服务:大数据的精准分析能力,使得企业能够更好地了解消费者需求,为其提供个性化的产品和服务。
3. 预测未来趋势:通过对大数据的分析和挖掘,可以有效预测市场趋势,帮助企业提前布局和应对未来的变化。
三、协同思维1. 跨部门协作:大数据技术的使用需要跨部门的协作,促进信息的共享和流通,提高企业的决策效率。
2. 企业生态系统:大数据可以作为企业与合作伙伴、供应商、客户之间建立生态系统的桥梁,促进共赢发展。
3. 数据共享与开放创新:大数据的共享和开放可以促进不同企业之间的合作和创新,实现资源优化配置。
四、智能思维1. 人工智能的应用:大数据与人工智能的结合,可以帮助企业实现更高效的业务流程和更精准的决策。
2. 自动化与智能化工作:借助大数据技术,一些繁琐、重复和容易出错的工作可以被自动化和智能化,提高工作效率。
3. 智能决策支持:大数据技术可以为企业提供智能化的决策支持,减少风险,优化决策结果。
总结:大数据带来的这四种思维方式,即数据驱动思维、创新思维、协同思维和智能思维,对企业的经营和发展具有重要的影响。
在大数据时代,企业应该引领思维转变,充分利用大数据的优势,不断创新和进步,抓住机遇,实现持续发展。
大数据思维举例通俗易懂

大数据思维举例通俗易懂
大数据思维是一种以数据为基础,透过数据分析和处理来解决问题的方式。
以下举例说明大数据思维。
1. 超市商品销售
传统的销售模式是根据经验和主观判断来决定商品进货量和陈
列方式。
但是,使用大数据思维,我们可以通过分析历史销售数据和消费者购买行为,来预测未来的需求,优化进货和陈列策略,提高销售效率和利润率。
2. 航班延误预测
航班延误给乘客和航空公司带来很大困扰。
但是,利用大数据思维,我们可以分析天气、机场、机型、航班历史数据等多种因素,预测航班延误的概率,并提前采取措施,如调整飞行路线或更换机型,减少延误发生的概率。
3. 医疗诊断
医疗领域可以利用大数据思维,通过分析病人的病历、生理数据和基因信息,提高疾病的诊断准确率和治疗效果。
例如,利用人工智能和机器学习技术,可以根据症状和病史,预测疾病的类型、进展和治疗方案。
通过以上例子,我们可以看到大数据思维的优势和应用。
在未来的发展中,大数据思维将在各个领域发挥越来越重要的作用。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据究竟是什么?怎样结构大数据?首先,我认为大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。
我会从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;从对大数据的现在和未来去洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。
我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。
我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
和大数据相关的理论特征定义最早提出大数据时代到来的是麦肯锡:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。
人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。
”业界(IBM 最早定义)将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,数据体量巨大。
大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T);第二,数据类型繁多。
比如,网络日志、视频、图片、地理位置信息等等。
第三,价值密度低,商业价值高。
第四,处理速度快。
最后这一点也是和传统的数据挖掘技术有着本质的不同。
其实这些V并不能真正说清楚大数据的所有特征,下面这张图对大数据的一些相关特性做出了有效的说明。
古语云:三分技术,七分数据,得数据者得天下。
先不论谁说的,但是这句话的正确性已经不用去论证了。
维克托·迈尔-舍恩伯格在《大数据时代》一书中举了百般例证,都是为了说明一个道理:在大数据时代已经到来的时候要用大数据思维去发掘大数据的潜在价值。
书中,作者提及最多的是Google如何利用人们的搜索记录挖掘数据二次利用价值,比如预测某地流感爆发的趋势;Amazon如何利用用户的购买和浏览历史数据进行有针对性的书籍购买推荐,以此有效提升销售量;Farecast如何利用过去十年所有的航线机票价格打折数据,来预测用户购买机票的时机是否合适。
那么,什么是大数据思维?维克托·迈尔-舍恩伯格认为,1-需要全部数据样本而不是抽样;2-关注效率而不是精确度;3-关注相关性而不是因果关系。
阿里巴巴的王坚对于大数据也有一些独特的见解,比如,“今天的数据不是大,真正有意思的是数据变得在线了,这个恰恰是互联网的特点。
”“非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。
”“你千万不要想着拿数据去改进一个业务,这不是大数据。
你一定是去做了一件以前做不了的事情。
”特别是最后一点,我是非常认同的,大数据的真正价值在于创造,在于填补无数个还未实现过的空白。
有人把数据比喻为蕴藏能量的煤矿。
煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。
与此类似,大数据并不在“大”,而在于“有用”。
价值含量、挖掘成本比数量更为重要。
价值探讨大数据是什么?投资者眼里是金光闪闪的两个字:资产。
比如,Facebook上市时,评估机构评定的有效资产中大部分都是其社交网站上的数据。
如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
Target 超市以20多种怀孕期间孕妇可能会购买的商品为基础,将所有用户的购买记录作为数据来源,通过构建模型分析购买者的行为相关性,能准确的推断出孕妇的具体临盆时间,这样Target的销售部门就可以有针对的在每个怀孕顾客的不同阶段寄送相应的产品优惠卷。
Target的例子是一个很典型的案例,这样印证了维克托·迈尔-舍恩伯格提过的一个很有指导意义的观点:通过找出一个关联物并监控它,就可以预测未来。
Target通过监测购买者购买商品的时间和品种来准确预测顾客的孕期,这就是对数据的二次利用的典型案例。
如果,我们通过采集驾驶员手机的GPS数据,就可以分析出当前哪些道路正在堵车,并可以及时发布道路交通提醒;通过采集汽车的GPS位置数据,就可以分析城市的哪些区域停车较多,这也代表该区域有着较为活跃的人群,这些分析数据适合卖给广告投放商。
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
从大数据的价值链条来分析,存在三种模式:1- 手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2- 没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3- 既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
未来在大数据领域最具有价值的是两种事物:1-拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;2-还未有被大数据触及过的业务领域。
这些是还未被挖掘的油井,金矿,是所谓的蓝海。
Wal-Mart作为零售行业的巨头,他们的分析人员会对每个阶段的销售记录进行了全面的分析,有一次他们无意中发现虽不相关但很有价值的数据,在美国的飓风来临季节,超市的蛋挞和抵御飓风物品竟然销量都有大幅增加,于是他们做了一个明智决策,就是将蛋挞的销售位置移到了飓风物品销售区域旁边,看起来是为了方便用户挑选,但是没有想到蛋挞的销量因此又提高了很多。
还有一个有趣的例子,1948年辽沈战役期间,司令员林彪要求每天要进行例常的“每日军情汇报”,由值班参谋读出下属各个纵队、师、团用电台报告的当日战况和缴获情况。
那几乎是重复着千篇一律枯燥无味的数据:每支部队歼敌多少、俘虏多少;缴获的火炮、车辆多少,枪支、物资多少……有一天,参谋照例汇报当日的战况,林彪突然打断他:“刚才念的在胡家窝棚那个战斗的缴获,你们听到了吗?”大家都很茫然,因为如此战斗每天都有几十起,不都是差不多一模一样的枯燥数字吗?林彪扫视一周,见无人回答,便接连问了三句:“为什么那里缴获的短枪与长枪的比例比其它战斗略高?”“为什么那里缴获和击毁的小车与大车的比例比其它战斗略高?”“为什么在那里俘虏和击毙的军官与士兵的比例比其它战斗略高?”林彪司令员大步走向挂满军用地图的墙壁,指着地图上的那个点说:“我猜想,不,我断定!敌人的指挥所就在这里!”果然,部队很快就抓住了敌方的指挥官廖耀湘,并取得这场重要战役的胜利。
这些例子真实的反映在各行各业,探求数据价值取决于把握数据的人,关键是人的数据思维;与其说是大数据创造了价值,不如说是大数据思维触发了新的价值增长。
现在和未来我们先看看大数据在当下有怎样的杰出表现:大数据帮助政府实现市场经济调控、公共卫生安全防范、灾难预警、社会舆论监督;大数据帮助城市预防犯罪,实现智慧交通,提升紧急应急能力;大数据帮助医疗机构建立患者的疾病风险跟踪机制,帮助医药企业提升药品的临床使用效果,帮助艾滋病研究机构为患者提供定制的药物;大数据帮助航空公司节省运营成本,帮助电信企业实现售后服务质量提升,帮助保险企业识别欺诈骗保行为,帮助快递公司监测分析运输车辆的故障险情以提前预警维修,帮助电力公司有效识别预警即将发生故障的设备;大数据帮助电商公司向用户推荐商品和服务,帮助旅游网站为旅游者提供心仪的旅游路线,帮助二手市场的买卖双方找到最合适的交易目标,帮助用户找到最合适的商品购买时期、商家和最优惠价格;大数据帮助企业提升营销的针对性,降低物流和库存的成本,减少投资的风险,以及帮助企业提升广告投放精准度;大数据帮助娱乐行业预测歌手,歌曲,电影,电视剧的受欢迎程度,并为投资者分析评估拍一部电影需要投入多少钱才最合适,否则就有可能收不回成本;大数据帮助社交网站提供更准确的好友推荐,为用户提供更精准的企业招聘信息,向用户推荐可能喜欢的游戏以及适合购买的商品。
其实,这些还远远不够,未来大数据的身影应该无处不在,就算无法准确预测大数据终会将人类社会带往到哪种最终形态,但我相信只要发展脚步在继续,因大数据而产生的变革浪潮将很快淹没地球的每一个角落。
比如,Amazon的最终期望是:“最成功的书籍推荐应该只有一本书,就是用户要买的下一本书。
”Google也希望当用户在搜索时,最好的体验是搜索结果只包含用户所需要的内容,而这并不需要用户给予Google太多的提示。
而当物联网发展到达一定规模时,借助条形码、二维码、RFID等能够唯一标识产品,传感器、可穿戴设备、智能感知、视频采集、增强现实等技术可实现实时的信息采集和分析,这些数据能够支撑智慧城市,智慧交通,智慧能源,智慧医疗,智慧环保的理念需要,这些都所谓的智慧将是大数据的采集数据来源和服务范围。
未来的大数据除了将更好的解决社会问题,商业营销问题,科学技术问题,还有一个可预见的趋势是以人为本的大数据方针。
人才是地球的主宰,大部分的数据都与人类有关,要通过大数据解决人的问题。
比如,建立个人的数据中心,将每个人的日常生活习惯,身体体征,社会网络,知识能力,爱好性情,疾病嗜好,情绪波动……换言之就是记录人从出生那一刻起的每一分每一秒,将除了思维外的一切都储存下来,这些数据可以被充分的利用:医疗机构将实时的监测用户的身体健康状况;教育机构更有针对的制定用户喜欢的教育培训计划;服务行业为用户提供即时健康的符合用户生活习惯的食物和其它服务;社交网络能为你提供合适的交友对象,并为志同道合的人群组织各种聚会活动;政府能在用户的心理健康出现问题时有效的干预,防范自杀,刑事案件的发生;金融机构能帮助用户进行有效的理财管理,为用户的资金提供更有效的使用建议和规划;道路交通、汽车租赁及运输行业可以为用户提供更合适的出行线路和路途服务安排;……当然,上面的一切看起来都很美好,但是否是以牺牲了用户的自由为前提呢?只能说当新鲜事物带来了革新的同时也同样带来了“病菌”。
比如,在手机未普及前,大家喜欢聚在一起聊天,自从手机普及后特别是有了互联网,大家不用聚在一起也可以随时随地的聊天,只是“病菌”滋生了另外一种情形,大家慢慢习惯了和手机共渡时光,人与人之间情感交流仿佛永远隔着一张“网”。
大数据隐私你或许并不敏感,当你在不同的网站上注册了个人信息后,可能这些信息已经被扩散出去了,当你莫名其妙的接到各种邮件,电话,短信的滋扰时,你不会想到自己的电话号码,邮箱,生日,购买记录,收入水平,家庭住址,亲朋好友等私人信息早就被各种商业机构非法存储或贱卖给其它任何有需要的企业或个人了。