活性炭超级电容器的电化学行为

合集下载

超级电容器电极材料——活性炭

超级电容器电极材料——活性炭

超级电容器电极材料——活性炭碳材料由于具有成本低、⽐表⾯积⼤、孔隙结构可调、制备电极的⼯艺简单等特点,在研究EDLC的开始,⼈们就考虑使⽤碳材料作为其电极材料。⽬前,应⽤于 EDLC的碳材料主要有活性炭、碳纳⽶管和炭⽓凝胶。活性炭(activated carbon,AC)是EDLC使⽤最多的⼀种电极材料,它具有原料丰富、价格低廉、成形性好、电化学稳定性⾼、技术成熟等特点。活性炭的性质直接影响EDLC的性能,其中最为关键的⼏个因素是活性炭的⽐表⾯积、孔径分布、表⾯官能团和电导率等。⼀般认为活性炭的⽐表⾯积越⼤,其⽐电容就越⾼,所以通常可以通过使⽤⼤⽐表⾯积的活性炭来获得⾼⽐电容。但实际情况却复杂得多,⼤量研究表明,活性炭的⽐电容与其⽐表⾯积并不呈线性关系,影响因素众多。实验表明,清洁⽯墨表⾯的双电层⽐容为 20µF/cm2左右,如果⽤⽐表⾯积为2860m2/g的活性炭作为电极材料,则其理论质量⽐容应该为572F/g,然⽽实际测得的⽐容仅为130F/g,说明总⽐表⾯积中仅有22.7%的⽐表⾯积对⽐容有贡献。国际纯粹与应⽤化学联合会(IUAPC)将多孔材料的孔隙分为微孔( <2nm)、中孔(2~50nm)和⼤孔(>50nm)三类。EDLC主要靠电解质离⼦进⼊活性炭的孔隙形成双电层来存储电荷,由于电解质离⼦难以进⼊对⽐表⾯积贡献较⼤的、孔径过⼩的超细微孔,这些微孔对应的表⾯积就成为⽆效表⾯积。所以除了⽐表⾯积外,孔径分布也是⼀个⾮常重要的参数,⽽且不同电解质所要求的最⼩孔径是不⼀样的。Gsalirta等研究了⼏种不同孔结构的活性炭在LiCl、NaCl和KCl的⽔溶液及 LiBF4和 Et4NBF4的PC溶液中的双电层电容性能后证实了上述结论。提⾼活性炭的⽐表⾯积利⽤率,进⽽提⾼其⽐容的有效⽅法是增⼤活性炭的中孔含量。LeeJniwoo等运⽤模板法制备了⽐表⾯积为1257m2/g的中孔碳,其平均孔径为2.3nm,制成电容器后不论在⽔系还是有机电解质中其⽐容都明显⼤于分⼦筛炭。另外,D.Y.Qu等的研究表明,增⼤中孔的含量,还可以明显提⾼EDLC的功率密度,因为孔径越⼤,电化学吸附速度越快,这说明孔径较⼤的碳材料能满⾜快速充放电的要求,适合制备⾼功率的电容器。另外,孔径分布对EDLC的低温容量也有影响,具有更多纳⽶以上孔径的碳电极其低温容量减⼩得更慢。通过电化学氧化、化学氧化、低温等离⼦体氧化或添加表⾯活性剂等⽅式对碳材料进⾏处理,可在其表⾯引⼊有机官能团。⼤量研究表明,表⾯有机官能团对EDLC的性能有很⼤影响。⼀⽅⾯,有机官能团可以提⾼电解质对碳材料的润湿性,从⽽提⾼碳材料的⽐表⾯积利⽤率,同时这些官能团在充放电过程中还可以发⽣氧化还原反应,产⽣赝电容,从⽽⼤幅度提⾼碳材料的⽐容。A.Y.Rychagov的研究证明表⾯官能团的赝电容效应对⽐电容的贡献有时可达50%以上。另⼀⽅⾯,碳材料表⾯官能团对电容器的性能也存在负⾯影响,研究表明碳材料表⾯官能团含量越⾼,材料的接触电阻越⼤,从⽽导致电容器的ERS也就越⼤;同时,官能团的法拉第副反应还会导致电容器漏电流的增⼤;另外,碳材料电极表⾯含氧量越⾼,电极的⾃然电位越⾼,这会导致电容器在正常⼯作电压下也可能发⽣⽓体析出反应,影响电容器的寿命。活性炭的电导率是影响EDLC充放电性能的重要因素。⾸先,由于活性炭微孔孔壁上的碳含量随表⾯积的增⼤⽽减少,所以活性炭的电导率随其表⾯积的增加⽽降低;其次,活性炭材料的电导率与活性炭颗粒之间的接触⾯积密切相关;另外,活性炭颗粒的微孔以及颗粒之间的空隙中浸渍有电解质溶液,所以电解质的电导率、电解质对活性炭的浸润性以及微孔的孔径和孔深等都对电容器的电阻具有重要影响。总之,活性炭具有原料丰富、价格低廉和⽐表⾯积⾼等特点,是⾮常具有产业化前景的⼀种电极材料。⽐表⾯积和孔径分布是影响活性炭电化学电容器性能的两个最重要的因素,研制同时具有⾼⽐表⾯积和⾼中孔含量的活性炭是开发兼具⾼能量密度和⾼功率密度电化学电容器的关键。。

超级电容器的性能研究

超级电容器的性能研究

超级电容器的性能研究超级电容器的性能研究李宝华"周鹏伟康飞宇曾毓群StudiesofSuperCapacitorLiBaohua'ZhouPengwei'KangFeiyu'ZengYuqun摘要:本工作对超级电容器性能进行了研究.电化学测试发现有机体系超级电容器拥有良好的电化学性能.其能量密度可达6.8Wh/Kg,最高功率密度超过1000W/Kg,2.5万次充放电循环后容量保持率在70%以上,循环性能良好,充放电效率高,且内阻小.关键词:活性炭超级电容器比电容充放电特性一.前言超级电容器是一种新型的电化学能量储存和转换装置,与传统意义上的电容器相比有着更高的法拉第比电容量和能量密度;与蓄电池相比则具有功率密度,充放电时间短,循环性好,使用寿命长,便于维护等特点1-6J.从某种意义上可以说超级电容器有着传统电容器和电池的双重功能,其功率密度远高于普通电池,能量密度远高于传统电容,因而填补了这两个传统技术问的空白.超级电容器同时也可在极低温等极端恶劣的环境中使用,并且无环境污染.本工作使用成本较低的粉状活性炭作为电极原料,采用层叠制造技术制备了工作电压为2.8V有机体系超级电容器,并考察了电容器的实用性能,为电容器的实用化提供参考.二.实验1电极膜片的制备按照质量比80:10:10的比例称取活性炭粉,乙炔黑和粘结剂,干混后加入适量的溶剂,调节溶剂用量使得浆料达到合适的粘度要求,然后用磁力搅拌器搅拌一定时间,之后把浆料均匀涂覆于金属集电流体上,涂好后即放入70℃左右的烘箱中干燥,然后在对辊轧机上轧制,将所得到的电极体在裁切机上裁成所需形状与大小的电极膜片备用.2.超级电容器的结构及制造超级电容器的基本单元为:活性炭正,负电极膜片中间加隔离膜,注入1MEt4NBF4/PC(四乙基四氟化硼酸铵盐/碳酸丙稀酯)电解液,并紧紧挤压在一起.将多只基本单元的正极与正极,负极与负极相互连接组成大容量的片式并联结构超级电容器.3.超级电容器测试仪器超级电容器的电化学测量采用直流恒流循环法测定,测定工作使用美国Maccor公司的4通道MC-4型电化学工作站和Arbin公司生产的16通道超级电容器测试仪上完成.三.结果与讨论1.超级电容器1亘电流充放电性能图1,表1是2.8V/IOOF超级电容器在不同电流密度下的充放电性能,图1中在恒定电流充放电情况下,电压和时间呈良好的线性关系,这进一步说明对于多孔炭电极而言其在有机电解液体系以形成双电层电容为主,几乎不存在假电容的现象.在表1中当充放电电流为0.1A时,超级电容器的能量密度可达6.8Wh/Kg和11.7Wh/L;电流增至4.5A时能量密度仍可达4.6Wh/Kg和8.0Wh/L.作者简介:作者单位:i.清华大学深圳研究生院新材料研究所,广东省,深圳,518055;2东莞新能源电子科技有限公司,广东省,东莞市,523080电话:0755-********E—mail:libh自.CFI第一作者简介:李宝华,男,博士,清华大学深圳研究生院讲师,研究方向为能源与环境材料,主要包括新型炭材料,锂离子电池,超级电容器和燃料电池及其关键技术和部件.8m嬖Chargetime(S)图12.8v/100F超级电容器不同电流下充放电曲线表12.8V/100F超级电容器不同电流下放电性能2.超级电容器恒功率密度充放电性能早在1994年美国能源部就对商业化超级电容器性能指标提出了具体要求:能量密度和功率密度分别大于5Wh/Kg和1000W/Kg.国家"十五"863计划电动汽车重大专项也对电动车用超级电容器提出了功率密度大于1000W/kg和充放电寿命大于5万次的要求.直到目前为止研究者无法从国际市场上购买到能量密度和功率密度分别大于5Wh/Kg和1000W/Kg的超级电容器.3.交流阻抗谱(EIS)测试超级电容器的内阻,主要包括电解液本身电阻,活性炭电极固有电阻,集流体与活性炭的接触电阻三部分.图2所示为电容器的EIS图谱,频率范围10mHz~100kHz.从EIS图谱可以看到电容器R(Ohm)图2超级电容器的EIS图谱(频率范围为10mHz~100kHz)u_O-0500010000150002000025000Cyclenumbers图3超级电容器循环性能9在低频区具有双电层电容"弥散效应"的明显特征,内阻值仅为46mQ,符合电源的低内阻要求.在超级电容器的阻抗谱表征中,经常研究"拐点"频率的大小,因为这个频率点是两个电极过程的分界点.以拐点频率为界,高频区阻抗的实部代表了电解液离子渗入电极微孔的难易;低频区则是双电层的电容效应.拐点频率的高低受离子在电解液中迁移率的影响,即离子迁移速率越快,拐点频率越高;而迁移速率又受离子大小,电解液黏度以及隔膜厚度与离子通透性等各个因素的限制.4.超级电容器循环性能图3给出了超级电容器在高电流密度(20mA/cm)下的2.5万次循环性能.在测试过程中循环一段时间后,电容器由于自身发热温度升高,并且可逆放电容量下降;经略微休息,电容器温度降至室温后,继续进行充放电测试,电容器可逆容量略有反弹,但仍比最初容量低.在1万次循环,容量下降约20%之后,交叉进行充放电循环和休息,超级电容器容量衰减已经非常缓慢.容量的衰减一方面是由于电解液本身所含杂质和多孔炭所吸附的水份发生分解产生少量气体,电容器出现气胀,内阻增加,容量减少;另一方面在长期的充放电循环过程中电解液必然要发生老化,同样造成内阻增加,容量减少.其中第一个因素可以通过电解液的进一步纯化和对多孔炭电极高温真空干燥予以解决.由电容器充放电容量可以计算出电容器的充放电效率.图4中电容器首次循环的效率为77%,随着循环次数的增加,充放电效率逐渐增高并稳定,5次循环后达到97%以上,远高于电池的充放电效率,说明电容器是一种高效率电子装置.与蓄电池电池相比,双电层电容器的充放电容量较小,但充放电时间短,功率密度大,充放电效率高.O/clen1.J~b1....』t1II]一'.0500O1∞∞15000200∞250D0Cyclenumbers图4超级电容器循环效率变化四,结论1.有机电解液体系超级电容器的法拉第容量随电流密度的增大而略有降低,在小电流充电条件下,能量储存密度可达6.8Wh/Kg,充电电流增大45倍后,电容量保持率为81%.2.超级电容器最高功率密度超过1000W/Kg,2.5万次充放电循环后容量保持率在70%以上,循环性能良好,充放电效率高,且内阻小.参考文献【1】戴贵平,刘敏,王茂章,等.电化学电容器中炭电极的研究与开发I.电化学电容器【J】.新型炭材料,2002,17(1):71-79【2】刘辰光,刘敏,王茂章,等.电化学电容器中炭电极的研究与开发II.炭电极【J】_新型炭材料,2002,17(2):64.72【3】孟庆函.李开喜.宋燕.等.石油焦基活性炭电极电容特性研究【J】_新型炭材料,2001,16(4):18-21【4】何月德,刘洪波,张红波.活化剂用量对无烟煤基高比表面积活性炭电容特性的影响【J】_新型炭材料,2002,17(4):18-2210∞∞∞0—口/o一∞石亡石一.一l.[5】文越华,曹高萍,程杰,等.纳米孔玻态炭一超级电容器的新型电极材料I.固化温度对其结构和电容性能的影响[J].新型炭材料,2003,18(3):219-224[6】周鹏伟,李宝华,康飞宇.椰壳活性炭基超级电容器的研制与开发.新型炭材料,待发表.。

超级电容的原理和应用

超级电容的原理和应用

超级电容的原理和应用1. 什么是超级电容?超级电容(Super capacitors)是一种能够以高速存储和释放能量的电子元件,也被称为电化学电容器或电化学超级电容器。

与传统的电解质电容器相比,超级电容具有较高的电容密度和较高的能量密度。

2. 超级电容的原理超级电容的原理基于电荷的吸附和离子迁移。

它含有两个电极,通常是由活性炭构成的,电极之间通过离子导体(通常是电解质溶液)连接。

当施加电压时,正电荷聚集在一个电极上,而负电荷聚集在另一个电极上。

这个过程称为电荷的吸附。

然后,在需要释放能量时,电荷可以通过离子导体进行迁移,从而实现能量的存储和释放。

3. 超级电容的优点超级电容相比传统的电解质电容器有以下几个优点:•高能量密度:超级电容的能量密度比传统电容器高得多,使其适用于需要大量能量存储和释放的应用。

•长寿命:超级电容具有较长的循环寿命,可以进行数百万次的充放电循环,这使得它们在长期使用中更加可靠。

•快速充放电速度:超级电容可以以非常快的速度进行充放电,这使得它们在需要快速能量释放的应用中非常有用。

•宽工作温度范围:超级电容器的工作温度范围相对较宽,通常可以在-40°C至70°C的温度范围内正常工作。

4. 超级电容的应用超级电容在许多领域中都有广泛的应用,包括但不限于:4.1 能量回收和储存超级电容可以用于回收和储存电能,在能量恢复制动系统中被广泛使用。

例如,电动汽车的制动过程中产生的能量可以通过超级电容存储,并在需要时供给给车辆。

4.2 紧急电源超级电容可以作为应急电源,用于提供电力备份。

当主要电力供应中断时,超级电容可以提供持续稳定的电源,确保关键设备和系统的正常运行。

4.3 储能装置超级电容可以用于储能装置,例如可再生能源系统中的储能装置。

通过将可再生能源转化为电能并存储在超级电容中,可以在需要时释放出来,实现能源的可持续利用。

4.4 电动工具和设备超级电容可以用于电动工具和设备,如电动剪刀、电动工具和无线充电设备等。

超级电容器的制备与电化学性能的研究

超级电容器的制备与电化学性能的研究

实验报告超级电容器的制备与性能研究一、实验目的1、了解超级电容器的原理及应用2、掌握超级电容器的制备方法3、学习应用各种电化学方法研究超级电容器的电化学行为。

二、实验原理1、循环伏安测试对于双电层电容器,可以用平板电容器模型进行理想等效处理,根据平板电容容量计算公式:c=εS4πd(1)由上式可知,超级电容器的电容量与双电层的有效面积(S/m2)成正比,与双电层的厚度(d/m)成反比,对于活性炭电极,双电层有效面积与碳电极的比表面积及电极上的载碳量有关,双电层的厚度是受溶液中的离子的影响,因此,电极制备好以后,电解液确定,容量便基本确定了。

利用公式dQ=i d t和C=Q∕φ可得到:i=dQd t =C dφd t(2)因而,如果在电极上加上一个线性变化的电位信号时,得到的电流响应信号将会是一个不变的量,如果给定的电信号是一个三角波信号,电流信号将会是一个正电流信号或者一个负电流信号。

响应信号如图1(b)所示,响应信号在i-φ图中呈一个矩形。

由(2)式可知。

在扫描速度一定的情况下。

电极上通过的电流(i)是和电极容量(C)成正比关系的,也就是说对于一个给定的电极,通过对这个电极在一定扫描速率下进行循环伏安测试,研究电流变化就可以计算出电极的电容,继而进一步求出比电容:Cm=Cm =im dφd t=im V(3)2、恒电流充放电测试对于超级电容器,根据式(2)可知,采用恒电流进行充放电时,如果电容量C为恒电位,那么dφd t将会是一个常数,即电位随时间是线性变化的关系,也就是说理想电容器的恒流充放电曲线是一条直线。

可以利用恒流冲放电曲线来计算电极活性物质的比容量:Cm=i tdmΔV(4)式中,t d是放电时间,ΔV是放电电压降的平均值。

式中的ΔV是可以利用放电曲线进行积分计算而得出:ΔV=1(t1−t2)V d t21(5)实际在计算比容量时,常采用t1和t2时电压的差值作为平均电压降,对于单电极比容量,式(4)中的m为单电极活性物质的质量,若计算的是双电极比容量,m则为两个电极上活性物质的质量总和。

超级电容器工作原理

超级电容器工作原理

超级电容器工作原理超级电容器(Supercapacitor),也被称为超级电池、超级电容、超级电容器等,是一种具有高能量密度和高功率密度的电子元件。

它的工作原理是基于电荷分离和电化学反应。

一、电荷分离超级电容器由两个电极、电解质和隔离层组成。

电极通常由活性炭、金属氧化物或导电高分子材料制成。

当电容器处于未充电状态时,正负极之间的电荷是平衡的。

当外部电源连接到电容器的正负极上时,正极吸收电子,负极释放电子,从而导致电荷分离。

这种电荷分离的过程非常快速,使得超级电容器具有高功率密度。

二、电化学反应电解质在电荷分离的同时,也发生了电化学反应。

电解质通常是由溶液或凝胶形式的离子液体组成。

当电解质中的离子与电极接触时,发生电化学反应。

这个反应过程中,离子在电极表面形成了一个电化学双层,即电荷层。

电化学双层的形成使得超级电容器具有高能量密度。

三、储能和释能过程在充电过程中,外部电源通过正极将电子注入到电容器中,同时电解质中的离子也被吸附到电极表面。

这个过程中,电容器的电荷和能量都在增加。

在放电过程中,电容器的正负极之间的电荷流动,电解质中的离子回到溶液中。

这个过程中,电容器的电荷和能量都在减少。

超级电容器的充放电速度非常快,可以在几秒钟内完成。

四、优势和应用领域超级电容器具有以下优势:1. 高功率密度:能够在短时间内释放大量的能量,适用于需要高功率输出的应用,如电动汽车的启动。

2. 长寿命:相对于传统电池而言,超级电容器的循环寿命更长,可以进行数万次的充放电循环。

3. 快速充放电:充电和放电速度快,可以在短时间内完成储能和释能过程。

4. 宽温度范围:超级电容器的工作温度范围较广,适用于各种环境条件下的应用。

超级电容器在许多领域有广泛的应用,包括:1. 交通运输领域:用于电动汽车的启动、制动能量回收和辅助动力系统。

2. 工业领域:用于储能系统、UPS电源、电网稳定和峰值削减。

3. 可再生能源领域:用于储能系统,平衡可再生能源的不稳定输出。

炭材料在电化学应用中的研究进展

炭材料在电化学应用中的研究进展

炭材料在电化学应用中的研究进展炭材料是一种极其重要的材料,其具有多种功能,包括高导电性、高稳定性、优异的化学惰性和低比表面积等特点。

由于其电化学性质的优异性,炭材料在电化学应用方面具有广泛的用途,例如作为电极材料、催化剂和电解质等。

近年来,随着化学、物理和材料科学的发展,炭材料在电化学应用中的研究也取得了很大的进展。

本文将重点介绍炭材料在电化学应用中的研究进展,包括其在电池和超级电容器方面的应用。

一、炭材料在电池方面的应用1. 石墨烯材料电极石墨烯是一种具有单层结构的炭材料,其高导电性和高比表面积使得其成为电池材料的研究热点之一。

石墨烯材料电极在锂离子电池、钠离子电池和锂硫电池等方面的应用均已得到了广泛的研究。

例如,石墨烯材料在锂离子电池中作为电极,其容量和循环寿命均得到了显著提高。

2. 碳纳米管材料电极碳纳米管材料是一类具有蜂窝结构的炭材料,其高比表面积和优异的电导率使之成为电池电极材料的研究热点之一。

碳纳米管材料在电极方面的应用主要涵盖锂离子电池、超级电容器和锂空气电池等方面。

例如,碳纳米管材料在超级电容器方面的应用具有高能量密度、高功率密度和快速充放电等特点。

3. 钛氧化物/炭复合材料电极钛氧化物/炭复合材料电极是一种新型的复合电极材料,其具有高比表面积、高电导率和优异的化学稳定性等优异性质。

钛氧化物/炭复合材料电极在锂离子电池和钠离子电池等方面的应用均已得到了广泛的研究。

例如,钛氧化物/炭复合材料电极在锂离子电池方面具有较高的容量和循环寿命。

二、炭材料在超级电容器方面的应用超级电容器是一种新型的电化学能量存储设备,其高功率密度和短充放电时间使之成为电源适应性较强的能量存储装置。

炭材料在超级电容器方面的应用主要涵盖活性炭、石墨烯和碳纳米管等材料。

1. 活性炭材料活性炭是最早被应用于超级电容器的炭材料之一,其具有优异的能量密度和高功率密度等优异性质。

活性炭材料在超级电容器方面的应用主要涵盖低温焚烧法活性炭和葡萄糖制备的活性炭等。

超级电容器电极材料的制备及电化学性能研究

超级电容器电极材料的制备及电化学性能研究

超级电容器电极材料的制备及电化学性能研究超级电容器作为一种能够存储大量电能的新型电池,其电化学性能和高功率性能在目前的电子器件中得到了广泛的应用。

而超级电容器的性能和稳定性主要受制于电极材料的选择和制备方法。

因此,超级电容器电极材料的制备及电化学性能研究成为目前材料化学研究的热点和难点之一。

超级电容器的电极材料可以分为碳基材料及金属氧化物材料两种类别。

碳基材料可以通过炭化、氧化石墨或活性炭等方法制备得到。

其中,活性炭是一种常用的碳基电极材料,其呈三维独立孔结构,具有较大的比表面积,因此具有良好的电容性能和高倍率放电能力。

此外,石墨烯也是一种常用的碳基电极材料,其呈二维层状结构,具有超高的比表面积和优异的电导率,能够有效地提高超级电容器的电池性能和循环寿命。

而金属氧化物电极材料也是超级电容器电极材料的一种常见类型。

它们通常由过渡金属氧化物、贵金属氧化物、铁氧化物及锰氧化物等材料组成,其中,九氧化二铝和锰氧化物是比较常用的金属氧化物电极材料。

九氧化二铝具有较高的比电容和较好的热稳定性,可以在高温环境中工作。

但是,它的电化学稳定性较差,循环寿命较短。

锰氧化物是一种新型金属氧化物电极材料,其优异的电容性能和高倍率放电能力得到了广泛的研究和应用。

锰氧化物可以通过合成流程中的物理和化学方法制备得到,如水热法、溶胶凝胶法、共沉淀法等。

在电极材料的制备过程中,其中的微观结构和形态也对电极材料的性能产生着很大的影响。

如锰氧化物的微观结构对超级电容器的电导率和电化学性能有重要的影响。

研究表明,锰氧化物的微观结构越完整,其电导率越高,因此能够更好地提高超级电容器的电容性能和稳定性。

除此之外,超级电容器电极材料的制备方法也是其电化学性能的重要影响因素之一。

传统的电极材料制备方法包括物理法、化学法和生物法。

而与此相比较,一些新型材料制备方法也在近年来得到了广泛的关注,如激光烧结法、电化学还原法、自组装法等。

这些新型制备方法可不仅可以提高材料的比表面积和孔结构的可控性,还能够制备出具有特殊形态结构的材料。

超级电容器复合电极材料制备及电化学性能研究

超级电容器复合电极材料制备及电化学性能研究

超级电容器复合电极材料制备及电化学性能研究1. 本文概述随着现代科技的发展,能源存储技术正面临着前所未有的挑战和机遇。

超级电容器作为一种重要的能源存储设备,因其高功率密度、快速充放电能力、长寿命周期和环境友好性而受到广泛关注。

在超级电容器的构造中,复合电极材料的研发尤为关键,其直接决定了超级电容器的电化学性能和整体效能。

本文旨在探讨超级电容器复合电极材料的制备方法及其电化学性能。

本文将对目前广泛研究的几种复合电极材料,如碳材料、金属氧化物、导电聚合物等,进行系统的综述。

这些材料在超级电容器中的应用优势和面临的挑战将被详细讨论。

接着,本文将重点介绍几种创新的复合电极材料制备技术,包括化学气相沉积、水热合成、溶胶凝胶法等。

这些方法在制备过程中对材料结构和形貌的控制,以及对电化学性能的影响将被深入分析。

本文将通过实验数据,评估所制备的复合电极材料在超级电容器中的实际应用性能,包括比电容、能量密度、循环稳定性等关键指标。

通过这些研究,本文旨在为超级电容器复合电极材料的发展提供新的视角和技术路径,推动能源存储技术的进步。

2. 文献综述超级电容器,也称为电化学电容器,是一种介于传统电容器和电池之间的能量存储设备。

它们的主要特点是具有高功率密度、长循环寿命和快速充放电能力。

超级电容器的储能机制主要是双电层电容,涉及电极材料与电解质之间的电荷分离。

这一领域的研究起始于20世纪50年代,随着材料科学和电化学技术的进步,超级电容器在能量存储领域的重要性日益凸显。

超级电容器的性能在很大程度上取决于电极材料的性质。

近年来,研究者们广泛关注复合电极材料,因其能够结合不同材料的优点,从而提高超级电容器的整体性能。

常见的复合电极材料包括碳基材料、金属氧化物、导电聚合物等。

这些材料通过不同的复合策略(如物理混合、化学接枝、层层自组装等)进行组合,旨在提高比电容、能量密度和循环稳定性。

电化学性能是评估超级电容器电极材料的关键指标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 原料预碳化
• 作为制备活性炭的含碳量高的原料除了含有碳元 素还有一些非碳元素,如氧、氢、氟、硫等元素。 这些元素含量的高低和化学结构状态都能影响活 性炭的性能。
• 碳化是将原料在保护气氛下加热处理,使原料发 生热分解。碳化过程是伴随着非碳元素排出的过 程,这些元素一般以气体的形式排出,如氧气、 水蒸气、二氧化碳、一氧化碳等。碳化温度和碳 化时间是影响碳化程度和最终得到的活性炭性能 的重要条件,这两个条件能对活性炭的收率、比 表面积、孔容积、孔径分布等性能产生重大影响。
2.4活化方法
活化反应用氧化气体或化学物质做氧化剂 清除孔隙中杂质,扩大炭化料在炭化过程中产 生的孔隙和产生新的微孔 ,进而提高了孔容积 和比表面积 。
活化方法
物理活化法 化学活化法
2.5 化学活化法
• 活化剂:KOH,H3PO4,ZnCl2等
• 控制因素:活化剂种类、活化温度、活化时间、 活化剂比例等
• 碳化温度过高导致活性炭收率降低的主要原因有两点:其 一温度越高,生物质热解的越充分;其二是形成的焦炭残 留物发生了二次分解。
2.3 时间对碳化的影响
• 康捷等在用棉秆制备活性炭的一文中对碳化时间 对活性炭性能的影响进行了研究,结果表明:在 400℃下活化,碳化时间延长至180min,此阶段内 活性炭的吸附性能得到了提高,但碳化时间从180 min延长至240 min,吸附性能没有明显增强,因 此碳化温度为400℃,碳化时间为180 min为最佳 条件。碳化时间越长,挥发分逸出而留下的孔隙 越多,炭化越充分,利于有机物成炭,减少堵塞 孔的焦油,利于微孔的形成。但是当碳化完全之 后,碳化时间的延长对活性炭的影响不再明显。
3.3 比容量的测试
图3 电极Bode谱图
如上图,在低频区 ,正 负极相角值随频率增加而减 小很快
3.3 比容量的测试
该频率下电极的比电容较 大,且几乎保持不变。并且, 正负极分别在211mHz和8.07m Hz分别出现了一个峰,表明在 低频区正、负极上分别有电 极反应发生
图4 正负极比容量与频率的关系
3.4 电极自放电测试
图5 电极自放电曲线
将超级电容器恒流充 电到 1.2V后静止,考察正 负极自放电曲线,如图所 示,可以看出,正极放电 过程主要集中在初始阶段 的前92min内,从0.3v快速 的下降到0.05V,在接下来 的过程中电位基本不变。 而负极自放电速率相对平 稳,从-0.9渐下降-0.07V。
1.2活性炭的介绍
Ø普通活性炭中的微孔(孔径<2 nm)占据很大的比例。 这些微孔无法被大量的电解质离子润湿形成有效双电层, 从而大大降低了有效比表面积。此外,活性炭材料的微 孔不利于电解质离子的快速、有效地传输,而降低电容 器的大电流充、放电能力。 Ø介孔碳以其有序的介孔结构能有效的降低离子传输电 阻,具有独特的表面特性。它的主要特点为: (1)具有规则的孔道结构,孔道大小均匀、排列有序; (2)孔径分布窄; (3)具大的比表面积和孔容; (4)具有很好的热稳定性和化学稳定性; (5)颗粒具有规则的外形,且可在微米尺寸内保持高 度的孔道有序性。
3.4 电极自放电测试
图6 电极自放电速率曲线
对自放电曲线一次求 导dE/dt,可得到电极的自 放电速率,结果如图所 示,可以看出,负极的自 放电速率大于正极,说明 超级电容器自放电速率由 负极决定 。
Thank you !
3.2 交流阻抗测试
图2 电极交流阻抗谱图
<分别在正、负电位为 0.3V、0.9V(vs. Hg/HgO)下对电极进行 交流阻抗测试>
可见,负电位下的阻抗 谱图由高频区的半圆弧和低 频区的近似垂直于 Z'轴的直 线组成,表明负电位下活性 炭材料出现“电荷饱和”, 即此时电极中储存的大部分 电容量均可得到利用,因此 具有良好的电容特性。而正 电位下阻抗图谱由高频区的 小半圆弧和低频区的大半圆 弧组成。 正、负电位下阻抗 图中高频区半圆的出现主要 是由于活性炭表面含氧基团 与电解质中的离子发生电极 反应,因此产生电荷转移电
合适的活化剂
原料炭化
活化剂中浸泡
活化的活性炭
3.1 循环伏安测试
目 录
图1不同扫描速度下电极的循环伏安谱图
如图 1所示,在 5~20 mV/s扫描速度下 对正负极进行循环伏安 测试,可以看出,在低 扫描速度下,负极、正 极的循环伏安曲线基本 上为矩形,表明具备良 好的电容特性。随着电 位扫描速度的增加,负 极的矩形形状基本不变, 而正极则发生了变形, 说明负极的电容特性相 对稳定。
2.2 温度对碳化的影响
• 碳化温度是活性炭制备过程中的影响因素之一,随着碳化 温度升高活性炭的比表面积也有相应的提高,但是当达到 最佳碳化温度时,温度继续升高反而使活性炭的比表面积 又降低了。这种现象是因为挥发分随温度升高而减少,碳 化温度过低时,碳化原料的挥发分难以排出,活化过程中 反应活性小,不利于有机物碳化,因而不易有孔结构形成。 随着温度升高,碳化程度得到了提高,挥发分逐渐减少, 活化性能提高。但是碳化温度升高也会使活性炭收率降低, 灰分比例增加,因此温度过高也会导致本来的孔结构遭到 破坏,比表面积下降。
活性炭超级电容器电极的 电化学行为
01 活性炭超级电容器的介绍
目 录
02 活性炭的制备
03 电化学测试

1.1超级电容器的介绍
Ø超级电容器是一种介于传统电 容器和电池之间的新型储能元器 件,具有超大容量及快速贮存和 释放能量的特点。双电层电容器 电极材料需要高的比表面积电极 材料,因此活性炭成为制作超级 电容器理想材料。
相关文档
最新文档