可控源音频大地电磁测深法(CSAMT)
csamt法

csamt法
CSAMT是“可控源音频大地电磁法”的英文缩写,是目前国际普遍使用的物探手段。
该方法的原理是利用人工场源激发地下岩石,在电流流过时产生电位差,接收不同供电频率形成的一次场电位,由于不同频率的场在地层中的传播深度不同,所反映深度也就与频率构成一个数学关系。
不同电导率的岩石在电流流过时所产生的电位和磁场是不同的,CSAMT方法就是利用不同岩石的电导率差异观测一次场电位和磁场强度变化的一种电磁勘探方法。
电磁波向地下传播方程的求解极其复杂,国际上不得不采用近似的简化公式来实际应用,因此导致CSAMT法只能勘测到地下1.5公里。
为了打破西方在该领域的垄断,中国工程院院士何继善在1996年开始研究,历时10年演算,提出了精确求解地下电磁波方程的“广域电磁法”,将探测深度由1.5公里增加到8公里,是世界先进方法的5倍。
CSAMT和EH-4原理、工作方法简介

一、可控源音频大地电磁测深法(CSAMT )(1)方法特点及应用范围可控源源音频大地电磁法(Controlled Source Audio-frequency Magnetotellurics, 简称CSAMT 法)最早是由加拿大多伦多大学的D.W.Strangway 教授和他的学生Myaron Goldtein 于1971年提出。
针对大地电磁测深法场源的随机性和信号微弱,以致观测十分困难这一状况,他们提出了一种改变方案——采用可以控制的人工场源。
从而从理论和实验两方面奠定了CSAMT 法的基础。
自70年代中期起CSAMT 法得到了实际应用,一些公司相继生产用于CSAMT 法测量的仪器和解释应用软件。
特别是自80年代以来,方法理论和仪器都得到了很大发展,应用领域也扩展到了地质普查、勘探石油、天然气、地热、金属矿床、水文、环境等方面,从而成为受人重视的一种地球物理方法,目前在我国已将本方法作为危机矿山深部资源勘探的重要手段,在许多矿山取得了很好的效果。
我们可以用图2-1来说明最常用的一种标量CSAMT 法的测量过程:场源:用发送机通过接地电极A 、B 向地下供交变电流,在地下形成交变电磁场。
电流的频率可在一定范围内变化,通常从2-3~213Hz 按2进制递变,在接地十分困难的地方可用不接地回线作垂直磁偶极子来发送电磁场。
测量:在距离AB 相当远的地方进行测量。
所谓“相当远”指的是在这些地方的电磁场已接近平面波,从而可使用卡尼亚电阻率计算公式并方便解释。
若选用直角坐标系,X 轴平行AB ,Z 轴垂直向下,那么标量测量是在测点测量每一频率的电场分量E X 和正交的磁场分量H Y ,并按:E E y x f 251=ρ计算卡尼亚电阻率。
式中f 为频率。
当从高到低逐个改变频率。
便可得到卡尼亚电阻率测深曲线。
根据需要,可以分别以相互垂直的两组场源供电,对每个场源都测量5个电磁场分量,从而形成张量CSAMT 测量。
可控源音频大地电磁测深法在双尖山矿区勘探中的应用

可控源音频大地电磁测深法在双尖山矿区勘探中的应用
可控源音频大地电磁测深法(CSAMT)是一种应用广泛的电磁勘探方法,它利用音频频率范围内的电磁信号进行测深和成像,广泛应用于矿产勘探领域。
本文将探讨在双尖山矿区的勘探中,CSAMT的应用。
双尖山矿区是一个潜在的金矿富集区,而且地质构造复杂,存在矿体沉积较深,地下水位高等难题,传统的勘探方法往往难以解决这些问题。
而CSAMT能够提供高分辨率、高精度的电磁勘探数据,可以有效地解决上述问题。
CSAMT能够提供详细的地下电阻率分布图像,通过测量不同频率下的电磁响应,可以反演出地下不同深度的电阻率分布情况。
在双尖山矿区,地下金矿体常常与高电阻率的岩石相连,通过CSAMT可以准确探测出这些高电阻率区域,指示金矿体的大致位置和形态。
CSAMT还可以用于探测地下水位的情况。
双尖山矿区地下水位普遍较高,而地下水与矿体的关系密切,通过CSAMT可以测量地下水和地下岩石的电阻率差异,从而获得地下水位的信息。
这对于采选过程中的水位控制具有重要意义,并且还可以预测金矿体的可能分布范围。
CSAMT还可以提供地下岩层的三维结构图像。
通过多个测线的测深数据,可以构建出地下岩层的三维模型,包括不同深度的岩性、岩层厚度等信息。
在双尖山矿区这样地质构造复杂的地区,了解地下岩层的结构对于了解矿体分布和矿床形成机制具有重要意义。
CSAMT还可以用于判断矿体的形态和连续性。
通过测量不同方向上的电磁响应,可以确定矿体在空间上的分布特征,判断矿体的形态、延伸方向和连接情况。
这对于矿产勘探中找到连续高品位的金矿体非常重要,并且还可以帮助设计合理的钻孔布置和选取合适的开采方式。
可控源音频大地电磁测深法在双尖山矿区勘探中的应用

可控源音频大地电磁测深法在双尖山矿区勘探中的应用大地电磁测深法(Electromagnetic sounding method)是一种使用电磁信号探测地下电阻率分布的地球物理勘探方法。
可控源音频大地电磁测深法(CSAMT)是大地电磁测深法的一种改进方法,其利用宽频带和可控源的特点,可以提供更高分辨率和更准确的地下信息。
双尖山矿区是位于中华人民共和国河北省保定市涞水县境内的一个矿区,以其丰富的矿产资源而闻名。
然而,由于地质结构复杂和地下情况的不确定性,传统的地质勘探方法往往难以得到准确的地下信息。
因此,CSAMT方法在双尖山矿区的勘探中具有广阔的应用前景。
CSAMT方法通过在地面上设置一对天线,其中一个天线作为发射源,产生一定频率的电磁信号,另一个天线则用于接收信号,通过测量接收到的信号的幅度和相位差,可以计算出地下电阻率分布。
CSAMT方法相比传统的大地电磁测深法具有以下优势:1. 宽频带:CSAMT方法使用宽频带的电磁信号,可以提供更广泛的频率响应范围。
这使得CSAMT方法能够探测更大范围的地下结构,并提供更详细的地下信息。
2. 可控源:CSAMT方法可以通过改变发射源的电流频率和幅度,来探测不同深度的地下结构。
这使得CSAMT方法能够在同一地点进行多次测量,从而提供更全面的地下信息。
在双尖山矿区的勘探中,CSAMT方法可以应用于以下几个方面:1. 矿产资源勘探:CSAMT方法可以提供关于地下岩石类型、含矿物质的分布和矿床形态等方面的信息。
这对于确定矿区的产状、规模和开采方式等具有重要意义。
3. 工程地质勘探:CSAMT方法可以用于探测地下构造和地质断裂带等信息,从而评估地震、滑坡和地质灾害等风险。
这对于矿区的工程建设具有重要意义。
综上所述,CSAMT方法在双尖山矿区的勘探中具有广泛的应用前景。
通过利用其宽频带和可控源的特点,可以获得更准确、更全面的地下信息,为矿区的开发和保护提供科学依据。
可控源音频大地电磁测深(CSAMT)作业指导书

可控源音频大地电磁测深(CSAMT)作业指导书1000字可控源音频大地电磁测深(CSAMT)是一种非常重要的地球物理勘探技术。
它可以用于地下资源勘探、隧道、堤坝和坑道等大型工程的勘探,以及地下水、油气等资源的勘探和探测,具有非常重要的应用价值。
为了能够进行高质量的CSAMT勘探,以下是CSAMT作业指导书。
一、前期准备1.选择适合地理区域的勘探时间在勘探前应当认真研究地理环境,选择适合的勘探时间,避免在雨季和雪季进行测量。
2.选择合适的勘探设备选择符合勘探要求的CSAMT设备,包括采集设备、主控机、数据采集器等。
3.勘探人员的培训和技术指导勘探人员必须接受相关的培训和技术指导,了解测量原理、测量方法和常见的数据处理方法,以确保获得高质量的勘探数据。
4.勘探线路的布置勘探线路选址应该根据勘探目的选定,避免建筑物等体积较大的物体对数据的干扰。
二、勘探过程1.电极安装和测量在CSAMT勘探过程中,应按照方案的要求进行电极布置和测量。
电极布置应合理、稳定,测量过程中应注意电极的接触面积和接触紧密度,避免干扰影响数据准确性。
2.测量参数的设置应根据实际情况选择合适的测量参数,包括测量时间、重复次数、频率等,以确保测量数据的准确性和完整性。
3.数据采集及文件存储勘探过程中应及时采集数据,并进行文件存储。
数据采集时应注意记录勘探线路位置和时间信息,保证采集的数据能够和勘探区域的地理位置一一对应。
三、后期处理1.数据的质量控制进行数据质量控制,并根据勘探结果对数据进行初步筛选,去掉可能存在的干扰数据。
2.数据的处理根据勘探目的,选择合适的数据处理方法,如频谱分析、角度域反演等。
在进行数据处理前,应先进行数据预处理,并做好数据的校正和标准化。
3.结果的解释和分析根据数据处理的结果进行结果的解释和分析,确定勘探区的物性模型,得到相关的资源信息和构造信息。
以上就是CSAMT作业指导书的内容,勘探人员在进行工作时应仔细遵循,以确保获得可靠的勘探数据和准确的信息。
可控源音频大地电磁测深法(CSAMT)

paleoburial hill
-2000
-2000
-2500
-2500
-3000
-3000
-3500
-3500
-4000
-4000
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
野外资料归档
• 应提交的原始资料:
– 原始数据盘; – 操作员工作记录、测点班报; – 视电阻率原始记录曲线; – 点位测量记录及其数据盘; – 仪器检测、维护及标定记录。
可控源音频大地电磁法
(Controlled Source Audio Magnetotelluric method)
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
可控源音频大地电磁法(CSAMT),采用人工 场源供电,其频率范围为0.25~8192Hz。由于 CSAMT法所观测电磁场的频率范围、场强和方向 可由人工控制,其观测方式又与MT方法相同, 所以称为“可控源音频大地电磁法”。
• 提交的主要地质成果图件:
– 地质、地球物理综合解释图; – 构造单元划分图; – 断裂展布图; – 岩性预测图; – 局部构造预测图; – 油气远景预测图。
• 最终成果报告
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
理论模拟计算
10000
RHO(omm) after correct
RHO(omm) pre-correct Ex
1000
100
100
10
10
1
10000 1000
100
10
1
fre q .(h z)
电磁法勘探--可控源音频大地电磁测深法

2.1 电磁法勘探--可控源音频大地电磁测深法(CSAMT)由于天然场源的随机性和信号微弱,MT 法需要花费巨大努力来记录和分析野外数据。
为克服MT 法的这个缺点,加拿大多伦多大学教授 D.W.Strangway 和他的学生Myron Goldstein 提出了利用人工(可控)场源的音频大地电磁法(CSAMT )。
这种方法使用接地导线或不接地回线为场源,在波区测量相互正交的电、 磁场切向分量, 并计算卡尼亚电阻率,以保留AMT 法的一些数据解释方法。
自20世纪70年代中期, CSAMT 法得到实际应用, 一些公司相继生产用于CSAMT 法测量的仪器和应用解释软件。
进入80年代后,该方法的理论和仪器得到很大发展,应用领域也扩展到普查、 勘探石油、 天然气、 地热、 金属矿产、 水文、 工程、 环境保护等各个方面, 从而成为受人重视的一种地球物理方法。
虽然CSAMT 法属于一种人工源的频率电磁深测, 但和通常的频率域电磁测深不同。
这主要因为CSAMT 法测量两个相互垂直的电磁场切向分量计算卡尼亚电阻率, 因而具有较强的抗干扰能力, 且更容易获得对地电变化较灵敏的相位差信息; 又由于波区电磁场十分接近平面波, 因而其资料处理、 解释也较为简便, 可以保留AMT 法中的许多解释方法。
CSAMT 和AMT 或MT 亦有不同, 根本原因是CSAMT 法使用了人工场源,因而极化方向明显,信噪比高,易于观测。
但是,由于使用了人工场源, CSAMT 法必然受场源效应影响, 这主要包括非平面波效应、 场源附加效应、 阴影效应和测深通道的弯曲。
2.2.1 CSAMT 基本理论CSAMT 有2种常用的场源——水平电偶极子和垂直磁偶极子,此处注重讨论其场的特征和快速计算方法。
2.2.1.1水平层状半空间上水平电偶极子的电磁场如图2.2.1所示, N 层水平层状介质中第n 层的电阻率和层厚度分别记为ρn 和h n 。
水平电偶极子(接地导线)位于层状介质表面,偶极矩为P=IdL (I 为谐变电流)。
可控源音频大地电磁测深法在双尖山矿区勘探中的应用

可控源音频大地电磁测深法在双尖山矿区勘探中的应用可控源音频大地电磁测深法(CSAMT)是一种通过地下电导率分布的变化来探测地下储层的地球物理勘探方法。
它常用于矿区勘探,特别是对深部矿体的探测有很好的效果。
本文将介绍CSAMT在双尖山矿区勘探中的应用。
CSAMT方法的原理是利用可控源产生的低频信号,通过测量地下不同深度处电场与磁场之间的相对相位差来计算地下储层的电导率。
由于不同储层的电导率差异较大,因此可以通过分析电导率的变化推测矿体的位置和形态。
在双尖山矿区的应用中,CSAMT方法可以用来确定矿体的深度、厚度和延伸程度。
通过在矿区不同地点布设接收器和激发器,可以获得一系列的电场和磁场观测数据。
利用这些数据,可以进行逆推计算,得到地下不同深度处的电导率剖面图。
根据电导率的变化特征,可以判断出矿体的空间分布。
CSAMT方法还可以用于探测矿区的水文地质环境。
矿区地下水的存在往往与矿体的形成密切相关,因此通过测量地下水电导率的变化,可以对矿体的位置和形态进行初步预测。
这对于矿区的开采规划和环境保护具有重要意义。
CSAMT方法还可以与其他地球物理勘探方法结合使用,例如地震勘探、电磁测深等。
通过综合利用多种方法的数据,可以获得更全面、更准确的地下储层信息。
CSAMT方法也存在着一些局限性。
由于地下电导率剖面的解释存在一定的主观性,因此需要结合地质学知识和其他勘探数据进行综合分析。
CSAMT方法对地下介质的电导率差异要求较高,对于电导率变化较小的矿体或岩石,其探测能力可能有限。
CSAMT方法在双尖山矿区的应用具有重要意义。
通过该方法可以获得地下储层的电导率剖面图,从而推测出矿体的位置和形态。
CSAMT方法还可以用于探测矿区的水文地质环境。
该方法也存在一定的局限性,需要结合其他勘探数据进行综合分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料处理
• CSAMT资料处理主要是消除各种效应、绘制视 电阻率和相位曲线或拟断面图,对CSAMT资料 进行正反演计算获得深度域的电阻率断面等。
• 资料处理包括以下几个步骤:
– 预处理(其中包括观测数据的解编、信号的回放检 查、仪器系统的标定等)。
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
理论模拟计算
10000
RHO(omm) after correct
RHO(omm) pre-correct Ex
1000
100
100
10
10
1
10000 1000
100
10
1
fre q .(h z)
(a)
1
0.1
0.01
CSAMT法的显著特点是工作效率高。人工场 源克服了天然场源信号弱的不足,因而信噪比高。 如果野外测点密集,按排列接收,一个小时左右 便可完成一套频率的测量,一台仪器一天便可完 成几个乃至十几个排列的观测。敷设一次供电线 路,能观测一块相当大的测区,生产效率高。
电磁法勘探技术
特点: 最高功率:200kw(传统: 30) 电流:100-150A(传统:30) 频率范围:9600-0.0078Hz (传统: 8192-0.125) 频点数:82(传统:14) 信噪比增加 勘探深度加大 分辨率提高
电磁法勘探技术
CSAMT装置由发射(Tx)和接收(Rx)两部分组成, 人工场源有电性源和磁性源两种,目前最常用的为 电性源,沿一定方向布置接地导线AB,长度一般为 1-3km,向地下供入频率为f的交变电流,形成交变 电磁场。一般在AB一侧或两侧60度张角的扇形区域 内,平行AB布置测线,在每一个测点进行观测时, 逐次改变供电频率,观测沿测线方向相应频率的电 场分量Ex和与之正交的磁场分量Hy,便可计算出随 频率变化的视电阻率和阻抗相位,达到频率测深的 目的:
• 空间滤波法;
• 相位积分法;
• 使用独立的、无静态效应的测量结果进 行辅助校正
可控源音频大地电磁测深资料正 、反演
• 实际中多应用MT一维、二维或三维正反 演方法进行反演。
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
Application in XX city
Controlled Source Audio Magneto Telluric (CSAMT)
A
B
Transmitting
Source
Offset
Hy
Ex
Hy
Ex
R x Receiving
Station High signal-to-noise ratio and high precision within 3000m depth.
• 产生的影响:静态位移会使测深曲线的 定量解释结果,无论电阻率还是层厚度 都会产生误差;而在对视电阻率拟断面 图作定性解释时,会使粗心的解释者误 将静态位移推断为陡立的深大断裂或垂 向大延伸的异常体。因此,对静态位移 作校正,消除或减小其影响,是CSAMT资 料处理的一项不可缺少的重要任务
• 校正方法:静态位移不可避免,我们必 须对那些与水平电场E有关的测量值进行 校正。基本方法有三个:
可控源音频大地电磁法
(Controlled Source Audio Magnetotelluric method)
汇报内容
• 野外施工方法 • 理论模拟 • 资料处理 • 实例 • 资料归档
可控源音频大地电磁法(CSAMT),采用人工 场源供电,其频率范围为0.25~8192Hz。由于 CSAMT法所观测电磁场的频率范围、场强和方向 可由人工控制,其观测方式又与MT方法相同, 所以称为“可控源音频大地电磁法”。
suburb
Apparent resistivty(ohm.m) Apparent resistivty(ohm.m)
CURRENT I = 1.0A
MESASURE DIPOLE ABSCISSA X= 0.0M,
ORDINATE Y= 1000 2000 4000 8000 16000M .
LAYERS NUMBER : 1 LAYERS RESISTIVITY(o-M)
1
10.0
0.1
0.01
0.1
0应所作的改正统称为场源效应校正。
场源效应校正
• 非平面波效应的校正 • 场源附加效应及校正 • 场源阴影效应及校正
– 参考书目 – 何继善等编 可控源声频大地电磁法
中南工大出版社 1990
可控源声频大地电磁测深资料静
态位移校正
• 产生机理:一般认为,当地表存在局部 导电性不均匀体时,电流流过不均匀体 ,并在其表面上形成积累电荷,进而产 生一个与外电流场成正比的附加电场, 使得实测的各个频率的视电阻率值相对 于无局部不均匀体时有一个常系数的变 化。从而使绘于双对数坐标系中的电磁 测深视电阻率曲线,沿视电阻率轴发生 上下平移。
10000 1000
100
10
1
fre q .(h z)
(b)
10 1
0.1 0.01 0.001
Hy
1000 100 10 1 0.1 0.01
0.001
10000 1000
100
10
1
0.1
0.01
10000 1000
100
10
1
fre q .(h z)
fre q .(h z)
(c)
(d)
CURRENT ELECTRODE AB = 2000.0M,
可控源音频大地电磁测深资料场 源校正
• 由于人工场源的存在致使CSAMT资料与天然场 源的AMT相比具有很多不同特征,究其原因主 要是场源效应。一般来说有三类场源效应:
– 由于测点靠近场源而产生的非平面波效应。 – 由于场源下的地质情况而产生的场源附加效应(或
叫混叠效应)。 – 场源与测点之间地质体的影响被投射开来,产生的
– 由时间域信号转换为频率域信号。 – 张量阻抗的性质及计算。 – 场源效应、静态效应等的消除和校正。 – 绘制成果图件。 – 一维、二维正反演计算。
可控源音频大地电磁测深资料预 处理
• 预处理包括检查数据的误差及噪声。为 此要利用所有测得的电场(E)和磁场( H)分量的振幅和相位,计算视电阻率和 相位差。