陕西省西工大附中2014年高三第十一次适应性训练数学(文)试卷

合集下载

陕西省西工大附中2014届高三上学期第二次适应性训练数学(文)试题

陕西省西工大附中2014届高三上学期第二次适应性训练数学(文)试题

陕西省西工大附中2014届高三上学期第二次适应性训练数学(文)试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分) 一. 选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分) 1.设复数21211,2(),z z i z x i x R z =-=+∈若为实数,则x =( )A .-2B .-1C .1D .22.如图,程序框图所进行的求和运算是(A .1+2+22+23+24+25B .2+22+23+24+25C .1+2+22+23+24D .2+22+23+243.圆5)2(22=++y x 关于直线10x y -+=对称的圆的方程为( ) A .22(2)5x y -+= B .5)2(22=-+y xC .22(1)(1)5x y -+-=D .22(1)(1)5x y +++=4.“3a =”是“直线30ax y +=与直线223x y +=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数6.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( )A .AB AC BC += B .12AB BC DA =+C .AD DC AC -=D .2CD BA CA +=7.设等比数列{}n a 的前n 项和为n S ,若23=S ,186=S ,则=510S S ( ) A .17 B .33 C .-31 D .-38.在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形9.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::PF F F PF =4:3:2,则曲线Γ的离心率等于( )A.1322或B.23或2C.12或2 D.2332或 10.设22)1(则,305满足约束条件,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-的最大值为( ) A . 25 B .C . 80D .172第Ⅱ卷(非选择题 共100分)二. 填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11. 设(,sin )a α=34,(cos ,)b α=13,且a b ⊥,则tan α= .12.观察下列等式 311=33129+= 33312336++= 33331234100+++=照此规律,第6个等式可为 .13.曲线12+=x y 在点)2,1(处的切线为l ,则直线l 上的任意点P 与圆03422=+++x y x 上的任意点Q 之间的最近距离是 .14.将一张边长为12cm 的纸片按如图1所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折成一个有底的正四棱锥模型,如图2放置.若正四棱锥的正视图是正三角形(如图3),则四棱锥的体积是___________3cm .图1 图2 图315. (考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分.)A. (不等式选作题)已知0,0,1,a b a b >>+=则2211a b +的最小值为 .B.(几何证明选做题)如图,过圆O 外一点P 分别作圆的切线 和割线交圆于A ,B ,且PB =9,C 是圆上一点使得BC =4, ∠BAC =∠APB , 则AB = .C. (坐标系与参数方程选做题)已知两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪≤<⎨=⎪⎩ 和23()2x t t R y t ⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___________. 三.解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分). 16.(本小题满分12分)已知向量(),sin ,cos x x a -=()x x x x b cos sin ,cos 3sin --=, 函数()b a x f ⋅= . (1)若3π=x ,求()x f 的值;(2)求函数()f x 的对称中心和最大值,并求取得最大值时的x 的集合.17. (本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且满足:11a =,12n n a S +=.(1)求数列{}n a 的通项公式;(2)设29n n b na =,求数列{}n b 的前n 项和为n T .18.(本小题满分12分)有甲、乙两个学习小组,每个小组各有四名学生,在一次数学考试中,成绩情况如下表:(1)用茎叶图表示两组的成绩情况;(2)分别从甲、乙两组中随机选取一名学生的成绩,求选取的这两名学生中,至少有一名学生的成绩在90以上的概率.19. (本小题满分12分)如图,在四棱锥S ABCD -中, AB AD ⊥,//AB CD ,3CD AB =,平面SAD ⊥平面ABCD , M 是线段AD 上一点,AM AB =,DM DC =,SM AD ⊥. (1)证明:BM ⊥平面SMC ;(2)设三棱锥C SBM -与四棱锥S ABCD -的体积分别为1V 与V ,求1VV的值.20.(本小题满分13分)已知椭圆T :22221(0)x y a b a b +=>>的离心率3e =,,A B是椭圆T 上两点,(3,1)N 是线段AB 的中点,线段AB 的垂直平分线与椭圆T 相交于,C D 两点.(1)求直线AB 的方程;(2)是否存在这样的椭圆,使得以CD 为直径的圆过原点O ?若存在,求出该椭圆方程;若不存在,请说明理由.MSDCBA21.(本小题满分14分)已知函数()1x f x e ax =--,其中a 为实数, (1)若1a =,求函数()f x 的最小值;(2)若方程()0f x =在(0,2]上有实数解,求a 的取值范围;(3)设,k k a b (1,2k =…,)n 均为正数,且1122a b a b ++…n n a b ≤12b b ++…n b ,求证:12121nb b b n a a a <.数学(文科)参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案ADDCADBBAC二、填空题:11.94-12. 441654321333333=+++++ 13. 1554-14.3 15.A. 8 B. 6 C. (1,3三、解答题:16.解:(1)法1:22()2sin cos 3cos sin f x x x x x =--sin 2cos 22x x =-- 当3π=x 时,()23322123232cos 32sin-=-+=--=ππx f法2:直接代入3π=x ,算出()f x =.(2)22()2sin cos 3cos sin f x x x x x =--sin 2cos 22)24x x x π=--=--由2()4x k k Z ππ-=∈得()28k x k Z ππ=+∈ 所以()f x 对称中心为(,2)()28k k Z ππ+-∈当3()8x k k Z ππ=+∈时,()f x 2.17.解:(1)当1n =时,2122a S == 当2n ≥时,1122n nn n n a a a S S +-=-=-,得13n n a a += 所以23,,,,n a a a 为等比数列,223(2)n n a n -=⨯≥. 故21,123,2n n n a n -=⎧=⎨⨯≥⎩ (2)29n n b na =29n n =⨯ 22[19299]n n T n =⨯+⨯++⨯ 23192[19299]n n T n +=⨯+⨯++⨯2182[(999)9]nn n T n +-=+++-⨯11992[9]19n n n ++-=-⨯-1(18)994n n +--= 故1(81)9932n n n T +-+=18.解:(Ⅰ)茎叶图:略 ………………………… 5分(Ⅱ)分别从甲、乙两组中随机选取一名学生的成绩,所有可能的结果有16种,它们是:()()()()78,86,78,95,78,82,78,96,()()()()92,86,92,95,92,82,92,96, ()()()()98,86,98,95,98,82,98,96,()()()()88,86,88,95,88,82,88,96,设“选取的这两名学生中,至少有一名学生的成绩在90以上”为事件A ,则A 中包含的基本事件有12个,它们是:()()78,95,78,96,()()()()92,86,92,95,92,82,92,96, ()()()()98,86,98,95,98,82,98,96,()()88,95,88,96,所以所求概率为()123.164P A == ………………………… 12分19.(1)证明:平面SAD ⊥平面ABCD ,平面SAD 平面ABCD AD =,SM ⊂平面SAD ,SM AD ⊥,SM ∴⊥平面ABCD ,…………………1分 BM ⊂平面,ABCD .SM BM ∴⊥ ………………………………2分四边形ABCD 是直角梯形,AB //CD ,,AM AB =,DM DC =,MAB MDC ∴∆∆都是等腰直角三角形,45,90,.AMB CMF BMC BM CM ∴∠=∠=︒∠=︒⊥…………………………4分SM ⊂平面SMC ,CM ⊂平面SMC ,SM CM M =,BM ∴⊥平面S …………………………………………………………………6分(2)解: 三棱锥C SBM -与三棱锥S CBM -的体积相等, 由( 1 ) 知SM ⊥平面ABCD ,得1113211()32SM BM CMV V SM AB CD AD ⨯⨯=⨯+⨯,……………………………………………9分设,AB a =由3CD AB =,,AM AB =,DM DC =得3,,,4,CD a BM CM AD a ==== 从而13.(3V V a a a ⨯==+⨯ …………………………………………………………12分20.解:(1)离心率3e =,椭圆T :2223(0)x y a a +=> 设1122(,),(,),A x y B x y 直线AB 的方程为222(3)1,3y k x x y a =-++=代入,整理得 2222(31)6(31)3(31)0.k x k k x k a +--+--= ① 2224[(31)3(31)]0,a k k ∆=+--> ② 1226(31),31k k x x k -+=+由(3,1)N 是线段AB 的中点,得123.2x x += 解得1k =-,代入②得,212,a > 直线AB 的方程为1(3),40.y x x y -=--+-=即(2)∵CD 垂直平分AB ,∴直线CD 的方程为13y x -=-,即20x y --=,代入椭圆方程,整理得 22412120.x x a -+-= 又设),,(),,(4433y x D y x C∴23434123,4a x x x x -+==234344(2)(2)4a y y x x -=--=假设存在这样的椭圆,使得以CD 为直径的圆过原点O ,则34340x x y y += 得28a =,又212,a >故不存在这样的椭圆.21.解:(1)'()1x f x e =-,由()0f x '=得0x = 当0,'()0,()x f x f x >>时在(0,)+∞内递增; 当0x <时,'()0,()(,0)f x f x <-∞在内递减; 故函数()0f x x =在处取得最小值(1)0.f = (2)'()(02)x f x e a x =-<≤①当1a ≤时,'()0,f x >()f x 在(0,2]内递增;()(0)0f x f >=,方程()0f x =在(0,2]上无实数解;②当2a e ≥时,'()0,f x ≤()f x 在(0,2]内递减;()(0)0f x f <=,方程()0f x =在(0,2]上无实数解;③当21a e <<时,由'()0,f x =得ln x a =, 当0ln ,'()0,()x a f x f x <<<时递减; 当ln 2a x <<时,'()0,()f x f x >递增; 又(0)0f =,2(2)21f e a =--由2(2)210f e a =--≥得2112e a -<≤故a 的取值范围为211,2e ⎛⎤- ⎥⎝⎦(3)由(1)知,当(0,)x ∈+∞时,1x e x >+,ln(1).x x +<即 ,0k k a b >,从而有ln 1k k a a <-,得ln (1,2,,)k k k k k b a a b b k n <-=,求和得1111ln 0.nnnb kk k k k k k a a b b ===<-≤∑∑∑即1212ln()0,n k k k n a a a <故1212 1.nk k k n a a a <。

2014年陕西省西工大附中高三第十一次适应性训练数学(文)试卷

2014年陕西省西工大附中高三第十一次适应性训练数学(文)试卷

2014年陕西省西工大附中高三第十一次适应性训练数学(文)试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合}}{{2|10,|4,M x gx N x x MN =>=≤=则A .(0,2)B .(1,2]C .(1,2)D .[1,2] 2.下列函数中,既是奇函数又是增函数的为A .1y x =+B .2y x =- C .1y x =D .||y x x = 3.设,a b R ∈,是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知圆22:40C x y x +-=,过点(3,0)P 的直线,则A .与C 相交B .与C 相切 C .与C 相离 D. 以上三个选项均有可能5.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,536.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于A B .12C . 0 D. -1 7.设函数()xf x xe =,则 A .x=1为()f x 的极大值点 B .x=1为()f x 的极小值点C .x=-1为()f x 的极大值点D .x=-1为()f x 的极小值点8.阅读右图所示的程序框图,运行相应的程序,输出s 值等于A .3-B .10-C .0D .2-9.一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是A .球B .三棱锥C .正方体D .圆柱10. 小王从甲地到乙地的时速分别为a 和b (a<b ),其全程的平均时速为v ,则<v<2a b + D. v=2a b+ 第Ⅱ卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.11.已知关于x 的不等式022>+-a ax x 在R 上恒成立,则实数a 的取值范围是 .12.从点P (2,3)向圆221x y +=作两条切线PA,PB,切点为A ,B ,则直线AB 的方程是 .13. 在三角形ABC 中,角A,B,C 所对应的长分别为a ,b ,c ,若a=2 ,B=6π,b= .14. 右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.15. (考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .B.(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则 DF DB ⋅= .C.(坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π,(Ⅰ)求函数()f x 的解析式; (Ⅱ)设(0,)2πα∈,则()22f α=,求α的值.17. (本小题满分12分)(Ⅰ)叙述并证明面面垂直性质定理;(Ⅱ)P(00,x y )Ax+By+C=0到直线L:的距离d= ,并证明此公式.18.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值; (Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)19. (本题满分12分)已知数列{}n a 中,()112,202,n n a a a n n n N -=--=≥∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设12321111n n n n nb a a a a +++=+++⋅⋅⋅+,求数列{}n b 的通项公式.20. (本题满分13分)已知函数ln ()1xf x ax x=++,(a R ∈) (Ⅰ)若()f x 在定义域上单调递增,求实数a 的取值范围; (Ⅱ)若函数()()g x xf x =有唯一零点,试求实数a 的取值范围.21. (本题满分14分)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。

陕西省西工大附中2014届高三上学期第一次适应性训练数学(文)试题含解析

陕西省西工大附中2014届高三上学期第一次适应性训练数学(文)试题含解析

2014年普通高等学校招生全国统一考试陕西工大附中第一次适应性训练文科数学第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1。

()31+3i =( ) A .8- B .8 C .8i - D .8i2。

若向量a ,b 满足||1a =,||2b =,且()a a b ⊥+,则a 与b 的夹角为( )A .2πB .23πC .34πD .56π3。

记集合{}22(,)|16A x y xy =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω内的概率为( )A .12π B .1π C .14 D .24ππ- 【答案】A试题分析:如图所示,集合A 表示的平面区域1Ω的面积为16π,集合B 表示的平面区域(阴影部分)2Ω的面积为14482⨯⨯=,所以点M 落在区域2Ω内的概率为81162ππ=。

考点:几何概型4.把函数f (x )的图象向右平移一个单位长度,所得图象恰与函数x y e =的反函数图像重合,则f (x )=( )A 。

ln 1x -B 。

ln 1x + C. ln(1)x - D 。

ln(1)x +5.某三棱锥的三视图如图所示,该三棱锥的体积是( )A.83B. 4C. 2D. 43【解析】试题分析:三视图所对应的三棱锥如所示,由三视图可知,这个几何体的高是2,底面ABC 中,4AB =,AB 边上的高是3CD =,所以该三棱锥的体积是11432432V =⨯⨯⨯⨯=.考点:1.三视图;2.棱锥的体积6。

已知抛物线x y 82=的焦点与双曲线1222x y a -=的一个焦点重合,则该双曲线的离心率为( )A .255B .41515 C .233 D .37.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶也是蓝色的概率( )A .110B .17C .14D .15。

高三数学第十一次适应性训练试题理新人教A版

高三数学第十一次适应性训练试题理新人教A版

陕西省西安市西北工业大学附属中学高三第十一次适应性训练数学(理)试题第I 卷选择题(共50分)3. 下列函数中,是奇函数且在区间(0,1)内单调递减的函数是(4. 的展开式中常数项是( )A. 5 B ・-5 C. 10 D ・-105. 已知函数/(x )Mxl + l,则函数y = f (x )的大致图像为()6. 已知三棱锥P-ABC 的四个顶点均在半径为1的球面上,且满足PA ・PB = 0, PB-PC = 0, PC-PA = 0,则三棱锥P —ABC 的侧而积的最大值为()A.丄B ・1C ・2D ・427.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A. 36 个8.已知抛物线尸=8兀的焦点与双曲线1的 一个焦点重合,则该双曲线的离心率为()一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小 题,每小题5分.共50分)・、2013计算的结果是(1.复数 11+「丿A. 1B. -1C.D. -i2.已知等差数列«-}中, 值时n 的值为()A. 5B ・ 7 S 〃为•其前n 项和,若坷=一3, S 5 = S 10,则当S “取到最小C. 8D. 7 或 8A. y = log^ xB. y = -C. y = x 3D. y =tanxB. 24 个C. 18 个D. 6 个9.左义运算a®b为执行如图所示的程序框图输出的s值,则(2cos罟同2tan# j的值为()A・4 B・3 C・2 D・一110.在等差数列{©}中,给出以下结论:①恒有a2 +兔=«io ;②数列{©}的前n项和公式不可能是Sn =n :③若m,n,l,keN\则u m+n = l+k n是(i a m + a n =a,+a k” 成立的充要条件;④若勺=12, 56=5,,,则必有他=0.其中正确的是()A.①②③B.②③C.②④D.④第II卷非选择题(共100分)二.填空题:把答案填在答题卡相应题号后的横线上(本大题共5小题,每小题5分, 共25分)11.已知数列仏}为等差数列,且6+畋+d〕5 =",a = cos(a4+a n)则r i1>处____________________ ; 12 312.将全体正整数排成一个三角形数阵:按照以上排列的规 4 5 6律,第n行(n23)从左向右的第3个数为__________ ・7 8 9 1013._______________________________________________________________ 若直线:y = kx^ 1被圆C:x2 + y2-2x-3 =。

陕西省西工大附中2014届高三第十一次适应性训练数学(理)试题 Word版含答案

陕西省西工大附中2014届高三第十一次适应性训练数学(理)试题 Word版含答案

俯视图正(主)视图 侧(左)视图陕西省西工大附中2014年高三第十一次适应性训练数学(理)试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分;考试时间120分钟。

第Ⅰ卷 选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分) 1.若i 为虚数单位,则复数iiz 211++=在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知集合{}1,1A =-,{}10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 ( )A .{1}-B .{1}C .{1,0,1}-D .{1,1}- 3.下列有关命题的说法正确的是( )A .命题“若1,12==x x 则”的否命题为:“若1,12≠=x x 则”B .命题“若y x y x sin sin ,==则”的逆否命题为真命题C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”D .“1x =-”是“0652=--x x ”的必要不充分条件4.右图是一个几何体的三视图,根据图中数据可得该几何体 的表面积是( )A .9πB .10πC .11πD .12π5.x x n+⎛⎝ ⎫⎭⎪132展开式的第6项系数最大,则其常数项为( ) A. 210 B.120C. 252D. 456.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(1)(3)1x y -+-=C .22(2)(1)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭7. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋 友1本,则不同的赠送方法共有 ( )A.4种B.10种C.18种D.20种8. 已知y x ,满足⎪⎩⎪⎨⎧≤+≥≥511y x y x 时,)0(>≥+=b a b y a x z 的最大值为1,则b a +的最小值为( )A .7B .8C .9D .10 9.已知函数x x x f 2)(+=,x x x g ln )(+=,1)(--=x x x h 的零点分别为,,21x x 3x ,则321,,x x x 的大小关系是 ( )A .123x x x <<B .213x x x <<C .132x x x <<D .321x x x << 10.已知ΔABC 为等边三角形,2AB =,设,P Q 满足,(1),.AP AB AQ AC R λλλ==-∈若32BQ CP =-,则λ等于( )A .12 B.12± D.32-± 第Ⅱ卷 非选择题(共100分)二、填空题:(本大题共5小题,每小题5分,共25分)11. 观察下列式子:2131,22+< 221151323++<22211171,4234+++<则可以猜想的一般结论为:_____________ .12. 图中的程序框图所描述的算法称为欧几里得辗转相除法.输入2010=m ,1541=n ,则输出=m .13.一物体A 以速度232v t =+(t 的单位:s ,v 的单位:/m s )在一直线上运动,在此FAEDBC直线上物体A 出发的同时,物体B 在物体A 的正前方8m 处以8v t =(t 的单位:s ,v 的单位:/m s )的速度与A 同向运动,则经过 s 物体A 追上物体B .14.函数()()sin f x A x ωϕ=+(0A >,0ω>,2πϕ<的部分图象如图所示,则函数()y f x =对应的解析式为 .15.选做题(请在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分) A.若关于实数x 的不等式|5||3|x x a -++<无解,则实数a 的取值范围为 .B.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且DF CF ==::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为 .C.在直角坐标系中圆C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为___ __.三、解答题(本大题共6小题,共75分;解答应写出文字说明、证明过程或演算步骤) 16.(本题满分12分)已知角α的始边与x 轴的非负半轴重合,终边与单位圆O 交于点A 11(,)x y ,将射线OA 按逆时针方向旋转23π后与单位圆O 交于点B 22(,)x y ,12()f x x α=-;(Ⅰ)若角α为锐角,求()f α的取值范围;(Ⅱ)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若3(),32fA c ==,ABC ∆的面积为a 的值。

2014年西工大附中第十一次适应性训练(文科综合)模拟试题(A)

2014年西工大附中第十一次适应性训练(文科综合)模拟试题(A)

2014年普通高等学校招生全国统一考试西工大附中第十一次适应性训练文科综合能力测试本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

全卷共300分。

第I 卷(选择题,共140分) 本卷共35小题,每小题4分,共140分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

读某区域等高线地形图,完成1—2题。

1.东胜乡(乡镇中心)通往下列居民点的公路中起伏最小的是A.妙乐村B.崖子湾C.文仓湾D.陆家坪2.东山沟与观音岩相对高度最大值可能是A.79米B.89米C.119米D.129米 可能蒸发量指在下垫面足够湿润条件下,水分保持充分供应的蒸发量。

读中国部分区域干燥度等值线分布图,完成3—4题。

3.根据图中等值线的分布规律推测干燥度是指A.降水量与实际蒸发量之比B.实际蒸发量与降水量之比C.可能蒸发量与降水量之比D.降水量与可能蒸发量之比4.关于该区域干燥度分布及成因叙述正确的是A.本区域干燥度自南向北递增B.乙处比丙处干燥度变化慢C.甲处等值线弯曲的原因是位于山地背风坡D.影响该区域干燥度分布最主要因素是海陆位置读长江主要污染物入海通量的变化图,完成5—6题。

5.关于长江主要污染物入海通量的变化特征,叙述正确的是A.2011年的季节变化比2012年大B.11月的季节变化最小C.2012年的年际变化比2011年大D.季节变化和年际变化都较大6.影响长江主要污染物入海通量变化的直接因素是A.气温B.径流量C.污染物来源D.降水A正在建设的成渝城际客运专线(成都—重庆)是一条高速铁路客运专线。

建设初期有两套方案,如右图。

读图完成7—8题。

7.成渝高铁建设中需要克服的最主要困难是A.河网密布B.地质地貌复杂C.高寒缺氧D.气候湿热8.南线为在建项目,南线与北线相比较,优势有A.搬迁量小B.线路更短,投资量更小C.连接的居民点多,运输量更大D.促进沿线地区产业结构调整与优化下图为我国某沿海城市1998---2008年人口变化统计图。

陕西省西安市西北工业大学附属中学高三数学 第十一次适应性训练试题 文

陕西省西安市西北工业大学附属中学2013年高三第十一次适应性训练数学(文)试题
第Ⅰ卷选择题(共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.为虚数单位,复数 计算的结果是()
A.1 B.-1 C.D.
2.已知 ,则“ ”是“ ”成立的()
6.若函数 的一个正数零点附近的函数值用二分法计算,其参考数据如下:
f(1) =-2
f(1.5) = 0.625
f(1.25) =-0.984
f(1.375) =-0.260
f(1.4375) = 0.162
f(1.40625) =-0.054
那么方程 的一个近似根(精确到0.1)为()
A.1.2 B.1.3C.1.4 D.1.5
7
8
9
10
答案
D
A
B
A
B
C
D
C
A
D
二、填空题:
11.5;12.48;13.1;14.4;
15.A. ;B. ;C.
三、解答题:
16.(本小题满分12分)
【解】:(Ⅰ)点M为PD中点.理由如下:设 ,则点O为BD中点,连接OM.
∵PB∥平面ACM,∴PB∥OM,∴OM为△PBD的中位线,故点M为PD中点.
人数y
x
价格满意度
1
2
3
4
5





1
1
1
2
2
0
2
2
1
3
4
1
3
3
7
8
8
4
4

mjt-陕西省西工大附中2014届高三第二次适应性训练数学(文)试题

陕西省西工大附中2014届高三第二次适应性训练数学(文)试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分) 一. 选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分) 1.设复数21211,2(),z z i z x i x R z =-=+∈若为实数,则x =( )A .-2B .-1C .1D .22.如图,程序框图所进行的求和运算是(A .1+2+22+23+24+25B .2+22+23+24+25C .1+2+22+23+24D .2+22+23+243.圆5)2(22=++y x 关于直线10x y -+=对称的圆的方程为( ) A .22(2)5x y -+= B .5)2(22=-+y xC .22(1)(1)5x y -+-=D .22(1)(1)5x y +++=4.“3a =”是“直线30ax y +=与直线223x y +=平行”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数6.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( )A .AB AC BC +=B .12AB BC DA =+C .AD DC AC -= D .2CD BA CA +=7.设等比数列{}n a 的前n 项和为n S ,若23=S ,186=S ,则=510S S ( ) A .17 B .33 C .-31 D .-38.在ABC ∆中,已知C B A sin cos sin 2=,那么ABC ∆一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形9.设圆锥曲线Γ的两个焦点分别为12,F F ,若曲线Γ上存在点P 满足1122::PF F F PF =4:3:2,则曲线Γ的离心率等于( )A.1322或B.23或2C.12或2D.2332或 10.设22)1(则,305满足约束条件,y x x y x y x y x ++⎪⎩⎪⎨⎧≤≥+≥+-的最大值为( ) A . 25 B .C . 80D .172第Ⅱ卷(非选择题 共100分)二. 填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11. 设(,sin )a α=34,(cos ,)b α=13,且a b ⊥,则tan α= .12.观察下列等式 311=33129+= 33312336++= 33331234100+++=照此规律,第6个等式可为 .13.曲线12+=x y 在点)2,1(处的切线为l ,则直线l 上的任意点P 与圆03422=+++x y x 上的任意点Q 之间的最近距离是 .14.将一张边长为12cm 的纸片按如图1所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折成一个有底的正四棱锥模型,如图2放置.若正四棱锥的正视图是正三角形(如图3),则四棱锥的体积是___________3cm .图1 图2 图315. (考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分.)A. (不等式选作题)已知0,0,1,a b a b >>+=则2211a b +的最小值为 .B.(几何证明选做题)如图,过圆O 外一点P 分别作圆的切线 和割线交圆于A ,B ,且PB =9,C 是圆上一点使得BC =4, ∠BAC =∠APB , 则AB = .C. (坐标系与参数方程选做题)已知两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪≤<⎨=⎪⎩ 和23()2x t t R y t ⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___________. 三.解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(本小题满分12分) 已知向量(),sin ,cos x x -=()x x x x cos sin ,cos 3sin --=, 函数()b a x f ⋅= . (1)若3π=x ,求()x f 的值;(2)求函数()f x 的对称中心和最大值,并求取得最大值时的x 的集合.17. (本小题满分12分) 已知数列{}n a 的前n 项和为n S ,且满足:11a =,12n n a S +=.(1)求数列{}n a 的通项公式;(2)设29n n b na =,求数列{}n b 的前n 项和为n T .18.(本小题满分12分)有甲、乙两个学习小组,每个小组各有四名学生,在一次数学考试中,成绩情况如下表:(1)用茎叶图表示两组的成绩情况;(2)分别从甲、乙两组中随机选取一名学生的成绩,求选取的这两名学生中,至少有一名学生的成绩在90以上的概率.19. (本小题满分12分)如图,在四棱锥S ABCD -中, AB AD ⊥,//AB CD ,3CD AB =,平面SAD ⊥平面ABCD , M 是线段AD 上一点,AM AB =,DM DC =,SM AD ⊥. (1)证明:BM ⊥平面SMC ;(2)设三棱锥C SBM -与四棱锥S ABCD -的体积分别为1V 与V ,求1VV的值.20.(本小题满分13分)已知椭圆T :22221(0)x y a b a b+=>>的离心率e =,,A B是椭圆T 上两点,(3,1)N 是线段AB 的中点,线段AB 的垂直平分线与椭圆T 相交于,C D 两点.(1)求直线AB 的方程;(2)是否存在这样的椭圆,使得以CD 为直径的圆过原点O ?若存在,求出该椭圆方程;若不存在,请说明理由.MSDCBA21.(本小题满分14分)已知函数()1x f x e ax =--,其中a 为实数, (1)若1a =,求函数()f x 的最小值;(2)若方程()0f x =在(0,2]上有实数解,求a 的取值范围;(3)设,k k a b (1,2k =…,)n 均为正数,且1122a b a b ++…n n a b ≤12b b ++…n b ,求证:12121n b b b n a a a <.数学(文科)参考答案11.94-12. 441654321333333=+++++ 13. 1554-14.15.A. 8 B. 6 C. (1, 三、解答题:16.解:(1)法1:22()2sin cos 3cos sin f x x x x x =--sin 2cos22x x =-- 当3π=x 时,()23322123232cos 32sin-=-+=--=ππx f法2:直接代入3π=x ,算出()32f x =.(2)22()2sin cos 3cos sin f x x x x x =--sin 2cos22)24x x x π=--=--由2()4x k k Z ππ-=∈得()28k x k Z ππ=+∈ 所以()f x 对称中心为(,2)()28k k Z ππ+-∈当3()8x k k Z ππ=+∈时,()f x 2. 17.解:(1)当1n =时,2122a S ==当2n ≥时,1122n nn n n a a a S S +-=-=-,得13n n a a += 所以23,,,,n a a a 为等比数列,223(2)n n a n -=⨯≥. 故21,123,2n n n a n -=⎧=⎨⨯≥⎩ (2)29n n b na =29n n =⨯ 22[19299]n n T n =⨯+⨯++⨯ 23192[19299]n n T n +=⨯+⨯++⨯2182[(999)9]nn n T n +-=+++-⨯11992[9]19n n n ++-=-⨯-1(18)994n n +--=故1(81)9932n n n T +-+=18.解:(Ⅰ)茎叶图:略 ………………………… 5分(Ⅱ)分别从甲、乙两组中随机选取一名学生的成绩,所有可能的结果有16种,它们是:()()()()78,86,78,95,78,82,78,96,()()()()92,86,92,95,92,82,92,96, ()()()()98,86,98,95,98,82,98,96,()()()()88,86,88,95,88,82,88,96,设“选取的这两名学生中,至少有一名学生的成绩在90以上”为事件A ,则A 中包含的基本事件有12个,它们是:()()78,95,78,96,()()()()92,86,92,95,92,82,92,96,()()()()98,86,98,95,98,82,98,96,()()88,95,88,96,所以所求概率为()123.164P A == ………………………… 12分19.(1)证明:平面SAD ⊥平面ABCD ,平面SAD 平面ABCD AD =,SM ⊂平面SAD ,SM AD ⊥,SM ∴⊥平面ABCD ,…………………1分BM ⊂平面,ABCD .SM BM ∴⊥ ………………………………2分 四边形ABCD 是直角梯形,AB //CD ,,AM AB =,DM DC =,MAB MDC ∴∆∆都是等腰直角三角形,45,90,.AMB CMF BMC BM CM ∴∠=∠=︒∠=︒⊥…………………………4分SM ⊂平面SMC ,CM ⊂平面SMC ,SM CM M =,BM ∴⊥平面S …………………………………………………………………6分(2)解: 三棱锥C SBM -与三棱锥S CBM -的体积相等, 由( 1 ) 知SM ⊥平面ABCD ,得1113211()32SM BM CMV V SM AB CD AD⨯⨯=⨯+⨯,……………………………………………9分 设,AB a =由3CD AB =,,AM AB =,DM DC =得3,,,4,CD a BM CM AD a ==== 从而13.(3V V a a a ⨯==+⨯ …………………………………………………………12分20.解:(1)离心率e =,椭圆T :2223(0)x y a a +=> 设1122(,),(,),A x y B x y 直线AB 的方程为222(3)1,3y k x x y a =-++=代入,整理得 2222(31)6(31)3(31)0.k x k k x k a +--+--= ① 2224[(31)3(31)]0,a k k ∆=+--> ② 1226(31),31k k x x k -+=+由(3,1)N 是线段AB 的中点,得123.2x x += 解得1k =-,代入②得,212,a > 直线AB 的方程为1(3),40.y x x y -=--+-=即(2)∵CD 垂直平分AB ,∴直线CD 的方程为13y x -=-,即20x y --=,代入椭圆方程,整理得 22412120.x x a -+-= 又设),,(),,(4433y x D y x C∴23434123,4a x x x x -+==234344(2)(2)4a y y x x -=--=假设存在这样的椭圆,使得以CD 为直径的圆过原点O ,则34340x x y y += 得28a =,又212,a >故不存在这样的椭圆.21.解:(1)'()1x f x e =-,由()0f x '=得0x = 当0,'()0,()x f x f x >>时在(0,)+∞内递增; 当0x <时,'()0,()(,0)f x f x <-∞在内递减; 故函数()0f x x =在处取得最小值(1)0.f = (2)'()(02)x f x e a x =-<≤①当1a ≤时,'()0,f x >()f x 在(0,2]内递增;()(0)0f x f >=,方程()0f x =在(0,2]上无实数解;②当2a e ≥时,'()0,f x ≤()f x 在(0,2]内递减;()(0)0f x f <=,方程()0f x =在(0,2]上无实数解;③当21a e <<时,由'()0,f x =得ln x a =, 当0ln ,'()0,()x a f x f x <<<时递减; 当ln 2a x <<时,'()0,()f x f x >递增; 又(0)0f =,2(2)21f e a =--由2(2)210f e a =--≥得2112e a -<≤故a 的取值范围为211,2e ⎛⎤- ⎥⎝⎦ (3)由(1)知,当(0,)x ∈+∞时,1x e x >+,ln(1).x x +<即 ,0k k a b >,从而有ln 1k k a a <-, 得ln (1,2,,)k k k k k b a a b b k n <-=,求和得1111ln 0.nnnb kk k k k k k a a b b ===<-≤∑∑∑即1212ln()0,n k k k n a a a <故12121.nk k k n a a a <。

【解析】陕西省西工大附中2014届高三上学期第一次适应性训练数学(文)试题

【解析】陕西省西工大附中2014届高三上学期第一次适应性训练数学(文)试题第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.()3=( )A .8-B .8C .8i -D .8i2.若向量a ,b 满足||1a = ,||b = ()a a b ⊥+,则a 与b 的夹角为( )A .2πB .23πC .34πD .56π3.记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω内的概率为( ) A .12π B .1π C .14 D .24ππ- 【答案】A 【解析】试题分析:如图所示,集合A 表示的平面区域1Ω的面积为16π,集合B 表示的平面区域(阴影部分) 2Ω的面积为14482⨯⨯=,所以点M 落在区域2Ω内的概率为81162ππ=.考点:几何概型4.把函数f (x )的图象向右平移一个单位长度,所得图象恰与函数x y e =的反函数图像重合,则f (x )=( )A. ln 1x -B. ln 1x +C. ln(1)x -D. ln(1)x +5.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A.83 B. 4 C. 2 D. 43【答案】B 【解析】试题分析:三视图所对应的三棱锥如所示,由三视图可知,这个几何体的高是2,底面ABC 中,4AB =,AB 边上的高是3CD =,所以该三棱锥的体积是11432432V =⨯⨯⨯⨯=. 考点:1.三视图;2.棱锥的体积6.已知抛物线x y 82=的焦点与双曲线1222x y a-=的一个焦点重合,则该双曲线的离心率为( )A C D7.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶也是蓝色的概率( ) A .110 B .17 C .14 D .15【答案】C 【解析】试题分析:设{}A =其中一瓶是蓝色,{}=B 另一瓶也是蓝色,则()14P B A =. 考点:条件概率8.已知等差数列{}n a 中,n S 为其前n 项和,若13a =-,510S S =,则当nS 取到最小值时n y O的值为( )A .5B .7C .8D .7或89.定义运算a b ⊗为执行如图所示的程序框图输出的s 值,则552cos 2tan 34ππ⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭的值为( )A .4B .3C .2D .―110.下图是两组各7名同学体重(单位:kg )数据的茎叶图.设1,2两组数据的平均数依次为1x 和2x ,标准差依次为1s 和2s ,那么( )(注:标准差s =x 为12,,,n x x x 的平均数)A .12x x >,12s s >B .12x x >,12s s <C .12x x <,12s s <D .12x x <,12s s >第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.已知函数()2log ,02,0xx x f x x >⎧=⎨≤⎩,则满足()()1ff x ≥的x 的取值范围是 .【答案】[){}4,1+∞ 【解析】试题分析: 函数()2log ,02,0xx x f x x >⎧=⎨≤⎩的图像如下:则由()()1ff x ≥可知,()0f x =或()2f x ≥,解得1x =或4x ≥.考点:1.对数函数的图像与性质;2.指数函数的图像与性质;3.数形结合12.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n≥3)从左向右的第3个数为 .13.在△ABC 中,BC ,AC =,π3A =,则B = . 【答案】4π 【解析】试题分析:由正弦定理可得,sin sin BC AC A B =sin 3=,解得sin B =23A B C ππ+=-=,所以203B π<<,则4B π=. 考点:1.正弦定理;2.解三角形14.若直线l :1y kx =+被圆C :22x y 2x 30+--=截得的弦最短,则k= .15. 选做题(请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分) A (极坐标系与参数方程)极坐标系下曲线θρsin 4=表示圆,则点)6,4(πA 到圆心的距离为 .【答案】【解析】试题分析:点A 对应的直角坐标为:4cos6x π==,4sin26y π==,所以点()2A .因为θρsin 4=,所以24sin ρρθ=,即224x y y +=,圆的标准方程为:()2224x y +-=,圆心()0,2.考点:极坐标与参数方程B (几何证明选讲)已知PA 是圆O 的切线,切点为A ,2PA =.AC 是圆O 的直径,PC 与圆O 交于点B ,1PB =,则圆O 的半径R = .【解析】试题分析:如图所示,有切割线定理可知,2PA PB PC =⋅,即221=得R =考点:切割线定理C (不等式选讲)若关于x 的不等式1|1||2|a x x +-->存在实数解,则实数a 的取值范围是 .三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题12分)已知在等比数列}{n a 中,11=a ,且2a 是1a 和13-a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列}{n b 满足)(12*N n a n b n n ∈+-=,求}{n b 的前n 项和n S . 【答案】(Ⅰ)12n n a -= ;(Ⅱ)221n n S n =+-. 【解析】17.(本小题12分)在ABC ∆中,角A ,B , C 所对的边分别为c b a ,, (Ⅰ)叙述并证明正弦定理; (Ⅱ)设2a c b +=,3A C π-=,求sin B 的值.再由二倍角公式sin 2sincos 22B BB =求解. 试题解析:(Ⅰ) 正弦定理:sin sin sin a b cA B C==. 证明:设ABC ∆的外接圆的半径为R ,连接BO 并延长交圆O 于点C ',如图所示:18.(本小题12分)某校有教职工130人,对他们进行年龄状况和受教育情况(只有本科和研究生两类)的调查,其结果如图:(Ⅰ)随机抽取一人,是35岁以下的概率为2617,求b a ,的值; (Ⅱ)从50岁以上的6人中随机抽取两人,求恰好只有一位是研究生的概率.19.(本小题12分)如图,在四棱锥S-ABCD 中,底面ABCD 是矩形,SA ⊥底面ABCD ,SA=AD ,点M 是SD 的中点,AN ⊥SC 且交SC 于点N .(Ⅰ)求证:SB∥平面ACM ;(Ⅱ)求证:平面SAC ⊥平面AMN .【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ) 连接BD ,交AC 于点O ,连接MO ,证明//MO SB ,依据直线与平面平行的判定定理可知,//SB ACM 平面;(Ⅱ)先由已知条件得到SA CD ⊥和CD AD ⊥,依据直线与平面垂直的判定定理证得CD SAD ⊥平面,再由CD AM ⊥和AM SD ⊥,依据直线与平面垂直的判定定理证得AM SCD ⊥平面,从而有AM SC ⊥,结合已知条件SC AN ⊥,依据直线与平面垂直的判定定理证得SC AMN ⊥平面,再依据平面与平面垂直的判定定得到⊥平面SAC 平面AMN .试题解析:(Ⅰ)连接BD ,交AC 于点O ,连接MO ,∵ABCD 为矩形,∴O 为BD 中点,又M 为SD 中点,∴//MO SB .∵MO ACM ⊂平面,SB AC ⊄平面,∴//SB ACM 平面.20.(本小题13分)已知椭圆C 的中心在坐标原点,短轴长为4,且有一个焦点与抛物线2y =的焦点重合.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知经过定点M (2,0)且斜率不为0的直线l 交椭圆C 于A 、B 两点,试问在x 轴上是否另存在一个定点P 使得PM 始终平分APB ∠?若存在,求出P 点坐标;若不存在,请说明理由.【答案】(Ⅰ) 22194x y +=;(Ⅱ) 9,02⎛⎫ ⎪⎝⎭.(Ⅱ)设l :2x my =+,代入椭圆方程整理得:22(49)16200m y my ++-= 则12212216492049m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,假设存在定点(,0)P t 使得PM 始终平分APB ∠, 则0PA PB k k +=12120y y x t x t⇔+=--1221(2)(2)0y my t y my t ⇔+-++-= 12122(2)()0(29)0my y t y y m t ⇔+-+=⇔-=①,要使得①对于m R ∀∈恒成立,则92t =, 故存在定点P 使得PM 始终平分APB ∠,它的坐标为9,02⎛⎫ ⎪⎝⎭. 考点:1.椭圆的标准方程;2.抛物线的性质;3.根与系数的关系21.(本小题14分)已知函数()ln f x x =,21()22g x ax x =-.(Ⅰ)若曲线()()y f x g x =-在1x =与12x =处的切线相互平行,求a 的值及切线斜率; (Ⅱ)若函数()()y f x g x =-在区间1,13⎛⎫⎪⎝⎭上单调递减,求a 的取值范围; (Ⅲ)设函数()f x 的图像C 1与函数()g x 的图像C 2交于P 、Q 两点,过线段PQ 的中点作x 轴的垂线分别交C 1、C 2于点M 、N ,证明:C 1在点M 处的切线与C 2在点N 处的切线不可能平行.则1()2h x ax x'=-+, ∵在1x =与12x =处的切线相互平行, ∴1(1)()2h h ''=,即342a a -+=-+,解得2a =-, (1)5k h '==.(Ⅱ)∵()h x 在区间1(,1)3上单调递减, ∴()0h x '<在区间1(,1)3上恒成立, 则120ax x -+<,即212a x x >+,∵1(,1)3x∈,∴212315x x<+<,∴15a≥.。

2014年普通高等学校招生全国统一考试西工大附中第十次适应性训数学(文科)

2014年普通高等学校招生全国统一考试西工大附中第十次适应性训练数学(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。

考试时间120分钟第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列几个式子化简后的结果是纯虚数的是( )A .i i -1B .2(1)i +C .4iD .11i i -+2.已知集合{}(){}23,0,ln 2.x A y y x B x y x x ==>==-则M N ⋂=( )A .()1,2B .()1,+∞C .[)2,+∞D .[)1,+∞3.设,a b 是平面α内两条不同的直线,l 是平面α外的一条直线,则“l a ⊥,且l b ⊥”是“l α⊥的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知命题p 是真命题,命题q 是假命题,那么下列命题中是假命题的是( )A .q ⌝B .p 或qC .p 且qD .p 且q ⌝5.比较sin150,tan 240,cos(120)-三个三角函数值的大小,正确的是( ) A .sin150tan 240cos(120)>>- B .tan 240sin150cos(120)>>- C .sin150cos(120)tan 240>-> D .tan 240cos(120)sin150>->6.已知一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图均为正方形,那么该几何体的表面积是( )A .16B .12+C .20D .16+7.点P 在边长为1的正方形ABCD 内部运动,则点P 到此正方形中心点的距离均不超过12的概率为( )A.12B.14C.π4 D .π8.若实数,x y 满足条件01y xx y y ≥⎧⎪+≥⎨⎪≤⎩,则12()4x y ⋅的最小值是( )A .18B . 14C .12 D .19.已知对于正项数列{}n a 满足(),m n m n a a a m n N *+=⋅∈,若29a =,则3132312log log log a a a ++⋅⋅⋅⋅⋅⋅+=( )A . 40B .66C .78D .15610.2a <,则函数()2f x x =-的零点个数为( ) A .1 B .2 C .3 D .4第Ⅱ卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上. 11.已知直线x - y +c =0与圆(x - 1)2+y 2=2有且只有一个公共点,那么c =__________.12. 执行右图所示的程序框图,则输出的S 值为 .13.在ABC ∆中,已知a b c ,,分别为A ∠,B ∠,C ∠所对的边,S 为ABC ∆的面积.若向量2224 1p a b c q S =+-=()(),,,满足//p q ,则C ∠= .14 . 设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足.若直线AF 的斜率为3-, 则PF;15.选做题(请在以下三个小题中任选一题做答,如果多做,则按所做的第一题评阅记分)(A )(不等式选讲)已知函数()51f x x x =-+-,存在实数x , 使得2()24f x a a ≤-++有解,则实数a 的取值范围为 ;(B )(坐标系与参数方程)在极坐标系中,曲线C 的方程是4sin ρθ=,过点4,6π⎛⎫ ⎪⎝⎭作曲线C 的切线,则切线长为 ;(C )(几何证明选讲)如图,CD 是圆O 的切线,切点为C , 点B 在圆O 上,2,30BC BCD ︒=∠=,则圆O 的面积为 .三.解答题:(本大题共6小题,共75分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省西工大附中2014年高三第十一次适应性训练数学(文)试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分) 一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合}}{{2|10,|4,M x gx N x x MN =>=≤=则A .(0,2)B .(1,2]C .(1,2)D .[1,2] 2.下列函数中,既是奇函数又是增函数的为A .1y x =+B .2y x =-C .1y x = D .||y x x = 3.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则A .l 与C 相交B .l 与C 相切 C .l 与C 相离 D. 以上三个选项均有可能5.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是A .46,45,56B .46,45,53C .47,45,56D .45,47,536.设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于A .2B .12C . 0 D. -17.设函数()xf x xe =,则 A .x=1为()f x 的极大值点 B .x=1为()f x 的极小值点C .x=-1为()f x 的极大值点D .x=-1为()f x 的极小值点8.阅读右图所示的程序框图,运行相应的程序,输出s 值等于A .3-B .10-C .0D .2-9.一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是A .球B .三棱锥C .正方体D .圆柱10. 小王从甲地到乙地的时速分别为a 和b (a<b ),其全程的平均时速为v ,则2a b + D. v=2a b+ 第Ⅱ卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上. 11.已知关于x 的不等式022>+-a ax x 在R 上恒成立,则实数a 的取值范围是 .12.从点P (2,3)向圆221x y +=作两条切线PA,PB,切点为A ,B ,则直线AB 的方程是 .13. 在三角形ABC 中,角A,B,C 所对应的长分别为a ,b ,c ,若a=2 ,B=6π,b= .14. 右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.15. (考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .B.(几何证明选做题)如图,在圆O 中,直径AB 与弦CD 垂直,垂足为E ,EF DB ⊥,垂足为F ,若6AB =,1AE =,则 DF DB ⋅= .C.(坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (Ⅰ)求函数()f x 的解析式; (Ⅱ)设(0,)2πα∈,则()22f α=,求α的值.17. (本小题满分12分)(Ⅰ)叙述并证明面面垂直性质定理;(Ⅱ)P(00,x y )Ax+By+C=0到直线L:的距离d= ,并证明此公式.18.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的(Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值; (Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)19. (本题满分12分)已知数列{}n a 中,()112,202,n n a a a n n n N -=--=≥∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设12321111n n n n nb a a a a +++=+++⋅⋅⋅+,求数列{}n b 的通项公式.20. (本题满分13分)已知函数ln ()1xf x ax x=++,(a R ∈) (Ⅰ)若()f x 在定义域上单调递增,求实数a 的取值范围; (Ⅱ)若函数()()g x xf x =有唯一零点,试求实数a 的取值范围.21. (本题满分14分)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。

(Ⅰ)求椭圆2C 的方程;(Ⅱ)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程.试卷类型A2014年普通高等学校招生全国统一考试西工大附中十一次适应性训练(),13,2,,,22,()2sin(2) 1.6f x A A f x y x πππω∴+==∴=∴==-+函数的最大值为3即函数图像的相邻两条对称轴之间的距离为最小正周期T 故函数的解析式为()2sin()12,261sin(),620,,2663,663.a f a a a a a a πππππππππ=-+=-=<<∴-<<-<∴-==即故数学(文科)参考答案一.选择题: BDBAA CDADB二.填空题: 11. (0,8) 12. 2310x y +-= 13.2 14.[]2,4-三.解答题16. 解:(Ⅰ)(Ⅱ)17.略。

18.解:(Ⅰ)由已知得251055,35,15,20y x y x y ++=+=∴==,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:115 1.530225 2.5203101.9100⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅱ)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,123,,A A A 分别表示事件“该顾客一次购物的结算时间为1分钟”, “该顾客一次购物的结算时间为1.5分钟”, “该顾客一次购物的结算时间为2分钟”.将频率视为概率,得123153303251(),(),()10020100101004P A P A P A ======. 123123,,,A A A A A A A =且是互斥事件, 123123()()()()()P A P A A A P A P A P A ∴==++33172010410=++=.故一位顾客一次购物的结算时间不超过2分钟的概率为710. 19. 解:(Ⅰ)∵ ()112,202,n n a a a n n n N -=--=≥∈当2n ≥时,()11232212,21,,23,22n n n n a a n a a n a a a a ----=-=-⋅⋅⋅-=⨯-=⨯, ∴ ()12132n a a n n -=⎡+-+⋅⋅⋅++⎤⎣⎦,∴()()()121321212n n n a n n n n +=⎡+-+⋅⋅⋅+++⎤==+⎣⎦当1n =时,()11112a =⨯+=也满足上式, ∴数列{}n a 的通项公式为()1n a n n =+ (Ⅱ)()()()()()1221111111223221n n n n b a a a n n n n n n ++=++⋅⋅⋅+=++⋅⋅⋅++++++ ()()()()()1111111223221n n n n n n =-+-+⋅⋅⋅+-+++++()()211121231nn n n n =-=++++ 20. 解: 2221ln ln 1()x ax x f x a x x --+'=+=, ∴()0,0f x x '≥∀>,∴2ln 10,0ax x x -+≥∀>,∴2ln 1x a x -≥,令2ln 1()x h x x -=,则24312(ln 1)32ln ()0x x x xx h x x x---'===有根:320x e =, 0(0,)x x ∈,()0h x '>,函数()h x 单增;0(,)x x ∈+∞,()0h x '<,函数()h x 单减;∴max 031(())()2a h x h x e ≥==;(Ⅱ)2()()ln 0g x xf x ax x x ==++=有唯一正实数根,2121()21ax x g x ax x x++'=++=,记18a ∆=-;(ⅰ)若0a =,1()0,x g x x+'=>即函数()y g x =在定义域上单调递增, 又22()20g e e --=-<,(1)10g =>,即函数()y g x =有唯一零点;(ⅱ)若18a ≥即0∆≤,则2210,ax x ++≥从而()0,g x '≥又当0x →时,()0g x <,而当x →+∞时,()0g x >;故函数()y g x =有唯一零点; (ⅲ)若108a <<,则180a ∆=->,则方程2210ax x ++=的两根满足: 1212110,022x x x x a a+=-<⋅=>,即两根均小于0,故2210,ax x ++>,从而()0,g x '>,由(ⅱ)同理可知,仍满足题意;(ⅳ)若0a <,同样0∆>,则方程2210ax x ++=的两根为:10x =>,20x =<(舍); 当1(0,)x x ∈时,()0g x '>,故()g x 在1(0,)x 为增函数, 当1(,)x x ∈+∞时,()0g x '<,故()g x 在1(,)x +∞为减函数,故当1x x =时,()g x 取得最大值1()g x ;则11()0()0g x g x =⎧⎨'=⎩,即2111211ln 0210ax x x ax x ⎧++=⎪⎨++=⎪⎩, 所以112ln 10x x --+=,即112ln 10x x +-=; 令()2ln 1x x x ϕ=+-,则2()10,x xϕ'=+>即()x ϕ为定义域上增函数, 又(1)0ϕ=,所以方程112ln 10x x +-=有唯一解11x =,故1114x a-==,解得1a =-;综上,实数a 的取值范围为:{|0,1}a a a ≥=-或.21.解:(Ⅰ)由已知可设椭圆22221(2)4y x c a a +=>的方程为,4a ==则。

相关文档
最新文档