怀远县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载

怀远县一中2018-2019学年上学期高二数学12月月考试题含解析

怀远县一中2018-2019学年上学期高二数学12月月考试题含解析

8. 已知直线 l 的参数方程为
x 1 t cos ( t 为参数, 为直线 l 的倾斜角),以原点 O 为极点, x 轴 y 3 t sin
正半轴为极轴建立极坐标系,圆 C 的极坐标方程为 4sin(

3
) ,直线 l 与圆 C 的两个交点为 A, B ,当
第 3 页,共 14 页
(2)该商品每件的售价为 185 元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月 利润预计最大是多少元?
21.一个几何体的三视图如图所示,已知正(主)视图是底边长为 1 的平行四边形,侧(左)视图 是一个长为 3 ,宽为 1 的矩形,俯视图为两个边长为 1 的正方形拼成的矩形. (1)求该几何体的体积 V ;111] (2)求该几何体的表面积 S .
5. 下列各组函数为同一函数的是( A.f(x)=1;g(x)= C.f(x)=|x|;g(x)= A、 f ( 25) f (11) f (80) C、 f (11) f (80) f ( 25) A.3 B.6 C.7 D.8
B.f(x)=x﹣2;g(x)= D.f(x)= • ;g(x)=
1 1 ,数列 {an } 满足: a1 , an 1 f ( an ), n N . 1 x 2 a 1 (Ⅰ)若 1 , 2 为方程 f ( x) x 的两个不相等的实根,证明:数列 n 为等比数列; a 2 n
设 f ( x) (Ⅱ)证明:存在实数 m ,使得对 n N , a2 n 1 a2 n 1 m a2 n 2 a2 n .
| AB | 最小时, 的值为(

第 1 页,共 14 页

怀远县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

怀远县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

1 a 1 时,求证:对任意 x , + ,都有 1 2 x 2
e.
20.【无锡市 2018 届高三上期中基础性检测】在一块杂草地上有一条小路 AB,现在小路的一边围出一个三角 形 (如图) 区域, 在三角形 ABC 内种植花卉.已知 AB 长为 1 千米, 设角 C , AC 边长为 BC 边长的 a a 1 倍,三角形 ABC 的面积为 S(千米 2). 试用 和 a 表示 S ; (2)若恰好当 60 时,S 取得最大值,求 a 的值.
怀远县第一高级中学 2018-2019 学年上学期高二数学 12 月月考试题含答案 班级__________ 一、选择题
1.
座号_____
姓名__________
分数__________
如图所示,已知四边形 ABCD 的直观图是一个边长为的正方形,则原图形的周长

为(
A. 2 2 2. 已知等差数列{an}满足 2a3﹣a A.2 B.4 C.8 D.16
第 4 页,共 19 页
21.已知三次函数 f(x)的导函数 f′(x)=3x2﹣3ax,f(0)=b,a、b 为实数. (1)若曲线 y=f(x)在点(a+1,f(a+1))处切线的斜率为 12,求 a 的值; (2)若 f(x)在区间[﹣1,1]上的最小值、最大值分别为﹣2、1,且 1<a<2,求函数 f(x)的解析式.
7 , 2
24.已知函数 f(x)=1+
(﹣2<x≤2).
(1)用分段函数的形式表示函数; (2)画出该函数的图象; (3)写出该函数的值域.
第 6 页,共 19 页
怀远县第一高级中学 2018-2019 学年上学期高二数学 12 月月考试题含答案(参考答案) 一、选择题

2019届高三数学上册第一次月考试卷3

2019届高三数学上册第一次月考试卷3

2018-2019学年度第一次月考(文科)考试时间:120分钟 满分:150分 一.选择题(每小题5分,共50分)1.设{}2,1,0,1,2U =--,{1,1}A =-,{}0,1,2B =,则)(B C A U =( ) A .{1} B . ∅ C .{1}- D .{1,0}- 2.不等式032<-x x 的解集是( ) A .)0,(-∞ B .)3,0(C .(,0)(3,)-∞+∞D .),3(+∞3.下列四组函数中,两函数是同一函数的是: ( ) A. ƒ(x)=2x 与ƒ(x)=x B. ƒ(x)=2)x (与ƒ(x)=x C. ƒ(x)=x 与ƒ(x)=33x D. ƒ(x)= 2x 与ƒ(x)= 33x4."x=1"是“2x =1"的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数f (x +1)=3x +2,则f (x )的解析式是( )A .3x +2B .3x +1C .3x -1D .3x +4 6.已知命题:,sin 1,p x R x ∀∈≤则p ⌝是( ).(A ),sin 1x R x ∃∈≥ (B ),sin 1x R x ∀∈≥(C ),sin 1x R x ∃∈> (D ),sin 1x R x ∀∈>7.函数32)(2--=ax x x f 在区间(–∞,2)上为减函数,则有 ( )A.]1,(-∞∈aB.),2[+∞∈aC.]2,1[∈aD.),2[]1,(+∞⋃-∞∈a8.已知函数)(x f y =定义域是]3,2[-,则)12(-=x f y 的定义域是( )A .[]052, B. []-14, C. ]2,21[- D. []-37, 9..设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A.3-B. 1-C.1D.310.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是A .)2()1()23(f f f <-<-B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f二.填空题(每小题4分,共20分)11.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或,则a ,b 的值为______ 12.函数y=|32|2--x x 的单调递减区间是 ; 13.已知{}a a ,0,12∈, 则 a = ;14.已知函数3,1,(),1,x x f x x x ⎧≤=⎨->⎩若()2f x =,则x = .15.已知函数8)(35+++=cx bx ax x f ,且10)2(=-f ,则函数)2(f 的值是 .三.解答题(共6小题,共80分)16.(本题满分13分)设集合A ={x |a ≤x ≤a +3},集合B ={x |x <-1或x >5},分别就下列条件求实数a 的取值范围:(1)A ∩B ≠∅,(2)A ∩B =A .17.(本题满分13分) 求函数5123223+--=x x x y 在[0,3]上的最大值与最小值18.(本题满分13分)二次函数f (x )的最小值为1,且f (0)=f (2)=3.(1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求a 的取值范围.19.(本题满分13分)若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()21f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭20.(本题满分14分)已知21()log .1xf x x+=- (1)求)(x f 的定义域 (2)判断)(x f 的奇偶性并予以证明 (3)求使)(x f >0的x 取值范围21.(本题满分14分)已知函数()32f x x ax b =++的图像在点P (1,0)处的切线与直线30x y +=平行(1)求常数a,b 的值 (2)求函数()f x 在区间[]0,m 上最小值和最大值()0m >2018-2019学年度第一次月考高三文科数学试题一、选择题:(每小题5分共60分)二、填空题:(每小题5分共20分)11._____________________;12._____________________;13._____________________;14._____________;15. ______;三、解答题:(本大题有5个小题,共70分)16.(本题满分13分)18.(本题满分13分)20. (本题满分13分)20.(本题满分13分)22.(本题满分10分)。

怀远县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

怀远县高级中学2018-2019学年高三上学期11月月考数学试卷含答案

怀远县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1y x x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.2. ()()22f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )A .0a > B.0a << C .02a << D .以上都不对3. 设x ,y ∈R,且满足,则x+y=( )A .1B .2C .3D .44. 某程序框图如图所示,则该程序运行后输出的S 的值为( )A .1 B. C. D.5. 若实数x ,y满足,则(x ﹣3)2+y 2的最小值是( )A.B .8C .20D .26. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B. C.D.7.i是虚数单位,计算i+i2+i3=()A.﹣1 B.1 C.﹣i D.i8.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1﹣B.﹣C.D.9.若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i10.已知平面向量(12)=,a,(32)=-,b,若k+a b与a垂直,则实数k值为()A.15-B.119C.11D.19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.11.设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=()A.5 B.C.D.12.执行如图所示的一个程序框图,若f(x)在[﹣1,a]上的值域为[0,2],则实数a的取值范围是()A.(0,1] B.[1,] C.[1,2] D.[,2]二、填空题13.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .14.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)15.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度.16.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .17.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .18.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件:①f (x )=a x g (x )(a >0,a ≠1); ②g (x )≠0;③f (x )g'(x )>f'(x )g (x );若,则a= .三、解答题19.已知椭圆+=1(a >b >0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.20.(1)计算:(﹣)0+lne﹣+8+log62+log63;(2)已知向量=(sinθ,cosθ),=(﹣2,1),满足∥,其中θ∈(,π),求cosθ的值.21.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?22.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.23.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.(参考公式:()()()()()2n ad bca b c d a c b d-K=++++,其中n a b c d=+++)24.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行(1)现有三条y对x的回归直线方程:=﹣10x+170;=﹣20x+250;=﹣15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入﹣成本)怀远县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13.(1,±2).14.真命题15.201616.8π.17.6.18..三、解答题19.20.21.22.23.24.。

怀远县一中2018-2019学年高三上学期11月月考数学试卷含答案

怀远县一中2018-2019学年高三上学期11月月考数学试卷含答案

怀远县一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.2. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值3. 若双曲线C :x 2﹣=1(b >0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A .2B.C .3 D.4. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A.B.C.D.5. 若函数y=x 2+bx+3在[0,+∞)上是单调函数,则有( )A .b ≥0B .b ≤0C .b >0D .b <06. 直线在平面外是指( ) A .直线与平面没有公共点 B .直线与平面相交 C .直线与平面平行D .直线与平面最多只有一个公共点7. 已知向量(,1)a t =,(2,1)b t =+,若||||a b a b +=-,则实数t =( ) A.2-B.1-C. 1D.2班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.8.已知f(x)为偶函数,且f(x+2)=﹣f(x),当﹣2≤x≤0时,f(x)=2x;若n∈N*,a n=f(n),则a2017等于()A.2017 B.﹣8 C.D.9.S n是等差数列{a n}的前n项和,若3a8-2a7=4,则下列结论正确的是()A.S18=72 B.S19=76C.S20=80 D.S21=8410.阅读下面的程序框图,则输出的S=()A.14 B.20 C.30 D.5511.常用以下方法求函数y=[f(x)]g(x)的导数:先两边同取以e为底的对数(e≈2.71828…,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得•y′=g′(x)lnf(x)+g(x)•[lnf(x)]′,即y′=[f(x)]g(x){g′(x)lnf(x)+g(x)•[lnf(x)]′}.运用此方法可以求函数h(x)=x x(x>0)的导函数.据此可以判断下列各函数值中最小的是()A.h()B.h()C.h()D.h()12.复数z为纯虚数,若(3﹣i)•z=a+i (i为虚数单位),则实数a的值为()A.﹣B.3 C.﹣3 D.二、填空题13.在极坐标系中,直线l的方程为ρcosθ=5,则点(4,)到直线l的距离为.14.若命题“∀x∈R,|x﹣2|>kx+1”为真,则k的取值范围是.15.已知函数f(x)=x3﹣ax2+3x在x∈[1,+∞)上是增函数,求实数a的取值范围.16.已知函数f (x )=,若f (f (0))=4a ,则实数a= .17.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .18.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为三、解答题19.如图,A 地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

怀远县高级中学2018-2019学年高二上学期第一次月考测试数学

怀远县高级中学2018-2019学年高二上学期第一次月考测试数学

怀远县高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是()A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定2.设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)<0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|0<x<4}3.sin(﹣510°)=()A.B.C.﹣D.﹣4.方程(x2﹣4)2+(y2﹣4)2=0表示的图形是()A.两个点B.四个点C.两条直线 D.四条直线5.已知点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,双曲线C的焦距为12,则它的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.设函数f(x)在x0处可导,则等于()A.f′(x0)B.f′(﹣x0)C.﹣f′(x0)D.﹣f(﹣x0)7.已知数列{}n a为等差数列,n S为前项和,公差为d,若201717100201717S S-=,则d的值为()A.120B.110C.10D.20 8.已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A.m⊂α,n∥m⇒n∥αB.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β9.已知全集U R=,{|239}xA x=<≤,{|02}B y y=<≤,则有()A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð10.函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称 C .坐标原点对称 D .直线y=x 对称11.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法12.已知等差数列{a n }满足2a 3﹣a +2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .16二、填空题13.在中,角、、所对应的边分别为、、,若,则_________14.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.15.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.16.设所有方程可以写成(x ﹣1)sin α﹣(y ﹣2)cos α=1(α∈[0,2π])的直线l 组成的集合记为L ,则下列说法正确的是 ; ①直线l 的倾斜角为α;②存在定点A ,使得对任意l ∈L 都有点A 到直线l 的距离为定值; ③存在定圆C ,使得对任意l ∈L 都有直线l 与圆C 相交; ④任意l 1∈L ,必存在唯一l 2∈L ,使得l 1∥l 2;⑤任意l 1∈L ,必存在唯一l 2∈L ,使得l 1⊥l 2.17.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .18.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 三、解答题19.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()21xf x x e a =+-.(1)证明在(上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O 是坐标原点),证明:1m ≤20.已知函数y=3﹣4cos (2x+),x ∈[﹣,],求该函数的最大值,最小值及相应的x 值.21.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.22.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x )>恒成立,求实数k 的取值范围.23.(本题满分12分)在长方体1111D C B A ABCD -中,a AD AA ==1,E 是棱CD 上的一点,P 是棱1AA 上的一点.(1)求证:⊥1AD 平面D B A 11; (2)求证:11AD E B ⊥;(3)若E 是棱CD 的中点,P 是棱1AA 的中点,求证://DP 平面AE B 1.24.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.怀远县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.2.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题.3.【答案】C【解析】解:sin(﹣510°)=sin(﹣150°)=﹣sin150°=﹣sin30°=﹣,故选:C.4.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0 则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.5.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.6.【答案】C【解析】解:=﹣=﹣f′(x0),故选C.7.【答案】B 【解析】试题分析:若{}n a为等差数列,()()111212nn nnaS da nn n-+==+-⨯,则nSn⎧⎫⎨⎬⎩⎭为等差数列公差为2d,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 8. 【答案】D【解析】解:在A 选项中,可能有n ⊂α,故A 错误; 在B 选项中,可能有n ⊂α,故B 错误; 在C 选项中,两平面有可能相交,故C 错误;在D 选项中,由平面与平面垂直的判定定理得D 正确. 故选:D .【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.9. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 10.【答案】C【解析】解:∵f (﹣x )=﹣+x=﹣f (x )∴是奇函数,所以f (x )的图象关于原点对称故选C .11.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多, ∴是系统抽样法, 故选:C .【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.12.【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a 82=4a 8,解得a 8=4(0舍去), 即有b 8=a 8=4,由等比数列的性质可得b 4b 12=b 82=16.故选:D.二、填空题13.【答案】【解析】因为,所以,所以,所以答案:14.【答案】56 27【解析】15.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.16.【答案】②③④【解析】解:对于①:倾斜角范围与α的范围不一致,故①错误;对于②:(x﹣1)sinα﹣(y﹣2)cosα=1,(α∈[0,2π)),可以认为是圆(x﹣1)2+(y﹣2)2=1的切线系,故②正确;对于③:存在定圆C,使得任意l∈L,都有直线l与圆C相交,如圆C:(x﹣1)2+(y﹣2)2=100,故③正确;对于④:任意l1∈L,必存在唯一l2∈L,使得l1∥l2,作图知④正确;对于⑤:任意意l1∈L,必存在两条l2∈L,使得l1⊥l2,画图知⑤错误.故答案为:②③④.【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用.17.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些; 所以甲的成绩相对稳定些. 故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.18.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫'< ⎪⎝⎭来验证.求出()f x 表达式后,就可以求出13f ⎛⎫⎪⎝⎭.1三、解答题19.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:试题解析:(1)()()()22211xx f x ex x e x +='=++,()0f x ∴'≥,()()21xf x x ea ∴=+-在(),-∞+∞上为增函数.1a >,()010f a ∴=-<,又()1fa a =-=-,10,1a ->∴>,即0f>,由零点存在性定理可知,()f x 在(),-∞+∞上为增函数,且()00f f⋅<,()f x ∴在(上仅有一个零点。

怀远县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

怀远县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .2. 已知等比数列{a n }的公比为正数,且a 4•a 8=2a 52,a 2=1,则a 1=( )A .B .2C .D .3. 函数f (x )在x=x 0处导数存在,若p :f ′(x 0)=0:q :x=x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4. 已知定义在区间[0,2]上的函数y=f (x )的图象如图所示,则y=f (2﹣x )的图象为( )A .B .C .D .5. 在等比数列}{n a 中,821=+n a a ,8123=⋅-n a a ,且数列}{n a 的前n 项和121=n S ,则此数列的项数n 等于( )A .4B .5C .6D .7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等. 6. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( )A .3i --B .3i -+C .3i -D .3i +7. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .8. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)9. 设集合S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,则实数a 的取值范围是( ) A .﹣3<a <﹣1 B .﹣3≤a ≤﹣1 C .a ≤﹣3或a ≥﹣1 D .a <﹣3或a >﹣110.点A 是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A .B .C .D .11.抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( )A .B .C .D .12.函数f (x )=﹣x 的图象关于( ) A .y 轴对称 B .直线y=﹣x 对称C .坐标原点对称D .直线y=x 对称二、填空题13.(x ﹣)6的展开式的常数项是 (应用数字作答).14.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .15.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .16.若a ,b 是函数f (x )=x 2﹣px+q (p >0,q >0)的两个不同的零点,且a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于 .17.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|=.18.定义在R上的可导函数()f x,已知()f xy e=′的图象如图所示,则()y f x=的增区间是▲.中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线O,半径为13;圆弧C2过点A(29,0).?若存在,指出有几个这样的点;若不存在,请说明理由.20.化简:(1).(2)+.21.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点. (1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC1B 1是正方形,且A 1D=,求直线A 1D 与平面CBB 1C 1所成角的正弦值.22.设A=2{x|2x+ax+2=0},2A ∈,集合2{x |x 1}B ==(1)求a 的值,并写出集合A 的所有子集;(2)若集合{x |bx 1}C ==,且C B ⊆,求实数b 的值。

怀远县高中2018-2019学年高三上学期11月月考数学试卷含答案

怀远县高中2018-2019学年高三上学期11月月考数学试卷含答案班级__________姓名__________ 分数__________一、选择题1. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:x 3456y 2.534 4.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.452. 若等式(2x ﹣1)2014=a 0+a 1x+a 2x 2+…+a 2014x 2014对于一切实数x 都成立,则a 0+1+a 2+…+a 2014=()A .B .C .D .03. 已知集合( ){}{2|5,x |y ,A y y x B A B ==-+===A . B . C . D .[)1,+∞[]1,3(]3,5[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.4. 集合,是的一个子集,当时,若有,则称为的一个“孤立{}5,4,3,2,1,0=S A S A x ∈A x A x ∉+∉-11且x A 元素”.集合是的一个子集, 中含4个元素且中无“孤立元素”,这样的集合共有个B S B B B A.4 B. 5 C.6 D.75. 已知M 是△ABC 内的一点,且=2,∠BAC=30°,若△MBC ,△MCA 和△MAB 的面积分别为,x ,y ,则+的最小值是( )A .20B .18C .16D .96. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )A .4B .2C .D .27. 设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得()()12f x f x =,则实数的最大值为()A .94B .C.92D .48. 已知三棱柱 的侧棱与底面边长都相等,在底面上的射影为的中点, 111ABC A B C -1A ABC BC 则异面直线与所成的角的余弦值为()AB 1CCA B D .349. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( )A .6B .9C .36D .7210.函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .11.“”是“圆关于直线成轴对称图形”的( )3<-b a 056222=++-+a y x y x b x y 2+=A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.12.下列说法中正确的是( )A .三点确定一个平面B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内二、填空题13.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .14.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为 cm 3.15.已知函数f (x )=恰有两个零点,则a 的取值范围是 .16.已知是定义在上函数,是的导数,给出结论如下:()f x R ()f x '()f x ①若,且,则不等式的解集为;()()0f x f x '+>(0)1f =()xf x e -<(0,)+∞②若,则;()()0f x f x '->(2015)(2014)f ef >③若,则;()2()0xf x f x '+>1(2)4(2),n n f f n N +*<∈④若,且,则函数有极小值;()()0f x f x x'+>(0)f e =()xf x 0⑤若,且,则函数在上递增.()()xe xf x f x x'+=(1)f e =()f x (0,)+∞其中所有正确结论的序号是 .17.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .18.已知平面向量,的夹角为,,向量,的夹角为,与a b 3π6=-b ac a - c b - 23πc a -= a 的夹角为__________,的最大值为.ca c ⋅ 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19.选修4﹣4:坐标系与参数方程极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为,(t 为参数),曲线C 的极坐标方程为ρsin 2θ=8cos θ.(Ⅰ)求C 的直角坐标方程;(Ⅱ)设直线l 与曲线C 交于A 、B 两点,求弦长|AB|.20.如图,在四边形中,, 四ABCD ,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=A 边形绕着直线旋转一周.AD(1)求所成的封闭几何体的表面积;(2)求所成的封闭几何体的体积.21.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.22.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.23.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°.(1)若BC是⊙O的直径,求∠D的大小;(2)若∠DAE=25°,求证:DA2=DC•BP.24.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.怀远县高中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A【解析】解:设回归直线方程=0.7x+a ,由样本数据可得, =4.5, =3.5.因为回归直线经过点(,),所以3.5=0.7×4.5+a ,解得a=0.35.故选A .【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键. 2. 【答案】B 【解析】解法一:∵,∴(C 为常数),取x=1得,再取x=0得,即得,∴,故选B .解法二:∵,∴,∴,故选B .【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用. 3. 【答案】D【解析】,故选D.{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴= 4. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:,,,,,共6个。

怀远县一中2018-2019学年上学期高三数学10月月考试题

怀远县一中2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .2. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( )A .﹣12B .﹣10C .﹣8D .﹣63. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .24. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .565. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=A B .C .D .6. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .7. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)8. 函数(,)的部分图象如图所示,则 f (0)的值为( )()2cos()f x x ωϕ=+0ω>0ϕ-π<<A. B. C. D. 32-1-【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.9. 已知是虚数单位,若复数在复平面内对应的点在第四象限,则实数的值可以是( )22aiZ i+=+A .-2B .1C .2D .310.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( )A .1个B .2个C .3个D .4个11.在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =,则到边的距离为( )2015120aBC bCA cAB ++=H AB A .2 B .3C.1 D .412.若集合,则= ( )AB C D二、填空题13.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .14.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,M x= .15.若全集,集合,则16.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则(a c b d -+-的最小值为 ▲ .17.已知平面向量,的夹角为,,向量,的夹角为,与a b 3π6=-b ac a - c b - 23πc a -= a 的夹角为__________,的最大值为.ca c ⋅ 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题18.如图,四棱锥P ﹣ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD=AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.19.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B B A(I )求角的值;C(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.20.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.21.(本题满分15分)已知函数,当时,恒成立.c bx ax x f ++=2)(1≤x 1)(≤x f (1)若,,求实数的取值范围;1=a c b =b (2)若,当时,求的最大值.a bx cx x g +-=2)(1≤x )(x g 【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.22.如图所示,在正方体中.1111ABCD A B C D -(1)求与所成角的大小;11A C 1B C (2)若、分别为、的中点,求与所成角的大小.E F AB AD 11A C EF23.(本小题满分12分)已知两点及,点在以、为焦点的椭圆上,且、、)0,1(1 F )0,1(2F P 1F 2F C 1PF 21F F 构成等差数列.2PF (I )求椭圆的方程;C (II )设经过的直线与曲线C 交于两点,若,求直线的方程.2F m P Q 、22211PQ F P F Q=+m 24.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:0.0050.02a频率组距千克(Ⅰ)求频率分布直方图中的的值,并估计每天销售量的中位数;a (Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.怀远县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.2.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.3.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.4.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.5.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.6.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx﹣y﹣2=0,若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d≤1,即≤1,即k2﹣3≥0,解得k≤﹣或k≥,即≤α≤且α≠,综上所述,≤α≤,故选:A.7.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.8. 【答案】D【解析】易知周期,∴.由(),得112(1212T π5π=-=π22T ωπ==52212k ϕπ⨯+=πk ∈Z 526k ϕπ=-+π(),可得,所以,则,故选D.k Z ∈56ϕπ=-5()2cos(2)6f x x π=-5(0)2cos(6f π=-=9. 【答案】A 【解析】试题分析:,对应点在第四象限,故,A 选项正确.()()()()2224(22)2225ai i ai a a ii i i +-+++-==++-40220a a +>⎧⎨-<⎩考点:复数运算.10.【答案】B 【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.11.【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底OA OB BA -= 2OA OB OD +=D AB向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几,AB AC何意义等.12.【答案】B 【解析】二、填空题13.【答案】 cm 2 .【解析】解:如图所示,是正六棱台的一部分,侧面ABB 1A 1为等腰梯形,OO 1为高且OO 1=1cm ,AB=1cm ,A 1B 1=2cm .取AB 和A 1B 1的中点C ,C 1,连接OC ,CC 1,O 1C 1,则C 1C 为正六棱台的斜高,且四边形OO 1C 1C 为直角梯形.根据正六棱台的性质得OC=,O 1C 1==,∴CC 1==.又知上、下底面周长分别为c=6AB=6cm ,c ′=6A 1B 1=12cm .∴正六棱台的侧面积:S=.==(cm 2).故答案为:cm 2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.14.【答案】 3 .【解析】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=4=x+=4,∴x=3,故答案为:3.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.15.【答案】{|0<<1}【解析】∵,∴{|0<<1}。

定远县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

定远县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=m (x﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,] B .(﹣∞,) C .(﹣∞,0]D .(﹣∞,0)2. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A .716-B .916-C .12-D .14-3. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 4. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ 5. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 800 6. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题7. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( ) A. B.C.D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .9. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=10.已知点M 的球坐标为(1,,),则它的直角坐标为( )A .(1,,)B .(,,)C .(,,)D .(,,)11.已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π 12.已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )A .kB .﹣kC .1﹣kD .2﹣k二、填空题13.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .14.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .15.已知(x 2﹣)n)的展开式中第三项与第五项的系数之比为,则展开式中常数项是 . 16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市; 丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .17.函数y=lgx 的定义域为 .18.椭圆C : +=1(a >b >0)的右焦点为(2,0),且点(2,3)在椭圆上,则椭圆的短轴长为 .三、解答题19.如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=﹣4.(Ⅰ)p 的值;(Ⅱ)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,RQ 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.20.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点)2在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.21.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)(1)求C 1与C 2交点的坐标;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)22.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.23.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.24.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.定远县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】 B【解析】解:由题意,不等式f (x )<g (x )在[1,e]上有解,∴mx <2lnx ,即<在[1,e]上有解,令h (x )=,则h ′(x )=,∵1≤x ≤e ,∴h ′(x )≥0,∴h (x )max =h (e )=,∴<h (e )=,∴m <.∴m 的取值范围是(﹣∞,). 故选:B .【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.2. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 3. 【答案】A【解析】试题分析:因为{}|5A x N x =∈< ,而1.5,1,.5,1N N A A ∉-∉∴∉-∉,即B 、C 正确,又因为0N ∈且05<,所以0A ∈,即D 正确,故选A. 1考点:集合与元素的关系. 4. 【答案】C 【解析】考点:三角形中正余弦定理的运用. 5.【答案】A【解析】P(X≤90)=P(X≥110)=110,P(90≤X≤110)=1-15=45,P(100≤X≤110)=25,1000×25=400. 故选A.6.【答案】D【解析】解:A.命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,故A错误,B.由x2+5x﹣6=0得x=1或x=﹣6,即“x=﹣1”是“x2+5x﹣6=0”既不充分也不必要条件,故B错误,C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1≤0﹣5,故C错误,D.若A>B,则a>b,由正弦定理得sinA>sinB,即命题“在△ABC中,若A>B,则sinA>sinB”的为真命题.则命题的逆否命题也成立,故D正确故选:D.【点评】本题主要考查命题的真假判断,涉及四种命题的关系以及充分条件和必要条件的判断,含有量词的命题的否定,比较基础.7.【答案】A【解析】解:点集{(x,y)|(|x|﹣1)2+y2=4}表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示.由图可得面积S==+=+2.故选:A.【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.8.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.9.【答案】C【解析】解:A.在定义域内没有单调性,∴该选项错误;B.时,y=,x=1时,y=0;∴该函数在定义域内不是减函数,∴该选项错误;C.y=﹣x|x|的定义域为R,且﹣(﹣x)|﹣x|=x|x|=﹣(﹣x|x|);∴该函数为奇函数;;∴该函数在[0,+∞),(﹣∞,0)上都是减函数,且﹣02=02;∴该函数在定义域R上为减函数,∴该选项正确;D.;∵﹣0+1>﹣0﹣1;∴该函数在定义域R上不是减函数,∴该选项错误.故选:C.【点评】考查反比例函数的单调性,奇函数的定义及判断方法,减函数的定义,以及分段函数单调性的判断,二次函数的单调性.10.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sin cos=,y=sin sin=,z=cos=∴M的直角坐标为(,,).故选:B.【点评】假设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段OP与z轴正向的夹角,φ为从正z轴来看自x轴按逆时针方向转到OM 所转过的角,这里M为点P在xOy面上的投影.这样的三个数r,φ,θ叫做点P的球面坐标,显然,这里r,φ,θ的变化范围为r∈[0,+∞),φ∈[0,2π],θ∈[0,π],11.【答案】D【解析】:()sin )(tan f x a x x x ϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=-对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=12.【答案】D【解析】解:∵f (x )=ax 3+bx+1(ab ≠0),f (2016)=k , ∴f (2016)=20163a+2016b+1=k ,∴20163a+2016b=k ﹣1,∴f (﹣2016)=﹣20163a ﹣2016b+1=﹣(k ﹣1)+1=2﹣k .故选:D .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题13.【答案】 2 .【解析】解:函数可化为f (x )==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f (x )=的最大值与最小值的和为1+1+0=2.即M+m=2. 故答案为:2.14.【答案】.【解析】解:∵直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1), ∴a+b ﹣1=0,即a+b=1, ∴ab ≤= 当且仅当a=b=时取等号, 故ab 的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.15.【答案】45.【解析】解:第三项的系数为C n2,第五项的系数为C n4,由第三项与第五项的系数之比为可得n=10,则T i+1=C10i(x2)10﹣i(﹣)i=(﹣1)i C10i=,令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C108=45,故答案为:45.16.【答案】A.【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.17.【答案】{x|x>0}.【解析】解:对数函数y=lgx的定义域为:{x|x>0}.故答案为:{x|x>0}.【点评】本题考查基本函数的定义域的求法.18.【答案】.【解析】解:椭圆C:+=1(a>b>0)的右焦点为(2,0),且点(2,3)在椭圆上,可得c=2,2a==8,可得a=4,b2=a2﹣c2=12,可得b=2,椭圆的短轴长为:4.故答案为:4.【点评】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.三、解答题19.【答案】【解析】解:(Ⅰ)由题意设MN:y=kx+,由,消去y得,x2﹣2pkx﹣p2=0(*)由题设,x1,x2是方程(*)的两实根,∴,故p=2;(Ⅱ)设R(x3,y3),Q(x4,y4),T(0,t),∵T在RQ的垂直平分线上,∴|TR|=|TQ|.得,又,∴,即4(y3﹣y4)=(y3+y4﹣2t)(y4﹣y3).而y3≠y4,∴﹣4=y3+y4﹣2t.又∵y3+y4=1,∴,故T(0,).因此,.由(Ⅰ)得,x1+x2=4k,x1x2=﹣4,=.因此,当k=0时,S△MNT有最小值3.【点评】本题考查抛物线方程的求法,考查了直线和圆锥曲线间的关系,着重考查“舍而不求”的解题思想方法,考查了计算能力,是中档题.20.【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.21.【答案】【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.22.【答案】【解析】解:(1)…(2分)令解得…f(x)的递增区间为…(6分)(2)∵,∴…(8分)∴,∴…(10分)∴f(x)的值域是…(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.23.【答案】【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,所以,BB1⊥BC.又因为AB⊥BC且AB∩BB1=B,所以,BC⊥平面A1ABB1.因为BC⊂平面BCE,所以,平面BCE⊥平面A1ABB1.(II)证明:取BC的中点D,连接C1D,FD.因为E,F分别是A1C1,AB的中点,所以,FD∥AC且.因为AC∥A1C1且AC=A1C1,所以,FD∥EC1且FD=EC1.所以,四边形FDC1E是平行四边形.所以,EF∥C1D.又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,所以,EF∥平面B1BCC1.(III)解:因为,AB⊥BC所以,.过点B作BG⊥AC于点G,则.因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1所以,平面A1ACC1⊥底面ABC.所以,BG⊥平面A1ACC1.所以,四棱锥B﹣A1ACC1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.24.【答案】【解析】(1)解:∵数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),∴a2=3+3p,a3=3+12p,∵a1,a2+6,a3成等差数列.∴2a2+12=a1+a3,即18+6p=6+12p 解得p=2.∵a n+1=a n+p•3n,∴a2﹣a1=2•3,a3﹣a2=2•32,…,a n﹣a n﹣1=2•3n﹣1,将这些式子全加起来得a n﹣a1=3n﹣3,∴a n=3n.(2)证明:∵{b n}满足b n=,∴b n=.设f(x)=,则f′(x)=,x∈N*,令f′(x)=0,得x=∈(1,2)当x∈(0,)时,f′(x)>0;当x∈(,+∞)时,f′(x)<0,且f(1)=,f(2)=,∴f(x)max=f(2)=,x∈N*.∴b n≤.【点评】本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意构造法的合理运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怀远县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .32. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数3. 若函数是偶函数,则函数的图象的对称轴方程是( )])1(+=x f y )(x f y =A .B .C .D .1=x 1-=x 2=x 2-=x 4. 函数是指数函数,则的值是( )2(44)xy a a a =-+A .4 B .1或3C .3D .15. 如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .06. 已知x >1,则函数的最小值为()A .4B .3C .2D .17. (2011辽宁)设sin (+θ)=,则sin2θ=()A .﹣B .﹣C .D.8. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()xxf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.9. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( )A .36种B .38种C .108种D .114种10.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[]班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________B[]C[]D[]11.函数y=+的定义域是()A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}12.有下列关于三角函数的命题P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;P 2:函数y=sin (x ﹣)与函数y=cosx 的图象相同;P 3:∃x 0∈R ,2cosx 0=3;P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( )A .P 1,P 4B .P 2,P 4C .P 2,P 3D .P 1,P 2二、填空题13.已知函数的三个零点成等比数列,则 .5()sin (02f x x a x π=-≤≤2log a =14.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是 .15.已知函数f (x )=cosxsinx ,给出下列四个结论:①若f (x 1)=﹣f (x 2),则x 1=﹣x 2;②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .16.圆心在原点且与直线相切的圆的方程为_____.2x y +=【命题意图】本题考查点到直线的距离公式,圆的方程,直线与圆的位置关系等基础知识,属送分题.17.若函数f (x )=3sinx ﹣4cosx ,则f ′()= .18.已知函数,若∃x 1,x 2∈R ,且x 1≠x 2,使得f (x 1)=f (x 2),则实数a 的取值范围是 . 三、解答题19.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?20.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.21.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.22.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.23.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系;(2)若,求实数组成的集合C .A B B =I 24.A={x|x 2﹣3x+2=0},B={x|ax ﹣2=0},若B ⊆A ,求a .怀远县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B 【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.故选B .【点评】本题考查复数相等的意义、复数的基本运算,是基础题. 2. 【答案】B【解析】解:∵结论:“自然数a ,b ,c 中恰有一个偶数”可得题设为:a ,b ,c 中恰有一个偶数∴反设的内容是 假设a ,b ,c 中至少有两个偶数或都是奇数.故选B .【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“. 3. 【答案】A 【解析】试题分析:∵函数向右平移个单位得出的图象,又是偶函数,对称轴方程)1(+=x f y )(x f y =)1(+=x f y 为,的对称轴方程为.故选A .0=x ∴)(x f y =1=x 考点:函数的对称性.4. 【答案】C 【解析】考点:指数函数的概念.5. 【答案】A 【解析】解:因为,而(m ∈R ,i 表示虚数单位),所以,m=1.故选A .【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.6.【答案】B【解析】解:∵x>1∴x﹣1>0由基本不等式可得,当且仅当即x﹣1=1时,x=2时取等号“=”故选B7.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.8.【答案】D.【解析】9.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.10.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。

∴当x>0时,。

∵函数f(x)为奇函数,∴当x<0时,。

∵对∀x∈R,都有f(x﹣1)≤f(x),∴2a2﹣(﹣4a2)≤1,解得:。

故实数a的取值范围是。

11.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.12.【答案】D【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx==>0,则P1为真命题;对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),则f (x )的最小正周期为π,则P 4为假命题.故选D .【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题. 二、填空题13.【答案】12-考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.14.【答案】21≥a 【解析】试题分析:,因为,其图象上任意一点处的切线的斜率恒成立,'21()a f x x x =-(0,3]x ∈00(,)P x y 12k ≤,,,恒成立,由.12112a x x ∴-≤(0,3]x ∈x x a +-≥∴221(0,3]x ∈2111,222x x a -+≤∴≥考点:导数的几何意义;不等式恒成立问题.【易错点睛】本题主要考查了导数的几何意义;不等式恒成立问题等知识点求函数的切线方程的注意事项:(1)首先应判断所给点是不是切点,如果不是,要先设出切点. (2)切点既在原函数的图象上也在切线上,可将切点代入两者的函数解析式建立方程组.(3)在切点处的导数值就是切线的斜率,这是求切线方程最重要的条件.15.【答案】 ③④ .【解析】解:函数f (x )=cosxsinx=sin2x ,对于①,当f (x 1)=﹣f (x 2)时,sin2x 1=﹣sin2x 2=sin (﹣2x 2)∴2x 1=﹣2x 2+2k π,即x 1+x 2=k π,k ∈Z ,故①错误;对于②,由函数f (x )=sin2x 知最小正周期T=π,故②错误;对于③,令﹣+2π≤2x ≤+2k π,k ∈Z 得﹣+k π≤x ≤+k π,k ∈Z当k=0时,x ∈[﹣,],f (x )是增函数,故③正确;对于④,将x=代入函数f (x )得,f ()=﹣为最小值,故f (x )的图象关于直线x=对称,④正确.综上,正确的命题是③④.故答案为:③④. 16.【答案】222x y +=【解析】由题意,圆的半径等于原点到直线的距离,所以2x y +=r d ===.222x y +=17.【答案】 4 .【解析】解:∵f ′(x )=3cosx+4sinx ,∴f ′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题. 18.【答案】 (﹣∞,2)∪(3,5) .【解析】解:由题意,或∴a <2或3<a <5故答案为:(﹣∞,2)∪(3,5).【点评】本题考查分类讨论的数学思想,考查学生的计算能力,属于基础题. 三、解答题19.【答案】 【解析】解:(1)…=…定义域是(0,7]…(2)∵,…当且仅当即x=6时取=…∴y≥80×12+1800=2760…答:当侧面长度x=6时,总造价最低为2760元.…20.【答案】【解析】解:(1)f(1)=1+k=2;∴k=1,,定义域为{x∈R|x≠0};(2)为增函数;证明:设x1>x2>1,则:==;∵x1>x2>1;∴x1﹣x2>0,,;∴f(x1)>f(x2);∴f(x)在(1,+∞)上为增函数.21.【答案】【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=因为数列{a n}是等比数列,所以,所以c=1.又公比q=,所以;由题意可得:=,又因为b n>0,所以;所以数列{}是以1为首项,以1为公差的等差数列,并且有;当n≥2时,b n=S n﹣S n﹣1=2n﹣1;所以b n=2n﹣1.(2)因为数列前n项和为T n,所以==;因为当m∈[﹣1,1]时,不等式恒成立,所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,设g(m)=﹣2tm+t2,m∈[﹣1,1],所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,所以,解得t<﹣2或t>2,所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).(3)T1,T m,T n成等比数列,得T m2=T1T n∴,∴结合1<m<n知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.22.【答案】【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,∴(x﹣1)(x﹣)>0,若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.23.【答案】(1);(2).A B ⊆{}5,3,0=C 【解析】考点:1、集合的表示;2、子集的性质.24.【答案】【解析】解:解:集合A={x|x 2﹣3x+2=0}={1,2}∵B ⊆A ,∴(1)B=∅时,a=0(2)当B={1}时,a=2(3))当B={2}时,a=1故a 值为:2或1或0.。

相关文档
最新文档